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A Multiple-Goal Reinforcement Learning Method for
Complex Vehicle Overtaking Maneuvers

Daniel Chi Kit Ngai and Nelson Hon Ching Yung, Senior Member, IEEE

Abstract—In this paper, we present a learning method to solve
the vehicle overtaking problem, which demands a multitude of
abilities from the agent to tackle multiple criteria. To handle
this problem, we propose to adopt a multiple-goal reinforcement
learning (MGRL) framework as the basis of our solution. By con-
sidering seven different goals, either Q-learning (QL) or double-
action QL is employed to determine action decisions based on
whether the other vehicles interact with the agent for that par-
ticular goal. Furthermore, a fusion function is proposed according
to the importance of each goal before arriving to an overall but
consistent action decision. This offers a powerful approach for
dealing with demanding situations such as overtaking, particu-
larly when a number of other vehicles are within the proximity of
the agent and are traveling at different and varying speeds. A large
number of overtaking cases have been simulated to demonstrate
its effectiveness. From the results, it can be concluded that the
proposed method is capable of the following: 1) making correct
action decisions for overtaking; 2) avoiding collisions with other
vehicles; 3) reaching the target at reasonable time; 4) keeping
almost steady speed; and 5) maintaining almost steady heading
angle. In addition, it should also be noted that the proposed
method performs lane keeping well when not overtaking and lane
changing effectively when overtaking is in progress.

Index Terms—Artificial intelligence, learning control systems.

I. INTRODUCTION

THE ULTIMATE goal of the autonomous vehicle (AV)
challenge [1]–[4] is the development of driverless cars

that can automatically perform a multitude of tasks (e.g., lane
following, lane changing [5], [6], and overtaking [7]–[11])
without human intervention.

In principle, overtaking is the act of driving around a slower
moving leading vehicle in the path of the host vehicle (agent).
It can be treated as a three-phase problem [7], which consists of
the agent performing the following tasks: 1) diverting from its
original lane; 2) driving pass the leading vehicle in the adjacent
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faster lane; and 3) returning to its original lane afterward.
Compared with other AV research, the problem of overtaking
has been somewhat neglected. In [7], Shamir proposed an
algorithm to compute the optimal trajectory for overtaking a
leading vehicle in a straight road. Naranjo et al. [12]–[14]
proposed a fuzzy control system that essentially changes the
driving mode according to the three phases. Both methods focus
on the straight road with one leading vehicle only and are not
guaranteed to work if the road has curvature and is occupied by
multiple vehicles.

In this paper, we present a learning method to solve the
aforementioned vehicle-overtaking problem. We propose to
adopt a multiple-goal reinforcement learning (RL) framework
as the basis of our solution. RL [15] aims to find an appropriate
mapping from situations to actions in which a certain reward
is maximized. The vehicle that is responsible for making a
decision is called an agent in RL. By considering seven different
goals, either Q-learning (QL) or double-action QL (DAQL) [16]
is employed for determining action decisions based on whether
the other vehicles interact with the agent for that particular
goal. QL is a popular RL algorithm, whereas DAQL evolves
from QL and uses an autoregressive (AR) prediction model that
actively considers the responses of nearby vehicles. While other
research concentrates on vehicle control to achieve the goal,
the proposed method derives navigation decisions to achieve
the same, if not better, results. We believe that vehicle control
on throttle, brake, and steering can be easily obtained by the
use of proper vehicle dynamic models once correct selection
of action to be performed in a particular situation is made.
Together with a fusion function, the proposed method offers a
powerful approach for dealing with demanding situations such
as overtaking. From the simulations, it can be concluded that
the proposed method is capable of the following: 1) making
correct action decisions for overtaking; 2) avoiding collisions
with other vehicles; 3) reaching the target at a reasonable
time; 4) keeping a steady speed; and 5) maintaining an almost
steady heading angle. In addition, it should also be noted that
the proposed method performs lane keeping well when not
overtaking and lane changing effectively when overtaking is in
progress.

This paper is organized as follows: an overview of the
proposed multiple-goal RL (MGRL) framework is given in
Section II. Following that, Section III describes the imple-
mentation of the RL agent. Section IV presents the details
of the method proposed. Section V outlines the simulation
environment and the results obtained under different simulation
cases. Section VI evaluates the proposed method under different
simulation cases. Finally, the conclusion is given in Section VII.

1524-9050/$26.00 © 2011 IEEE
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II. MULTIPLE-GOAL REINFORCEMENT LEARNING

Depending on the characteristics of the environment, MGRL
can be broadly categorized into three types: 1) static known;
2) static unknown; and 3) dynamically changing. A dynami-
cally changing environment can be defined as an environment
with movable obstacles, and a movable target that their current
positions can be detected by the sensors of the agent, but their
future movements are not known to the agent. Autonomous
road vehicle navigation is an example of applications that act on
a dynamically changing environment. In addition, autonomous
road vehicle navigation is a multiple-goal problem involving a
number of the following tasks at any one time: target seeking,
collision avoidance, lane following, lane changing, and safety
distance keeping. We believe that this problem can be better
solved by solutions that explicitly consider these goals simulta-
neously. The MGRL method proposed in this paper is one such
solution.

To deal with a dynamically changing environment, it is
believed that the motion of the obstacles must be considered.
Such consideration must include two aspects: 1) the influence
of obstacles’ and/or target’s motion on the agent’s decision-
making process and 2) obstacle motion prediction. While there
exist methods that adopt the aforementioned view, however,
they assume that obstacle motion or behavior is either known
as a priori [17], [18] or well defined, e.g., at constant speed and
known steering angle [19], [20]. Unfortunately, neither of the
assumptions is true in real-world navigation.

Given these limitations, it is motivated in this paper to ex-
plicitly consider the “obstacle influence” and “obstacle motion
prediction” aspects. In doing so, navigation is no longer treated
as a control problem that merely transforms sensor inputs to
mechanical outputs. Rather, it is considered as an intelligent
decision-making process that deals with higher level strategies
called goals with the use of planning, learning, prediction,
and the consideration of environment response. Although the
goals required in different applications may significantly vary,
the navigation problem can now be viewed as a generalized
multiple-goal problem. For example, the overtaking problem of
the road requires the agent to find a collision-free path while
simultaneously obeying the lane following and changing rules.
Due to the fact that the road is used by other vehicles that
are controlled by other intelligent decision makers (human or
otherwise), we need to learn how their decisions will affect
the agent’s decision and predict their future actions, before
we can appropriately respond in the short term, as well as
achieve its goals in the long run. As such, we are motivated to
develop a generalized methodology that deals with the multiple-
goal requirements in a dynamically changing environment
by considering the obstacles’ influence and motion explicitly
throughout.

