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Abstract—The Shannon-McMillan-Breiman theorem asserts
that the sample entropy of a stationary and ergodic stochastic
process converges to the entropy rate of the same process (as
the sample size tends to infinity) almost surely. In this paper,
we restrict our attention to the convergence behavior of the
sample entropy of hidden Markov chains. Under certain positivity
assumptions, we prove that a central limit theorem (CLT) with
some Berry-Esseen bound for the sample entropy of a hidden
Markov chain, and we use this CLT to establish a law of iterated
logarithm (LIL) for the sample entropy.

I. INTRODUCTION AND NOTATIONS

Consider a bi-infinite stationary stochastic process Y =
(Yi, i ∈ Z) on a finite alphabet Y = {1, 2, · · · , B}. The
entropy rate of Y is defined to be

H(Y ) = lim
n→∞

H(Y n
1 )/n,

where
H(Y n

1 ) = −
∑
yn
1

p(yn1 ) log p(y
n
1 ),

here yn1 := (y1, y2, · · · , yn) denotes an instance of Y n
1 :=

(Y1, Y2, · · · , Yn) and p(yn1 ) denotes the probability mass at
yn1 . It is well known that H(Y ) can also be written as

H(Y ) = lim
n→∞

H(Yn|Y n−1
1 ),

where

H(Yn|Y n
1 ) = −

∑
yn
1

p(yn−1
1 ) log p(yn|yn−1

1 ),

here p(yn|yn−1
1 ) denotes the conditional probability mass at

yn given yn−1
1 .

We call − logP (Y n
1 )/n the n-th order sample entropy of

Y . If Y is also ergodic, the celebrated Shannon-McMillan-
Breiman theorem asserts that the n-th order sample entropy of
Y converges to H(Y ) as n→ ∞ almost surely. The Shannon-
McMillan-Breiman theorem can be viewed as an analog of
the law of large numbers, a fundamental limit theorem in
probability theory. So, it is natural to ask if analogs of other
limit theorems in probability theory, such as the central limit
theorem (CLT) and the law of iterated logarithm (LIL), also
hold for the sample entropy. It turns out that CLT and LIL
do not hold when we assume Y is as general a process
as stationary and ergodic; so, in this paper, we restrict our
attention to hidden Markov chains (some special stochastic
processes which will be defined later).

From now on, assume that Y is a stationary finite-state
Markov chain with transition probability matrix ∆ with entries

∆(i, j) = P (Y1 = j|Y0 = i), 1 ≤ i, j ≤ B.

A hidden Markov chain Z is a process of the form Z = Φ(Y ),
where Φ is a deterministic function defined on Y with values
from a finite alphabet Z . Often a hidden Markov chain is
alternatively defined as a Markov chain observed when passing
though a discrete-time memoryless noisy channel. It is well
known that the two definitions are equivalent. For the Markov
chain Y , H(Y ) has a simple analytic form:

H(Y ) = −
∑
i,j

P (Y0 = i)∆(i, j) log∆(i, j).

For the hidden Markov chain Z, Blackwell [6] gave an integral
formula for H(Z), however using a measure that is typically
too complicated for effective computation of H(Z). So far,
there is no simple and explicit formula for H(Z). So, many
approaches have been adopted to compute and estimate H(Z)
instead: Blackwell’s measure has been used to bound the
entropy rate [22], a variation on the classical Birch bounds [5]
can be found in [9] and a new numerical approximation of
H(Z) has been proposed in [20]. Generalizing Blackwell’s
idea, an integral formula for the derivatives of H(Z) has been
derived in [27]. In another direction, [1], [18], [22], [31], [32],
[21], [12], [14], [15], [16], [24], [27] have studied the variation
of the entropy rate as parameters of the underlying Markov
chain vary.

Another interesting approach, which has greatly motivated
this work, is to use Monte Carlo simulation to approx-
imate H(Z): Recently, based on the Shannon-McMillan-
Breiman theorem, efficient Monte Carlo methods for approx-
imating H(Z) were proposed independently by Arnold and
Loeliger [2], Pfister, Soriaga and Siegel [25], Sharma and
Singh [28]. The limiting behavior of the sample entropy of a
hidden Markov chain, which governs the convergence behavior
of such algorithms, is then of great interest. In this direction,
a CLT [26] for the sample entropy is derived as a corollary
of a CLT for the top Lyapunov exponent of a product of
random matrices; a functional CLT is also established in [17].
In essence, both of the two CLTs are proved using effective
Martingale approximations of the sample entropy.

