
Title FastPval: A fast and memory efficient program to calculate very
low P-values from empirical distribution

Author(s) Li, MJ; Sham, PC; Wang, J

Citation Bioinformatics, 2010, v. 26 n. 22, p. 2897-2899

Issued Date 2010

URL http://hdl.handle.net/10722/137123

Rights



[12:11 19/10/2010 Bioinformatics-btq540.tex] Page: 2897 2897–2899

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 22 2010, pages 2897–2899
doi:10.1093/bioinformatics/btq540

Genome analysis Advance Access publication September 21, 2010

FastPval: a fast and memory efficient program to calculate very
low P-values from empirical distribution
Mulin Jun Li1, Pak Chung Sham2 and Junwen Wang1,∗
1Department of Biochemistry and 2Department of Psychiatry and State Key Laboratory of Cognitive and Brain
Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Rd, Pokfulam, Hong Kong SAR, China
Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Resampling methods, such as permutation and
bootstrap, have been widely used to generate an empirical dis-
tribution for assessing the statistical significance of a measur-
ement. However, to obtain a very low P-value, a large size of
resampling is required, where computing speed, memory and
storage consumption become bottlenecks, and sometimes become
impossible, even on a computer cluster.
Results: We have developed a multiple stage P-value calculating
program called FastPval that can efficiently calculate very low (up to
10−9) P-values from a large number of resampled measurements.
With only two input files and a few parameter settings from the
users, the program can compute P-values from empirical distribution
very efficiently, even on a personal computer. When tested on the
order of 109 resampled data, our method only uses 52.94% the
time used by the conventional method, implemented by standard
quicksort and binary search algorithms, and consumes only 0.11%
of the memory and storage. Furthermore, our method can be applied
to extra large datasets that the conventional method fails to calculate.
The accuracy of the method was tested on data generated from
Normal, Poison and Gumbel distributions and was found to be no
different from the exact ranking approach.
Availability: The FastPval executable file, the java GUI and source
code, and the java web start server with example data and
introduction, are available at http://wanglab.hku.hk/pvalue
Contact: junwen@hku.hk
Supplementary information: Supplementary data are available at
Bioinformatics online and http://wanglab.hku.hk/pvalue/.

Received on August 2, 2010; revised on September 7, 2010;
accepted on September 16, 2010

1 INTRODUCTION
Permutation and bootstrap are resampling procedures to assess the
statistical significance of a measurement. They are non-parametric
statistical tests that can convert a measurement (score) into an
empirical P-value, even when the distribution of the measurements is
unknown. Since resampling does not assume known distribution of
the data, and biological data are usually complex, it has been widely
used in the bioinformatics field, such as transcription factor binding
site searching, pathway analysis and genome-wide association
studies.

∗To whom correspondence should be addressed.

Finding transcription factor binding sites (TFBSs) in the promoter
region of a gene is important to understand gene regulation (Zhang
et al., 2007). TFBS of a particular transcription factor are usually
represented by a computational model known as the position weight
matrix (PWM) (Pape et al., 2008). To search for a putative binding
site, we use the PWM to score DNAsequences with a sliding window
approach. For each window, we obtain a score. By comparing this
score with the distribution of the scores from the background, we can
obtain the statistical significance (empirical P-value) of this score.
The empirical background score distribution is obtained by scoring
a large set of random sequences from the intergenic regions in the
genome with the same PWM. We then sort the background scores
and save them for later usage. When we convert a new score into
a P-value, we load the background into the memory and search for
the score. The ranking of the score is then converted to a P-value
(Hannenhalli, 2008).

This empirical approach of calculating P-values is very powerful
since it does not assume any distribution of the data. However, the
significance of the P-value is limited by the size of the background
we sample. To obtain a very low P-value, we have to sample a
very large dataset from the background. The large dataset causes
three limitations: (i) sorting and searching in a large dataset are time
consuming; (ii) storage of the sorted background scores requires a
large amount of hard disk space; and (iii) processing of the sorted
array requires a great deal of memory, which is not usually feasible
on a personal computer.

Efficient methods have been developed to relieve the
computational burden resulting from large-scale resampling. For
example, Jensen et al. (2009) developed a Bayesian approach to
dynamically assign resamples for multiple testing problems. For
microarray expression data, they assume that each gene has a
different null distribution, and allocate more resamples to the genes
with P-values close to the classification threshold. But for the
P-values that are far lower or far higher than the threshold and the
decisions that are easy to make, they allocate much fewer resamples
than the traditional method. The dynamic resampling allocation
strategy has improved the computing efficiency, particularly when
the number of tests is large.