RL is essentially the learning of the mapping of situations
(states) to actions. Traditionally, this is done by using the
Markov decision process model. However, it describes a single-
agent environment in which there is no other decision-making
agent in the environment. By viewing the real world as an en-
vironment that contains other multiple decision-making agents,
it is therefore necessary to consider the decisions made by each

Fig. 1. Conceptual diagram of MGRL.

agent. As such, the double-action concept is introduced to cap-
ture this extra piece of information. The DAQL method is thus
developed based on this inspiration on top of the foundation of
QL. DAQL has explicit consideration on the actions performed
(or “influence”) by other parties in the environment and thus
allows a more efficient use of the reinforcement leaning method
in a dynamically changing environment [21].

Within the context of the proposed method, it is assumed
that sensors are employed to capture environmental informa-
tion, which is then quantized into discrete states. From these
descriptions of the environment, QL or DAQL is used to enable
the agent to learn and decide on actions for a particular goal
that will bring a maximum reward in the long run, and a goal
fusion function is employed to give an overall consistent output
action, given that individual actions are derived from individual
goals. Eventually, an exploration policy is applied afterward for
the RL algorithm to learn through exploring the environment.

Fig. 1 shows the MGRL model with totally G goals, of
which conventional QL and DAQL can be picked for learning
in any one case, depending on the nature of the environment.
Normally, QL is sufficient for cases where there are no envi-
ronmental responses or they can be ignored, and DAQL is used
otherwise. For example, for a normal navigation problem [22],
[23] that consists of two goals, i.e., target seeking and collision
avoidance, if other vehicles in the environment or the target
is nonstationary, then they have to be dealt with by DAQL,
whereas, if they are stationary, then QL will suffice. In the case
of vehicle overtaking, we proposed to consider seven goals:
1) target seeking; 2) collision avoidance; 3) lane following;
4) choosing slow lane if not overtaking; 5) choosing fast lane
if overtaking; 6) keeping steady speed; and 7) keeping steady
heading angle. Clearly, some of these goals are contradictory,
e.g., goals 5 and 6, whereas some are consistent, e.g., goals 3
and 6. Therefore, a safe and smooth overtaking action requires
these goals to be appropriately fused.
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Fig. 2. Control variables of agent and the ith vehicle.

III. REALIZATION OF THE MULTIPLE-GOAL

REINFORCEMENT LEARNING AGENT

A. Geometrical Relations Between the Agent and
Other Vehicles

1) Quantization of Sensor Inputs: Assume that the envi-
ronment consists of one MGRL vehicle (agent) and N other
vehicles. The agent is the vehicle that is to perform an over-
taking action. The control variables of the agent and the ith
vehicle at time t are depicted in Fig. 2. We assume that the
vehicle operates in an environment where intervehicle commu-
nication is not allowed. It is further assumed that the relative
distances between the agent and other vehicles can be sensed
by distance sensors on the agent [6], [24]. We further assume
that the sensors have a minimum and a maximum detectable
distance of ds,min and ds,max, respectively. As not all vehicles
are within this range, M vehicles in the environment can be
detected, where M ≤ N . Without losing generality, the infor-
mation gathered by the agent is quantized into discrete states.
In situations where high precision is required, the number of
states can be further increased. The location of the ith vehicle
is denoted by distance di ∈ Do from the agent, where Do =
[ds,min, ds,max] ⊂ �, and angle θi ∈ Θ, where Θ = [0, 2π] ⊂
�. The two parameters di and θi are quantized into Nd and Nθ

number of discrete states, respectively, as follows:

d̃i =
{
�((Nd − 1) × di) /ds,max� , if di < ds,max

Nd − 1, otherwise
(1)

θ̃i =

{⌊
θi+π/Nθ

2π/Nθ

⌋
, for 0 ≤ θi < (2Nθ − 1)π/Nθ

0, for (2Nθ − 1)π/Nθ ≤ θi < 2π.
(2)

The state set for vehicle location is defined as si ∈ Si,
where Si = {(d̃i, θ̃i)|d̃i ∈ Dq and θ̃i ∈ Θq1}, Θq1 = {j |j =
0, 1, . . . , Nθ − 1}, and Dq = {k|k = 0, 1, . . . , Nd − 1}. There
are altogether Nd × Nθ states for Si. Vehicles are thus located
in a quantized polar coordinate with respect to the agent.

2) Quantization of Sensor Inputs: We assume that the
agent’s heading angle is φ ∈ Θ w.r.t. the target. The state set for
the relative location of the target is represented by the angle φ̃ ∈
Θq2 and Θq2 = {j |j = 0, 1, . . . , Nφ − 1}, and quantization is
achieved as follows:

φ̃ = a if σa+1 < φ ≤ σa (3)

where

σa =
{

π/2a, for a = 0, . . . , Nφ/2 − 1
−π/215−a, for a = Nφ/2, . . . , Nφ − 1.

(4)

Fig. 3. Quantization of heading angle φ when Nφ = 15.

φ̃ is quantized in such a way that there are more states in
front of the agent rather than behind it so that the agent can
more sensitively respond to vehicles moving in front of it when
performing overtaking. Therefore, instead of evenly quantizing
φ̃, Nφ states are used to quantize φ̃ unevenly, as shown in Fig. 3.
Therefore, we have more states to represent vehicles in front
of the agent, because this information is more important to the
agent when performing overtaking.