In this paper, adapting some standard techniques for proving
limit theorems for mixing sequences, we further characterize
the limiting behavior of the sample entropy of Z under
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certain positivity assumptions. Formally, define X = (Xi, i =
1, 2, · · · ) as

Xi = − logP (Zi|Zi−1
1 )−H(Zi|Zi−1

1 ),

and

Sn =
n∑

i=1

Xi, σ2
n = Var(Sn).

Unless specified otherwise, we assume, throughout the paper,
that

(I) ∆ is a strictly positive matrix; and
(II) σ > 0, where σ2 = limn→∞ σ2

n/n (the existence of
the limit under Condition (I) will be established in
Lemma 2.5 and Remark 2.6).

Remark 1.1: It can be shown that given Condition (I) is
satisfied, Condition (II) is equivalent to either one of the
following

1) limn→∞E[S2
n] = ∞.

2) lim supn→∞E[S2
n] = ∞.

We will prove the following central limit theorem with a
Berry-Esseen bound (see [4], [10]; such bound, which is absent
in [26], [17], characterizes rate of convergence of the CLT).

Theorem 1.2: Under Conditions (I) and (II), for any ε > 0,
there exists C > 0 such that for any n

sup
x

|P (Sn/σn < x)−
∫ x

−∞
(2π)−1/2 exp(−y2/2)dy| ≤ Cn−1/11+ε.

We will use the above CLT to prove the following law of
iterated logarithm.

Theorem 1.3: Under Conditions (I) and (II), we have

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
= 1 a.s.

Most of the proofs in this paper are omitted due to space limit;
we refer to [13] for a complete version of this paper.

II. KEY LEMMAS

This section includes several key lemmas, among which
Lemmas 2.1, 2.2, 2.3 require Condition (I) only. Here, we
remark that in this paper C is used to denote a constant, which
may not be the same on each appearance.

The following lemma can is well-known (see, e.g., [12] for
a rigorous proof).

Lemma 2.1: There exist C > 0 and 0 < ρ < 1 such that for
any two hidden Markov sequences z0−m, ẑ

0
−m̂ with z0−n = ẑ0−n

(here m, m̂ ≥ n ≥ 0), we have

|p(z0|z−1
−m)− p(ẑ0|ẑ−1

−m̂)| ≤ Cρn.

Consequently, there exists C > 0 and 0 < ρ < 1 such that for
any n, l ≥ 0,

| log p(z0|z−1
−n−l)− log p(z0|z−1

−n)| ≤ Cρn,

|H(Z0|Z−1
−n−l)−H(Z0|Z−1

−n)| ≤ Cρn.

For a stationary stochastic process T = T∞
−∞, let B(T j

i )
denote the σ-field generated by Tk, k = i, i+1, · · · , j. Define

ψ(n) = sup
U∈B(T−n

∞ ),V ∈B(T∞
0 ),P (U)>0,P (V )>0

|P (V |U)− P (V )|
P (V )

.

T is said to be a ψ-mixing sequence if ψ(n) → 0 as n→ ∞.
It is well known [7] that a finite-state irreducible and aperiodic
Markov chain is a ψ-mxing sequence, and the corresponding
ψ(n) exponentially decays as n → ∞. The following lemma
asserts that under Condition (I), Z is a ψ-mixing sequence
and the corresponding ψ(n) exponentially decays as n→ ∞.
An excellent survey on various mixing sequences can found
in [7]; for a comprehensive exposition to the vast literature on
this subject, we refer to [8].

Lemma 2.2: Z is a ψ-mixing sequence and there exist C >
0 and 0 < λ < 1 such that for any positive n, ψ(n) ≤ Cλn.

The following lemma shows that for a fixed j > 0,
E[XiXi+j ] exponentially converges as i → ∞; and for any
i < j, E[XiXj ] exponentially decays in j − i.