While the above mentioned method deals with the efficiency of
multiple tests, assuming each test has a different null distribution,
P-value calculation from resampling based on a single test, or
multiple tests assuming the same null distribution, is still hampered
by computing, memory and storage limitations.

We have developed an efficient program to calculate the empirical
P-value for a single test, or multiple tests assuming the same null

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://wanglab.hku.hk/pvalue
http://wanglab.hku.hk/pvalue/
http://creativecommons.org/licenses/


[12:11 19/10/2010 Bioinformatics-btq540.tex] Page: 2898 2897–2899

M.J.Li et al.

Table 1. Comparison of FastPval and Exact method in memory, storage consumptions and running time

Resampling size
(1 000 000)

Memory(MB) Storage (MB) Running time (s)

Model building P-value searchinga

Exact FastPval Exact FastPvalb Exact FastPval Exact FastPval

1 4 0.39 12.1 1.3 + 0.013 1.10 1.05 0.74 + 2.33 0.08 + 1.53
10 38 0.39 121.4 1.3 + 0.131 11.21 9.29 7.61 + 29.88 0.09 + 16.07
100 373 0.78 1200 1.3 + 1.3 116.73 91.46 77.13 + 332.13 0.14 + 249.44
500 1900 2 5900 1.3 + 6.0 677.58 455.23 380.47 + 1885.12 0.40 + 1297.44
1000 3700 4 11 900 1.3 + 11.9 1409.61 919.45 761.52 + 4019.77 0.72 + 2530.65
5000 N/Ac 19 59 900 1.3 + 59.8 N/Ac 5475.32 N/Ac 3.34 + 12885.87

aModel loading + searching time.
bSizes of first model + second model.
cExact method failed to load due to large size of the dataset.

distribution. This program separates the background distribution into
multiple parts, according to user specified cutoffs. The scores in
the less significant part are highly condensed into one table and
the P-values are calculated less exactly, while the scores in the
more significant part are put into other tables and the P-values
are calculated more accurately. Our experiments showed that this
algorithm is more time efficient, and uses much less storage
and memory. It can be used widely in resampling based P-value
calculation, either as standalone software or as a plug-in module.

2 METHODS
For simplicity, here we illustrate our method in a two-stage approach and use
the right tail of the distribution to calculate the statistics. In the first stage, we
randomly sample a subset N from the original large dataset O. N is usually
less than one-hundredth of the size of O, thus saving processing time. We
sort N and obtain a cutoff score Sc representing the top P portion of N . Both
N and P are parameters specified by the users, and are set to N = 100 000 and
P = 0.001 by the default. We then scan the original set and put scores greater
than Sc into our second subset M, and we obtain the maximum score Sm in
M. The two subsets N and M are sorted, saved, and serve as our two models
(M1 and M2). To calculate the P-value for a new score S, we compare S
with Sc. If S ≤ Sc, we will find its P-value in M1. Otherwise we use M2. If
S > Sm, indicating S is out of our resampling score range, we use theoretical
distribution to calculate its P-value or simply set the P-value to 0, at the
user’s preference. The parameters of two theoretical distributions, normal
and extreme value distributions, were obtained from dataset N .

To evaluate the performance of our method, we compared FastPval with
the traditional approach (named Exact) on a linux machine (Intel Xeon CPU
E5410 2.33 GHz; 16 G of memory, SuSE linux 10.1). In the ‘Exact’approach,
we used quicksort and binary search in c programming. FastPval used the
same sorting and searching algorithms for M1 and M2.

To evaluate the accuracy of FastPval, we compared the calculated
P-values with the original P-values in three different distributions: Normal,
Poisson and Gumbel. For each distribution, we tested the P-values in the
−log10(P-value) ranged from 0 to 9 (corresponding P-value range from 1
to 10−9, exclusively). We took 162 P-values (termed theoretical P-values)
evenly distributed in each of the nine ranges (Supplementary Table S1).
We converted these P-values into scores with the build-in functions in the R
platform, using parameters for each distribution as shown in Supplementary
Table S2. Under the same parameter setting, we randomly sampled one
billion data points. We used FastPval to build models M1 and M2 from these
data. Finally, we used FastPval to convert these 162 scores into P-values
(termed FastPval P-values) with the models. The −log10 (FastPval P-values)

were plotted against the −log10 (theoretical P-values) on a Log–Log QQ
plot. The Kolmogorov–Smirnov test was also used to compare the FastPval
P-values with theoretical P-values.