3) Quantization of Lane Information: We assumed that the
road has an arbitrary number of lanes while we use a road
with three lanes for demonstration in this paper. We further
assumed that lane width dlane is derived from lane marking
that can be detected onboard the agent [25]. Furthermore,
the center line of the lane and the agent’s relative position
to the line can be calculated, as shown in Fig. 4(a). The
agent’s location relative to the nearest lane is represented by
the perpendicular distance (dLF) between the lane center line
and agent’s center. The difference between its heading angle
(θa, 0 ≤ θa ≤ 2π) and the angle of the center line on the
nearest lane (θl, 0 ≤ θl ≤ π) is denoted as θLF, as shown in
Fig. 4(b). dLF and θLF are denoted by dLF ∈ DLF, where
DLF = [−dlane/2, dlane/2) ⊂ �, and θLF ∈ Θ, where Θ =
[0, π] ⊂ �. The state set for the agent’s location is sLF ∈ SLF,
where SLF = {(d̃LF, θ̃LF)|d̃LF ∈ DLF,q and θ̃LF ∈ ΘLF,q},
ΘLF,q = {j |j = 0, 1, . . . , NθLF − 1}, and DLF,q = {k|k =
0, 1, . . . , NdLF − 1}. We use an equally sized partition to quan-
tize the distance and angle of the agent’s location relative to
the center lane. Therefore, NθLF and NdLF discrete states are
used to represent θLF and dLF, respectively, and quantization is
achieved as follows:

d̃LF =
⌊

dLF + dlane/2
dlane/NdLF

⌋
(5)

θ̃LF =
⌊

θLF

π/(NθLF − 1)

⌋
. (6)

Furthermore, the perpendicular distance between the agent
and the center line of the rightmost or the leftmost lane is
denoted by dSL or dFL, where DSL = [−dlane/2, 5dlane/2) ⊂
�, and DFL = [−dlane/2, 5dlane/2) ⊂ �. The state sets for
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Fig. 4. Relation between agent and lane. (a) Distance relation. (b) Angle
relation.

the agent’s location with respect to the slow and fast
lanes are denoted as sSL ∈ SSL and sFL ∈ SFL, respectively,
where SSL = {(d̃SL, θ̃LF)|d̃SL ∈ DSL,q and θ̃LF ∈ ΘLF,q},
SFL = {(d̃FL, θ̃LF)|d̃FL ∈ DFL,q and θ̃LF ∈ ΘLF,q}, DFL,q =
{k|k = 0, 1, . . . , 3NdLF − 1}, and DSL,q = {k|k = 0, 1, . . . ,
3NdLF − 1}, and quantization is achieved as follows:

d̃SL =
⌊

dSL + dlane/2
dlane/(3NdLF − 1)

⌋
(7)

d̃FL =
⌊

dFL + dlane/2
dlane/(3NdLF − 1)

⌋
. (8)

Since there are NdLF states for the distance between the
agent and the nearest lane, the number of states for the agent
in one of the three lanes (fast, middle, and slow) will be three
times of NdLF, i.e., 3NdLF.

4) Actions of the Agent and Other Vehicles: We assume that
the agent’s reference heading angle (Δθa) is bounded by θs,max

in each time step. The output actions are therefore given by
a ∈ A, where A = {(|Δ⇀

va|,Δθa)||⇀va| ∈ Ca and Δθa ∈ Θa},
Ca = {m × ca,max/2|m = −(Nv − 1)2, . . . , (Nv − 1)/2},
Θa = {2nθs,max/(Na − 1) − θs,max|n = 0, 1, . . . , Na − 1},
Δ⇀

va is the change in velocity of the agent, and ca,max is
the maximum acceleration of the agent. We use Nv and Na

discrete values to represent Δ⇀
va and Δθa, respectively. There

are altogether Nv × Na actions. For DAQL, we assume that
vehicles have velocity |⇀vo| ∈ �+ and heading angle θo ∈ Θ.
They are quantized to a2

i ∈ Ao, where Ao = {(ṽo, θ̃o)|ṽo ∈

Fig. 5. General concept of DAQL.

Vq and θ̃o ∈ Θq3}, Vq = {l|l = 0, 1, . . . , Nv0 − 1}, and Θq3 =
{j |j = 0, 1, . . . , Nθo − 1}. Quantization is achieved as
follows:

ṽo =

{ (
(Nvo − 1) ×

⌊
|⇀vo|

)
/vo,max

⌋
, for 0 ≤ vo < vo,max

Nvo − 1, for vo ≥ vo,max

(9)

θ̃o =
⌊

θo

2π/Nθo

⌋
(10)

where vo,max is the maximum velocity of the vehicle. Since
|⇀vo| and θo are quantized into Nvo and Nθo states, respectively,
there are, altogether, (Nθo − 1) × Nvo + 1 actions for each
vehicle, as observed by the agent. (For |⇀vo| = 0, the vehicle
is at rest, and there is one action only.)

B. Seven RL Goals

By definition, RL is the learning of decision making through
the agent’s interaction with the environment. An agent is re-
sponsible for the action decision process when it traverses
across different environmental states. By making observations
of the environment, it captures the current state, which then
enables an action decision to be made accordingly. The action
results in a reward received to update the value function that
guides it to select future actions, which further maximizes
future rewards.

QL by Watkins [26] is a simple model-free RL approach
that allows the agent to learn to optimally act in the Markovian
domain. However, due to its simplicity, it is not very effective in
handling a dynamically changing environment, which requires
the consideration of actions of other agents/obstacles in the
environment [27]. For instance, Team QL [28] considered the
actions of all the agents in a team and focused on the fully coop-
erative game in which all agents try to maximize a single reward
function together. For agents that do not share the same reward
function, Claus and Boutilier [29] proposed the use of joint
action learners (JALs). JALs learn the value of their own actions
in conjunction with those of other agents. Their results showed
that, by taking into account the actions of another agent, JALs
perform somewhat better than traditional QL. However, JALs
crucially depend on the strategy adopted by the other agents and
assume that other agents maintain the same strategy throughout,
which may not be valid. Hu and Wellman proposed Nash QL
[30] that focused on a general sum game that the agents are
not necessarily working cooperatively. Nash equilibrium is used
for the agent to adopt a strategy that is the best response to
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TABLE I
SUMMARY OF THE SEVEN GOALS

the other’s strategy. This approach requires the agent to learn
others’ Q-value by assuming that the agent can observe others’
rewards, which is hard in practice. DAQL, as proposed in [23],
is an improved version of QL by simultaneously considering
the agent’s own action and other agents’ actions. Instead of
assuming that the rewards of other agents can be observed, it
uses a probabilistic approach to predict their actions so that they
may cooperatively, competitively, or independently work. Fig. 5
shows the general concept of DAQL.