Lemma 2.3: 1) There exist C > 0 and 0 < ρ < 1 such
that for all i, j ≥ 0,

|E[Xi+1Xi+1+j ]− E[XiXi+j ]| ≤ Cρi.

2) There exist C > 0 and 0 < θ < 1 such that for any
positive i < j,

|E[XiXj ]| ≤ Cθj−i.

Remark 2.4: By Part 1) of Lemma 2.3, for any fixed j,
the sequence E[XiXi+j ], i = 1, 2, · · · , is a Cauchy se-
quence that exponentially converges. For any fixed j, let
aj = limi→∞E[XiXi+j ]. Then by Part 2), |aj | exponentially
decays as j → ∞; consequently, we deduce (for later use)
that a0 + 2

∑∞
j=1 aj converges.

Lemma 2.5: For any 0 < α < 1, there exists C > 0 such
that for any m and n,∣∣∣∣∣∣E[(Sn+m − Sm)2]

n
− (a0 + 2

∞∑
j=1

aj)

∣∣∣∣∣∣ ≤ Cn−α

here, recall that, as defined in Remark 2.4, aj =
limi→∞E[XiXi+j ].

Remark 2.6: Choosing m in Lemma 2.5 to be 0, we deduce
that limn→∞ σ2

n/n exists and is equal to σ2 = a0+2
∑∞

j=1 aj .
Lemma 2.7: There exists C > 0 such that for all m and n

E[|Sn+m − Sm|3] ≤ Cn3/2.

III. CENTRAL LIMIT THEOREM

Fix an arbitrarily small ε0 > 0, and let p = p(n) =
⌊n3/11+ε0⌋, q = q(n) = ⌊nε0⌋. Choose k = k(n) such that
kp + (k − 1)q ≤ n < (k + 1)p + kq; one easily checks that
k = O(n8/11−ε0). Then, for 1 ≤ i ≤ k, define

ζi = X(i−1)(p+q)+1 + · · ·+Xip+(i−1)q.

For 1 ≤ i ≤ k − 1, define

ηi = Xip+(i−1)q+1 + · · ·+Xip+iq,

and define

ηk =

{
Xkp+(k−1)q+1 + · · ·+Xn if kp+ (k − 1)q + 1 ≤ n

0 otherwise.
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Now Sn can be rewritten as a sum of ζ-“blocks” and η-
“blocks”:

Sn = S′
n + S′′

n :=
k∑

i=1

ζi +
k∑

i=1

ηi.

The above so called “Bernstein blocking method” is a standard
technique to the proof of limit theorems for a variety of
mixing sequences. Roughly speaking, the partial sum Sn

is partitioned into “long” blocks ζ1, ζ2, · · · , ζk and “short”
blocks η1, η2, · · · , ηk. Under certain mixing conditions, all
long blocks are “weakly dependent” on each other, while all
short blocks are “negligible” in some sense.

With lemmas in Section II established, the remainder of the
proof of Theorem 1.2 becomes more or less standard, which
can be roughly outlined as follows:

1) We first show E[exp(itS′
n/σn)] and∏k

j=1E[exp(itζj/σn) are “close” (see Lemma 3.1).
2) Standard analysis shows that

∏k
j=1E[exp(itζj/σn) and

exp(−t2/2) are “close” (see Lemma 3.2).
3) Then by Esseen’s Lemma [10], P (S′

n/σn < x)
and

∫ x

−∞(2π)−1/2 exp(−y2/2)dy are “close” (see
Lemma 3.4).

4) Finally, since S′′
n are “negligible”, we conclude, in

the proof of Theorem 1.2, that P (Sn/σn < x) and
P (S′

n/σn < x) are “close”, and thus P (Sn/σn < x)
and

∫ x

−∞(2π)−1/2 exp(−y2/2)dy are “close”.
Lemma 3.1: There exists C > 0 and 0 < ρ1 < 1 such that

for all n and |t| ≤ n1/11,

|E[exp(itS′
n/σn)]−

k∏
j=1

E[exp(itζj/σn)]| ≤ Cρ
q(n)
1 .