3 RESULTS AND DISCUSSION
As shown in Table 1, FastPval shows significant improvement over
the ‘Exact’ approach. Tested on 1 billion resampling data, FastPval
only used 0.11% of the memory and storage and 52.94% of model
building and searching times. When we increased the dataset size to
5 billion, the ‘Exact’ method failed to load due to the large memory
requirement, while our method was able to calculate P-values
successfully. FastPval has speed, memory and storage consumption
approximately linear to resembling size. The accuracies of FastPval
calculated P-values from three different distributions were compared
with the theoretical P-values. The results are shown in the form of
Log–Log QQ plots (Supplementary Fig. S1a–c). In all three tested
distributions, the FastPval calculated P-values and the theoretical
P-values are highly matched, forming a 45 degree line in the
Log–Log QQ plots. The Kolmogorov–Smirnov tests showed the
P-value = 1.000 for Normal and Poisson distributions, and 0.998 for
Gumbel distribution, indicating that the calculated P-values did not
deviate from the original distribution. We therefore conclude that
FastPval is accurate for calculating P-values for data from a variety
of distributions.

The Java GUI interface of FastPval is shown in Supplementary
Figure S2a–c. In the ‘Method’ field, the user can either choose
‘FastPval’ or the traditional ‘Exact’ method to calculate P-values.
When the resembling size is greater than 10 million, FastPval is the
only suitable choice. In the ‘Step’ field, the user can either ‘Generate
model’, or ‘Calculate P-value’ or ‘Do both’. The ‘Generate model’
step allows the user to generate M1 and M2 models from the
background dataset O; the ‘Calculate P-value’ step allows the user
to calculate P-values for all the scores saved in a text file. The
interface changes according to the user’s selection. In the ‘Generate
model’ step, the user has to specify the background file and directory
to save two models, by clicking on ‘Background file’ and ‘Output
folder’, respectively. The user also needs to select two parameters,
the ‘Sampling size’ (N) and ‘P-value cutoff’ (P). The selections of P
and N are affected by the balance of accuracy and speed. Bigger Ns
and Ps will give more accurate P-values but will be less efficient. We

2898



[12:11 19/10/2010 Bioinformatics-btq540.tex] Page: 2899 2897–2899

FastPval: an efficient program for low P-value calculation

recommend N = 100 000 and P = 0.001. N∗P should be within the
range of 10 to 1000, preferably 100. After the models are generated,
the program will automatically change to the ‘Calculate P-value’
step, with default model files selected. The user will need to specify
the file with scores for P-value calculation, by clicking on ‘Sample
file’. For scores that are out of the boundary of both models, the user
can choose either ‘Extreme distribution’ or ‘Normal distribution’ in
the ‘Assumed distribution’ field to calculate the P-value, or simply
select ‘No distribution’ to assign the P-value to 0. The parameters of
both distributions were calculated from the fitting of the dataset N .

The program can be run in a command line mode, which is suitable
for large-scale batch processing. We provide both 32-bit and 64-bit
executable GUI programs, in both linux and windows platforms. The
source code of the program is provided in our companion website.

Funding: Internal funds from the CRCG and the Genomic SRT of
the University of Hong Kong; GRF 778609M and AoE M-04/04
from the Research Grants Council of Hong Kong.

Conflict of Interest: none declared.

REFERENCES
Hannenhalli,S. (2008) Eukaryotic transcription factor binding sites—modeling and

integrative search methods. Bioinformatics, 24, 1325–1331.
Jensen,S.T. et al. (2009) A Bayesian approach to efficient differential allocation for

resampling-based significance testing. BMC Bioinformatics, 10, 198.
Pape,U.J. et al. (2008) Natural similarity measures between position frequency matrices

with an application to clustering. Bioinformatics, 24, 350–357.
Zhang,J. et al. (2007) Computing exact P-values for DNA motifs. Bioinformatics, 23,

531–537.

2899