1) Collision Avoidance: The function of collision avoidance
is to enable the agent to avoid collision with the other vehicles
or obstacles. Given multiple mobile vehicles in the environ-
ment, DAQL is most applicable here. The DAQL update rule
shown in (18) is used to update the Q-values (qi(si,t, a

1
t , a

2
i,t))

of each ith vehicle, which represent the action values in differ-
ent states

qi

(
si,t, a

1
t , a

2
t

)
← qi

(
si,t, a

1
t , a

2
t

)
+ α

[
rCA,i,t+1 + γ max

a1
t+1

qi

×
(
si,t+1, a

1
t+1, a

2
t+1

)
− qi

(
si,t, a

1
t , a

2
t

) ]
(18)

where si,t and si,t+1 are the input states, a1
t and a1

t+1 are the
actions of the agent, and a2

t and a2
t+1 are the actions of the

vehicles in t and t + 1, respectively. α and γ are the weighting
parameter and discount rate, respectively, which both range
from 0 to 1. Define di as the distance between the agent and
the ith vehicle at the current time step and d′i as the distance in
the previous time step; the reward function adopted by DAQL
is defined in (11) in Table I, where T is the sampling time,
and therefore, the reward is normalized by va,maxT , where it
is the maximum distance that the agent can travel in one time
step. H is a hexagonal area surrounding the agent, as shown in

Fig. 6. H surrounds the agent for the calculation of the reinforcement signal.

Fig. 6, which is defined by dwidth, dlength, df , and db. dwidth

and dlength are the width and length of the agent, respectively.
The hexagonal shape allows the agent to move away from other
vehicles adopting a linear path apart from a curved path when a
circular shape is used. df is defined by

df = v2
a/2a + va/2 + 2dlength − v2

o,i/2a (19)

and it is the minimum distance that the agent should keep be-
tween a vehicle moving in front of it such that the two vehicles
will keep a distance of dlength apart if the front vehicle suddenly
stops and the agent responds and brakes after a reaction time of
0.5s. db is defined similarly in

db = v2
o,i/2a + vo,i/2 + 2dlength − v2

a/2a (20)

but it deals with vehicles behind the agent.
In this case, a negative reward is given either when a collision

occurs or when the distance between the agent and other
vehicles, which lies inside area H, decreases. When rCA,i,t is
available, the agent uses the DAQL update rule to learn collision
avoidance with each vehicle in the environment. Given the
vehicle’s actions in two time steps [(t − 2) and (t − 1)], the
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agent updates its Q-values (qi(si,t, a
1
t , a

2
i,t)) at t. Since there

are multiple numbers of vehicles in the environment, we elect
to use the parallel QL concept [23], [31], [32], in which all M
obstacles share a single set of Q-values; therefore, the Q-values
are updated M times in one time step.

Apart from learning, the agent also needs to determine its
own action in the current time step. Given the state information
of the current time step, the agent can use it together with the
Q-values to determine an action that is most appropriate for the
navigation task. That is, the agent needs to determine an action
a1

t , given qi(si,t, a
1
t , a

2
i,t). However, since a2

i,t is not known at
t, it has to be predicted, which can be independently treated
from RL. To predict a2

i,t, the AR model is adopted. We assume
that accelerations of obstacles are slowly changing in the time
interval T between two time steps. A first-order AR model [33],
[34] is used to model the acceleration ai(t)

ai(t) = Bi,tai(t − 1) + e(t) (21)

where e(t) is the prediction error, and Bi,t is a time-dependent
coefficient and is adaptively estimated according to the new
distance measurements. The acceleration is thus approximated
by a combination of velocity and position representations, i.e.,

ai(t) =
1
T

[vi(t) − vi(t − 1)]

=
1

T 2
{[ri(t) − ri(t − 1)] − [ri(t − 1) − ri(t − 2)]}

=
1

T 2
[ri(t) − 2ri(t − 1) − ri(t − 2)] (22)

where vi(t) and ri(t) are the velocity and position of the ith
vehicle at t, respectively. Substituting (21) into (22) gives a
third-order AR model, i.e.,

ri(t) − (2 + Bi,t)ri(t − 1) + (2Bi,t + 1)ri(t − 2)

−Bi,tri(t − 3) = e(t). (23)

The next position of the ith vehicle at (t + 1) can be predicted
by the following equation if the coefficient Bi,t is known:

r̂i(t + 1) = ri(t) + vk(t)T + B̂i,tai(t)T 2 (24)

where B̂i,t is time dependent and is updated as follows [35]:

B̂i,t = Δi,tR
−1
i,t (25)

Δi,t =λΔi,t−1 + ai(t)aT
i (t − 1) (26)

Ri,t =λRi,t−1 + ai(t − 1)aT
i (t − 1) (27)

where 0 < λ ≤ 1 is a weighting factor close to 1. Since ai(t),
Δi,t, Ri,t, and λ are all known, B̂i,t can be predicted, and thus,
r̂i (t + 1) can be predicted, from which the action performed
by the ith vehicle at t can be predicted. Thus, probability pa2

i,t

of the ith vehicle performing the action a2
i,t can be determined.

A probability of 1 is given to the predicted action, and 0 is given
to all other actions. On the other hand, if the evenly distributed
probability model is used, pa2

i,t
is equal to 1/N0, and N0 is the

number of actions observable by the agent. To incorporate the

predicted a2
i,t, the corresponding Q-value can be acquired as

follows:

qi

(
si,t, a

1
t

)
=

∑
a2

t

pa2
t
qi

(
si,t, a

1
t , a

2
i,t

)
. (28)

The expected value of the overall Q-value is obtained by
summing the product of the Q-value of the vehicle when it
takes action a2

i,t with its probability of occurrence. Finally, the
summation of the Q-values from all the detected vehicles is the
overall Q-value set for the entire vehicle population, i.e.,

QCA

(
a1

i

)
=

∑
t

qi

(
si,t, a

1
t

)
. (29)

2) Target Seeking: The function of target seeking is to
enable the agent to reach the target. The reward function is
designed such that the agent receives the maximum reward
if it is moving toward the target using the line-of-sight path.
For convenience, the target is assumed to be stationary, which
suffices for QL. If the target is nonstationary, actions performed
by the moving target may be considered as in the case of the
vehicle, which the same DAQL formulation applies [22]. We
use QL(Q, st, st+1, rt+1) to represent the learning of Q-value
with the input state st and reward function rt+1. The general
QL update rule is given as follows:

QL(Q, st, st+1, rt+1) : Q
(
st, a

1
t

)
← Q

(
st, a

1
t

)
+ α

[
rt+1 + γ max

a1
t+1

Q
(
st+1, a

1
t+1

)
− Q

(
st, a

1
t

)]
. (30)

The QL algorithm applied for target seeking is therefore
QL(QTS, φ̃t, φ̃t+1, rDS,t+1), where φ̃t and φ̃t+1 are the input
states. rTS,t+1 describes the reward received by the agent
generated from the reward function at time t + 1. We define
θT as θT = θa − φ and 0 ≤ θT ≤ π. Furthermore, θT is the
angle measured in the current time step, and θ′T is the angle
measured in the previous time step. The normalized reward
function for target seeking is defined in (12) in Table I, where
−1 ≤ rTS,t ≤ 1. The reward function is based on the idea that
higher reward will be given if the agent is moving within line
of sight toward the target. The reward proportionally decreases
if the vehicle is heading away from the target.