Lemma 3.2: There exists C > 0 such that for all n and
|t| ≤ n1/11,

|
k∏

j=1

E[exp(itζj/σn)]− exp(−t2/2)| ≤ Cn−1/11+ε0/2.

The following lemma is a version of Esseen’s lemma, which
gives upper bounds on the difference between two distribution
functions using the difference between the two corresponding
characteristic functions. We refer to page 314 of [29] for a
standard proof.

Lemma 3.3: Let F and G be distribution functions with
characteristic functions ϕF and ϕG, respectively. Suppose that
F and G each has mean 0, and G has a derivative g such that
|g| ≤M . Then

sup
x

|F (x)−G(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ϕF (t)− ϕG(t)

t

∣∣∣∣ dt+ 24M

πT

for every T > 0.
Lemma 3.4: For any ε > 0, there exists C > 0 such that

for all n

sup
x

∣∣∣∣P (S′
n/σn < x)−

∫ x

−∞
(2π)−1/2 exp(−y2/2)dy

∣∣∣∣ ≤ Cn−1/11+ε.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2:
Let A denote the event “|S′′

n|/σn ≤ n−1/11”. Then

|P (S′
n/σn ≤ x)− P (Sn/σn ≤ x)|

≤ |P (S′
n/σn ≤ x,A)− P (Sn/σn ≤ x,A)|

+|P (S′
n/σn ≤ x,Ac)− P (Sn/σn ≤ x,Ac)|

≤ |P (S′
n/σn ≤ x,A)−P (Sn/σn ≤ x,A)|+P (|S′′

n |/σn > n−1/11).

Applying Lemma 3.4, we have, for any ε > 0, there exists
C1 > 0 such that for any n

|P (S′
n/σn ≤ x,A)− P (Sn/σn ≤ x,A)|

≤ max{P (S′
n/σn ≤ x+ n−1/11, A)− P (S′

n/σn ≤ x,A),

P (S′
n/σn ≤ x,A)− P (S′

n/σn ≤ x− n−1/11, A)}

≤ C1n
−1/11+ε +

∫ n−1/11

−n−1/11

(2π)−1/2 exp(−y2/2)dy

= O(n−1/11+ε) +O(n−1/11) = O(n−1/11+ε).

Applying Lemma 2.5 and Lemma 2.2, we deduce that for some
0 < θ < 1,

E[(S′′
n)

2]

σ2
n

=

∑k
i=1E[η2i ] +

∑
i<j E[ηiηj ]

σ2
n

=
k(n)q(n)σ2(1 + o(1)) +O(n2θq(n))

σ2
n

= O(n−3/11).

Also, by the Markov inequality, we have

P (|S′′
n|/σn > n−1/11) ≤ E[(S′′

n)
2]

σ2
nn

−2/11
= O(n−1/11).

The theorem then immediately follows.
Remark 3.5: If Condition (II) fails, i.e., limn→∞ σ2

n/n = 0,
then a CLT of degenerated form holds for (Xi, i ∈ N); more
precisely, the distribution of (X1 +X2 + · · ·+Xn)/

√
n con-

verges to that of a centered normal distribution with variance
0, i.e., a point mass at 0, as n → ∞. This is can be readily
checked since for any ε > 0, by the Markov inequality, we
have

P (|(X1+X2+ · · ·+Xn)|/
√
n ≥ ε|) ≤ σ2

n/(nε
2) → 0 as n→ ∞.

IV. LAW OF ITERATED LOGARITHM

From the central limit theorem with a Berry-Esseen bound
(Theorem 1.2), we only need to follow a standard “track”
to establish the law of iterated logarithm (Theorem 1.3). In
particular, we closely follow the proof of Reznik’s law of
the iterated logarithm for a stationary ϕ-mixing sequence (see
page 307 of [29]):

1) As an immediately corollary of Theorem 1.2, the fol-
lowing Lemma 4.1 gives bounds on the tail probability
of Sn.

2) We then slightly modify Reznik’s maximal inequality to
to obtain our maximal inequality in Lemma 4.2;

3) Finally, we are ready for the proof of Theorem 1.3,
where some necessary modifications are incorporated
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into the original Reznik’s proof to deal with the compli-
cations stemming from the fact that X is not a stationary
mixing sequence.