3) Lane Following: The function of lane following is to
enable the agent to closely follow the lane. This can be indicated
by dLF and θLF. If the agent is properly performing lane
following, dLF and θLF are close to zero. The basic idea behind
then is to minimize the distance dLF and align the agent parallel
to the lane according to the reinforcement signal received. A
reward is received if the agent moves toward the center of the
lane; otherwise, a punishment is received. Because the lane-
following goal is static in nature, QL is sufficient for this
purpose.

The QL update rule used in the lane-following goal is
QL(QLF, sLF,t, sLF,t+1, rLF,t+1). Define d′LF as the distance
in the previous time step, i.e., the reward function that deter-
mines the reinforcement signal is defined by (13) in Table I.
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A higher reward will be given if the agent is moving tangential
to the lane and with a high speed.

4) Changing to Slow Lane and Fast Lane: Different from
lane following, lane changing results in decreasing dLF toward
a specific lane (fast/slow). In this paper, there are two lane-
change goals: 1) Change to the slow lane, and 2) change to
the fast lane. The fast-lane goal is primarily designed for the
agent to overtake from a slow lane using the fast lane but not
vice versa; the slow-lane goal allows the agent to move back
to the slow lane after overtaking. QL is used for the agent to
learn to achieve the two goals. The QL update rule applied is
QL(QSL, sSL,t, sSL,t+1, rSL,t+1) and QL(QFL, sFL,t, sFL,t+1,
rFL,t+1), respectively.

Define dSL as the distance between the agent and the slow
lane, as shown in Fig. 4(a), and d′SL as the distance in the
previous time step; the reward function that determines the
reinforcement signal of the slow lane goal is given by (14) in
Table I, where n is the number of lanes in the road.

Similarly, define dFL as the distance between the agent and
the fast lane and d′FL as the distance in the previous time step;
the reward function that determines the reinforcement signal
of the fast-lane goal is given by (15) in Table I. Therefore,
higher reward will be given if the distance between the agent
and fast lane is decreasing.

5) Steady Speed: The purpose of the steady-speed goal is to
enable the agent to move at the highest available speed while
keeping acceleration/deceleration as little as possible. A QL
algorithm is assigned to handle the goal and can be described
as QL(QSS, sSS,t, sSS,t+1, rSS,t+1), where sSS,t is the state
that refers to the discrete speed of the agent (va) adopted in
the previous time step. Define va as the agent speed in the
current time step and v′

a as the speed in the previous time
step; the reward function that determines the reinforcement
signal is defined by (16) in Table I, where a is the maximum
acceleration/deceleration rate of the agent. The reward function
is designed such that a reward is assigned to the vehicle if it is
accelerating. A penalty is given if it is decelerating.

6) Steady Heading Angle: The purpose of the steady-
heading-angle goal is to enable the agent to move with as
little change in heading angle as possible. A QL algorithm
is assigned to handle the goal and can be described as
QL(QSA, sSA,t, sSA,t+1, rSA,t+1), where sSA,t is the state that
refers to the 15 discrete reference heading angle of the agent
(Δθa) adopted in the previous time step. The reward function
is proportional to the change in heading angle (Δθa − Δθ′a). A
reward of 1 will be given to the vehicle if the change in heading
angle is zero. The reward decreases as the change increases. A
reward of 0 is given if the change is equal to the heading angle
limit (θs,max), as given by (17) in Table I.

IV. AUTONOMOUS NAVIGATION AMONG

MOVING VEHICLES

The proposed MGRL approach considers seven goals in total
to solve the overtaking task. To achieve an overall consistence
action decision based on the individual action decisions, a goal
fusion mechanism is applied to merge the results of the goals.
The weighted sum method is used to combine different goals,

Fig. 7. Agent and its nearby regions.

TABLE II
DEFINITION OF BFast,j AND BSlow FOR LANE CHANGING

and three modes are used to adjust the weights. The three
navigation modes are given as follows: 1) Change to the slow
lane; 2) change to the fast lane; and 3) stay in the current
lane. When the change to slow-lane mode is adopted, the agent
switches off the lane following and fast-lane goal for it to
smoothly move toward slow lane. When the change to fast-
lane mode is adopted, the agent switches off lane following
and slow lane for it to smoothly move toward fast lane. Finally,
when the agent adopted the stay at the current lane mode, the
agent switches off slow- and fast-lane mode and stays in the
current lane.

To determine which navigation mode to be used, first, we
divide the surrounding area of the agent into six regions relative
to the agent and aligned with the highway lanes, as shown
in Fig. 7. Each region j is assigned with two Boolean values
BFast,j and BSlow,j to describe the lane-changing rules in real-
life road networks (see Table II). A “1” means that a change to
the fast/slow lane is allowed, and a “0” means that the change
is not allowed if there are vehicles in the corresponding region.
Changing to slow/fast lane is always allowed if there are no
vehicles nearby. We further define bj as a Boolean value, of
which “0” indicates that the vehicles in region j has caused
a negative q-value according to the collision avoidance goal
(qi(si,t, a

1
t )) in (28) and “1” otherwise. If there are vehicles

that could cause potential collisions (negative q-value of the
collision avoidance goal) in a certain region, then lane changing
to that region is not allowed. A rule is designed such that
overtaking using the slow lane is not allowed, and therefore,
a value of “0” is given to BSlow,5 and BSlow,6. The proposed
method only requires the identification of fast/slow lane and
nearby regions with respect to the current lane and, therefore,
can be applied to roads with an arbitrary number of lanes.

Therefore, a change to the fast/slow lane is only allowed if
the rules in all the regions allow the change, i.e., if BCF or BCS

is true, where BCF =
∏6

j=1 BFast,j .
The agent then selects to use one of the three modes accord-

ing to the following rule. The agent changes to a fast lane if b5
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TABLE III
THREE NAVIGATION MODES AND CORRESPONDING VALUES OF β

is false and BCF is true, and it changes to a slow lane if BCS is
true; else, it stays at the current lane. Therefore, overtaking will
be performed if the agent determined from the Q-value that a
collision is expected to happen if it continues to move straight
forward and changing to fast lane is safe. Other goals such as
collision avoidance are always turned on to make sure that the
agent avoids collisions all the time.

Once the mode to be used has been determined, we can
combine the Q-values from different goals according to the
following method:

Qfinal

(
a1

t

)
= QN

(
a1

t

)
W (31)

where QN (a1
t ) is a vector of normalized Q-values from differ-

ent goals, as shown in the following, given that the current state
for each goal is known:

QN

(
a1

t

)
=

⎡⎣ QCA

(
a1

t

)∑
a1

|QCA(a1)|
QTS

(
a1

t

)∑
a1

|QTS(a1)|
QLF

(
a1

t

)∑
a1

|QLF(a1)|

×
QSL

(
a1

t

)∑
a1

|QSL(a1)|
QFL

(
a1

t

)∑
a1

|QFL(a1)|
QSS

(
a1

t

)∑
a1

|QSS(a1)|
QSA

(
a1

t

)∑
a1

|QSA(a1)|

⎤⎦ .

(32)

W is the weighting vector containing the weighting param-
eters for each goal as given: W = [βCA βTS βLF βSL

βFL βSS βSA]T , where β in W are the parameters that vary
between 0 and 1.

In QL or DAQL, each Q-value reflects the desirability of the
agent to perform its associated action. Simply, the larger the
Q-value is, the more desirable it is. In the case of a multiple-
goal scenario, the Q-values determined from different goals
are combined so that the one with the highest combined score
carries the most desirable action. In this paper, we employed
a weighted summation method to combine the different sets
of Q-values having different weights to illustrate the different
importance of these goals.

The three navigation modes allow the agent to adjust the set
of weighting parameters (β values) according to the nearby
situations. The relation between the three navigation modes
and the weighting parameters (β values) is given in Table III.
The goal associated with a higher value of β means that it has
higher importance when considering the entire task as a whole
and vice versa. It should be noted that some of these goals are
contradictory to each other, e.g., lane following, slow lane, and
fast lane. For instance, when the agent plans to overtake the
leading vehicle, it needs to move to a faster lane, where βSL is
close to 0, and βFL is close to 1.

Once the final Q-value has been calculated, the final decision
of the agent is made by using the ε-greedy policy to allow
proper exploration, i.e.,

a1
t =

{
arg max

a1
t

Qfinal

(
a1

t

)
, with probability 1 − ε

random, with probability ε.
(33)

V. RESULTS AND DISCUSSIONS

A. Simulation Environment

In the simulation, we assumed an agent/vehicle dimension
of 1.7 m × 4.25 m (dwidth × dlength) with a maximum speed
(va,max) of 30 m/s and a maximum acceleration and deceler-
ation of ±3 m/s2. A sensor simulator has been implemented
to evaluate distances between the agent and other vehicles. It
can produce either accurate or erratic distance measurements
from ds,min = 1 m to ds,max = 100 m at T interval (typically
0.1 s) to simulate practical sensor limitations [36], [37]. The
lane width in the simulation environment was assumed to be
dlane = 3.4 m. The other parameters were set as follows: α is
set to 0.6 for faster update of Q-values; γ is set to 0.9 for DAQL
and 0.1 for QL; and ε is set to 0.2. Without lost of generality,
we use the following values for quantizing the states gathered
by the agent. In situations where high precision is required, the
number of states can be further increased. Nd and Nθ are set
to 15 and 16, respectively, for gathering vehicle information.
Nφ of 15 is used for quantizing the heading angle. NθLF and
NdLF are set to 16 and 17, respectively, for the gathering of
lane information. Finally, Nv and Na of 5 and 15 are used,
respectively, to represent the action of the agent, whereas Nvo

and Nθo of 6 and 16 are used, respectively, to represent the
actions of other vehicles. We use roughly 15–17 partitions for
spatial-related parameters and 5–6 partitions for speed-related
parameters. More partitions are assigned to spatial-related
parameters for better collision avoidance performance. Rela-
tively fewer partitions are assigned to speed-related parame-
ters to reduce the total number of state.

To learn to solve the overtaking problem, the agent was first
trained in a test environment (see Fig. 25) for 1000 episodes.
During training, the environment, which consisted of other
moving vehicles, changed because of vehicle movements. One
episode is defined as either the agent has reached the target
(end of the road) or a maximum of 500 steps has been reached,
where one time step represents the time interval of T . Explo-
ration and learning were enabled during training but disabled
afterward. To study the agent’s learning property, we let it alter-
natively switch between exploration and no exploration every
ten episodes. The average number of collisions per ten episodes
is shown in Fig. 8. It shows that collisions mainly occurred
in the first 400 episodes. Initially, the number of collision was
small, because the agent was also learning other goals such as
lane following, which means that the agent does not necessarily
follow the lane; therefore, the chance of causing collision was
small. Later, the agent learned the ability to follow lanes, and
thus, the number of collision increases. After sufficient learning
after about 400 episodes, the agent was able to complete rest of
the episodes without collisions.
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Fig. 8. Learning rate of the agent.

Fig. 9. Original locations of the agent and other vehicles.

Fig. 10. Path and historical locations of the agent and other vehicles.

When applying the theoretical discrete action output on a
realistic vehicle, the change in heading angle is smoothened to
have more gradual changes to meet the vehicle dynamic.

B. Case 1: Straight Road With Other Vehicles Moving at
Constant Speed

With reference to Fig. 9, the agent was originally located at
(2.1, 1.7) and traveled at a maximum speed of 30 m/s toward
the target at (474, 1.7). There were three straight lanes in the
environment, and there were three vehicles. Vehicles 1, 2, and
3 began at (82, 1.7), (141, 5.1), and (82, 8.5) and traveled at
constant speeds of 6, 18, and 24 m/s, respectively. The aim
of this simulation is to demonstrate how the agent overtakes
a slow-moving vehicle. The paths taken by the agent and other
three vehicles are shown in Fig. 10. The historical positions of
all the vehicles are depicted as red crosses in 1-s intervals.

The simulation result shows that the agent began overtaking
after t ≈ 2 s when it was just behind vehicle 1. It moved to the
middle and faster lane at t ≈ 4 s, at which time, it was almost
in parallel with and nearest to vehicle 1 and some distance
behind vehicle 2. At this point, the agent also commenced the
action of returning back to its original lane. At t ≈ 6 s, the
agent returned to the slow lane, just ahead of vehicle 1. As
vehicle 1 moved slower than the agent, the agent maintained
its own speed until the target was reached. This completed the
overtaking maneuver without causing a collision or any abrupt
changes in speed and heading angle. In these instances, both
vehicles 2 and 3 were some distance or lane away and had little
impact on the overtaking decision. Throughout the journey, the
agent traveled at maximum speed, as shown in Fig. 11. From
Fig. 12, it can be seen that the agent started overtaking (a gentle
left turn) at t = 2.4 s and completed the turn at t = 4.4 s. It then

Fig. 11. Speed profile of the agent.

Fig. 12. Heading angle profile of the agent.

Fig. 13. Path and historical locations of the agent and other vehicles.

began to move back to the slow lane as part of the overtaking
action and completed the whole action at t = 6.4 s.

C. Case 2: Straight Road With Other Vehicles Moving at
Variable Speed

In this case, the road configuration is the same as Case 1,
except that the three other vehicles were traveling at variable
speed that range between 6 and 24 m/s, with acceleration/
deceleration of ±2 m/s2. As shown in Fig. 13, this variable
speed per vehicle is depicted as unequal distances traveled
between the 2-s intervals. In performing the overtaking action,
the agent had to consider the distances of other vehicles in its
overtaking path, and in this case, when it first overtook vehicle 1
at t = 2.4 s, the situation was very similar to Case 1. If vehicle 2
traveled faster or vehicle 1 traveled slower at this point, the
agent would probably have returned to the slow lane in its next
move. However, vehicle 2 was slowly traveling, and so was
vehicle 3; as overtaking from the slow lane is not permitted,
it triggered the agent to move to the fast lane at t = 7.2 s. At
this point, the agent was almost next to vehicle 2, with vehicle
3 some distance behind it in the same lane. As the target was
at the end of the slow lane, the target-seeking goal became
more important. As a result, it turned right and overtook vehicle
2 before reaching the target. This completed the overtaking
maneuver without causing collision or any abrupt changes in
speed and heading angle. In this case, it is probable that the
agent could slightly slow down and let vehicles 1 and 3 pass
first before doing the same thing as shown in Fig. 14 at 3.4 and
7.6 s. From Fig. 15, it can be seen from the heading angle profile
that the overtaking began at about t = 2.4 s, turned left again at
t = 7.8 s, and commenced a right turn at t = 11 s.

D. Case 3: Curve Road With Other Vehicles Moving at
Variable Speed

In this case, a curved road with three lanes was considered.
As shown in Fig. 16, the target at (245, 226) was at the end of
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Fig. 14. Speed profile of the agent.

Fig. 15. Heading angle profile of the agent.

Fig. 16. Original locations of the agent and other vehicles.

Fig. 17. Path and historical locations of the agent and other vehicles.

the slow lane and the agent, and vehicles 1 (fast lane), 2 (slow
lane), and 3 (middle lane) were initially located at (8.5, 0),
(1.7, 0), (10, 33), and (14, 69), respectively. The maximum
speed of the agent was 30 m/s, whereas vehicles 1, 2, and 3
were traveling at variable speed as in Case 2. Fig. 17 shows

Fig. 18. Speed profile of the agent.

Fig. 19. Heading angle profile of the agent.

the paths of the agent and vehicles and their historical positions
in 1-s intervals. As can be seen in Fig. 17, the agent overtook
vehicle 2 rather quickly, because it was traveling at relatively
low speed. Since the agent was initially located very close to
vehicle 2, the agent needed to adjust its speed to ensure there
was enough space for it to overtake, thus resulting in the agent
slowing down. At about t = 2 s, the agent was in the middle
lane, some distance behind vehicle 3 and slightly before vehicle
2 in the slow lane, whereas vehicle 1 was the slowest on the fast
lane. As the agent caught up with vehicle 3 at about t = 4 s,
vehicle 2 was almost next to it. Due to collision avoidance and
overtaking must be in the fast lane, the agent moved into the
fast lane, because vehicle 1 was some distance behind; however,
vehicle 3 was too close in front. The agent stayed in the fast
lane until roughly t = 7 s, when it was almost next to vehicle
3; it began moving back to the middle lane and slow lane to
reach the target at the slow lane. This completed the overtaking
maneuver, causing neither a collision nor any abrupt changes
in speed and heading angle. From Fig. 18, the agent slowed to
avoid running into vehicle 2 initially and did that again when
it moved to the fast lane from the middle and moved to the
middle lane from the fast lane. From Fig. 19, as the agent has
to regularly keep changing its heading angle over the curvature,
its angle profile is no longer constant, which is the case here.
It appears that the additional lane-changing moves during the
overtaking action are evident but not excessive.

E. Case 4: A Complex Overtaking Maneuver

In this case, a more complicated road configuration was used
with eight other vehicles involved. Again, these vehicles were
traveling at variable speed as in Case 2 and at different initial
positions, as shown in Fig. 20. The entire path of the agent
and its historical locations are shown in Fig. 21, with the final
locations of the other vehicles shown as a reference. From
this set of data, four time instants were further investigated, as
shown in Fig. 21(a)–(d). Fig. 22 shows the location of the agent
with respect to the slow lane.

First, Fig. 21(a) shows the agent’s and other vehicles’ posi-
tions at t = 7.5 s. This was when the agent overtook vehicle 5
by moving from the slow lane to the middle lane. The actual
maneuver was about 6.2 s from Fig. 23, and the agent ended up
in front of vehicle 4 but behind vehicle 6. Second, Fig. 21(b)
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Fig. 20. Original locations of the agent and other vehicles.

Fig. 21. Path and historical locations of agent and other vehicles.

Fig. 22. Location of the agent with respect to the lanes on the road.

shows that the agent completed the overtaking maneuver by
moving back to the slow lane, ahead of vehicle 5, at t = 11.6 s.
If vehicle 6 was slower and closer to the agent, it would
probably move to the fast lane. It should be noted that, after
t = 11.6 s, the agent remained in the slow lane until t = 17 s.
This was because vehicles 7 (slow lane) and 6 (middle lane)
were near each other for a while. At present, the proposed

Fig. 23. Speed profile of the agent.

Fig. 24. Heading angle profile of the agent.

Fig. 25. Evaluation environment.

method is not able to overtake across three lanes; therefore,
the agent slowed its speed, as can be seen in Fig. 23, between
t = 15−17 s and waited for an opportunity.

Third, at t = 17 s, as shown in Fig. 21(c), the agent detected
that vehicles 6 and 7 had sufficient distance between them so
that it could overtake them without causing a collision. It should
be noted that the agent gradually speeded up to achieve a safe
maneuver. Fourth, as shown in Fig. 21(d), at t = 22 s, the agent
completed the maneuver by moving back to the slow lane when
the target was reached. Similar to all the cases simulated, the
agent completed a series of complex overtaking maneuvering
without causing any collisions. The heading angle profile given
in Fig. 24 does not indicate any abrupt changes, but the speed
profile in Fig. 23 indicates a drop in the agent’s speed due to
vehicles 6 and 7 blocking any overtaking actions at the time.

VI. EMPIRICAL PERFORMANCE EVALUATION

This section attempts to more specifically evaluate the
agent’s performance. The number of vehicles ranges from 0 to
5. Their initial locations are showing in Fig. 25. The maximum
speed of the agent was 30 m/s, and other vehicles traveled at
variable speed between 6 and 24 m/s. In theory, the shortest path
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Fig. 26. Shortest path available. (a) Shortest path. (b) Path following
slow lane.

is ps = 727 m, as shown in Fig. 26(a). On the other hand, the
path following the slow lane is 738 m, as shown in Fig. 26(b).
During learning, the agent is placed in an environment that is
the same as in Fig. 25, which has five vehicles, and with vehi-
cles moving with various speed. To evaluate path performance,
the agent performed 1000 episodes in each situation. One
episode is defined as the agent reaching the end of the road. The
length of the actual path is pa, and the relative error between the
actual path and the shortest path length (pa − ps)/ps is denoted
by Er.

To measure the quality of the path adopted by the agent, three
indexes are used [34], [38].

1) Safety index (SI) c̄, which represents the percentage of
simulation episodes for the simulation task in which the
agent successfully reached the target without collision. It
is given by

c = m/k (34)

where m is the total simulation episodes without a col-
lision, and k represents the total number of simulation
episodes.

2) Steering smoothness index (SSI) ω̄, which represents the
average absolute value of the heading angle of the agent
over the simulation episodes. It is given by

ω =

(
k∑

i=1

|Δθi|
)

/k (35)

where Δθi stands for the average heading angle in the ith
simulation episode. The metric of ω is in radians.

3) Velocity smoothness index (VSI) ā, which represents the
average value of the velocity change of the agent over the
simulation episodes. It is given by

a =

(
k∑

i=1

|Δvi|
)

/k (36)

where Δvi stands for the average change of the velocity
in the ith simulation episode. The metric of ā is expressed
in meters per second.

The result of the empirical evaluation on the agent using the
evenly distributed probability model is summarized in Table IV.

TABLE IV
PERFORMANCE OF THE AGENT USING THE EVENLY

DISTRIBUTED PROBABILITY MODEL

Fig. 27. Formation of “trap.”

The evenly distributed probability model assumes that other ve-
hicles have uniform probability of performing different actions.
From Table IV, it can be seen that the agent initially adopted
a path that is longer than the shortest path as the number of
vehicles increases. However, as the number of vehicles is larger
than 3, the actual path length decreases. This is because, as there
are more and more vehicles on the road, the agent overtakes
other vehicles using the fast lane more often, which results in a
shorter path. The travel time, SSI, and VSI generally increase
as number of vehicles increases. However, when there are five
vehicles on the road, the travel time and VSI sharply increase.
This is due to the formation of “trap,” as shown in Fig. 27.
This resulted in the agent having to abruptly and frequently
slow down to avoid collision. Collision may be unavoidable in
a “trap” situation if the other vehicles do not adjust their speed
accordingly, and the SI in the environment with five obstacles
is thus 0.99. However, it should be stressed that such situation
will unlikely happen in the real world.

The result of the empirical evaluation on the agent using
the AR model is summarized in Table V. When compared
with Table III, it can be observed that, although the general
result of using the AR model has slightly better path length,
travel time, SSI, and VSI than using the evenly distributed
probability model [23], the former has a lower SI in the cor-
responding situations, which is obviously not desirable. This
can be explained as the AR prediction model allows the agent
to adopt a more aggressive behavior and carry out collision
avoidance behavior only if required. Therefore, the path length
can be shorter and smoother. However, if the predicted results
are incorrect, it may cause collisions. On the other hand, the
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TABLE V
PERFORMANCE OF THE AGENT USING THE AR MODEL

TABLE VI
ROBUSTNESS TO SENSOR NOISE

evenly distributed probability model gives a more conservative
prediction, resulting in more conservative actions.

We have also carried out simulation to investigate how
the proposed method tolerates inaccuracy in sensor measure-
ments. The output of the sensor simulator was deliberately
corrupted by a Gaussian noise function that has a mean μ
of μ = di and standard deviation σ of n × μ, where n =
0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 [24] and is called the sensor
noise rate. The initial location of the vehicles is the same as
in Fig. 25. Vehicles are moving at variable speed, as in the
previous case. For each set of n, the agent was trained for 1000
episodes. After training, the agent was evaluated in the same
environment 1000 times with different n’s. Table VI depicts
the simulation summary. It shows that the SI decreases by
14.2% for n = 0.5 when compared with the environment with
no noise.

VII. CONCLUSION

In this paper, we have presented a novel MGRL method
that can be used in general for making action decisions in AV
navigation. A number of overtaking cases were simulated to
demonstrate the effectiveness of the proposed method. By con-
sidering seven different goals, either QL or DAQL is employed
to determine individual action decisions based on whether
the other vehicle interacts with the agent for that particular
goal. Furthermore, a fusion function is proposed to weigh the
importance of each goal before arriving at a combined but
consistent action decision. This offers a powerful approach for
dealing with demanding actions such as overtaking, particularly
when a number of other vehicles are within the proximity
of the agent and are traveling at variable speed. From the
results of the four simulation cases, it can be concluded that
the proposed method is capable of the following: 1) making
correct action decisions for overtaking; 2) avoiding collisions
with other vehicles; 3) reaching the target in reasonable time;

4) keeping almost steady speed; and 5) maintaining an almost
steady heading angle. In addition, it should also be noted that
the proposed method performs lane keeping very well when not
overtaking and lane changing effectively when overtaking is in
progress. When prediction is concerned, a more conservative
approach may be the correct choice. In terms of sensor noise, a
larger safety margin should be given to maintain an SI of 1 in
all cases.
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