Lemma 4.1: For any |δ| < 1 and α > 0, we have

(log σ2
n)

−(1+δ)2(1+α) < P (Sn > (1 + δ)(2σ2
n log log σ

2
n)

1/2)

< (log σ2
n)

−(1+δ)2(1−α)

for n sufficiently large.
Lemma 4.2: For any x > 0, 0 < α < 1/2 and C > 0, we

have

P (max
j≤n

Sj > x) ≤ 2P (Sn > x− 2σn) + Cn−α,

for sufficiently large n.
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: We first show that

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
≤ 1 a.s.; (1)

equivalently, we show that for any δ > 0,

P (
Sn

(2σ2
n log log σ

2
n)

1/2
> 1 + δ i.o.) = 0, (2)

here we remind the reader that by Remark 2.6, σ2
n = n(σ2 +

o(1)) and “i.o.” means “infinitely often”.
Fox fixed M > 1, define nj =M j , j = 1, 2, · · · . One then

checks that

“
Sn

(2σ2
n log log σ

2
n)

1/2
> 1 + δ i.o.”

⊂ “ max
n≤nj+1

Sn

(2σ2
nj

log log σ2
nj
)1/2

> 1 + δ i.o.”.

So, to prove (2), it suffices (by the Borel-Cantelli Lemma) to
show that

∞∑
j=1

P ( max
n≤nj+1

Sn

(2σ2
nj

log log σ2
nj
)1/2

> 1 + δ) <∞; (3)

in order to prove (3), by Lemma 4.2 and the fact that
∞∑
j=1

n−α2
j+1 =

∞∑
j=1

M−(j+1)α2 <∞,

it suffices to prove that
∞∑
j=1

P (Snj+1 > (1 + δ)(2σ2
nj

log log σ2
nj
)1/2 − 2σnj+1) <∞.

(4)
Note that there exists 0 < δ1 < δ such that for j sufficiently
large,

(1+δ)(2σ2
nj

log log σ2
nj
)1/2−2σnj+1 > (1+δ1)(2σ

2
nj

log log σ2
nj
)1/2.
(5)

Applying Lemma 4.1 with α chosen such that (1 + δ1)
2(1−

α) > 1, we deduce that
∞∑
j=1

P (Snj+1 > (1 + δ1)(2σ
2
nj

log log σ2
nj
)1/2)

≤
∞∑
j=1

(log σ2
nj
)−(1+δ1)

2(1−α) =
∞∑
j=1

O(j−(1+δ1)
2(1−α)) <∞.

(6)
Immediately, (4) and then (3) and then (2) follow. Here, we
remark that the same argument as above with Xi replaced by
−Xi leads to

lim inf
n→∞

Sn

(2nσ2 log log nσ2)1/2
≥ −1 a.s. (7)

For the other direction, we next show that

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
≥ 1 a.s.;

equivalently, we show that for any δ > 0,

P (
Sn

(2σ2
n log log σ

2
n)

1/2
> 1− δ i.o.) = 1. (8)

For fixed N > 1 and δ > 0, let Cn(δ) be the event

“SNn − SNn−1+Nn/2 > (1− δ)g(Nn −Nn−1 −Nn/2)”,

where g(n) = (2nσ2 log log nσ2)1/2. With Lemmas 2.1
and 4.1, one checks that there exists 0 < δ2 < δ such that
for a given α > 0

P (Cn(δ)) ≥ P (SNn−Nn−1−Nn/2 > (1−δ2)g(Nn−Nn−1−Nn/2))

≥ log(Nn −Nn−1 −Nn/2)−(1−δ2)
2(1+α)/2 (9)

for sufficiently large n. From now on, we choose α > 0 such
that (1 − δ2)

2(1 + α) < 1. If n and N are large enough, we
have

Nn −Nn−1 −Nn/2 ≥ Nn/2,

which, together with (9), implies that for any δ > 0

∞∑
n=1

P (Cn(δ)) = ∞. (10)

Similarly, let Ĉn(δ) be the event

“

Nn∑
i=Nn−1+Nn/2+1

− log p(Zi|Zi−1

Nn−1+Nn/4)−H(Zi|Zi−1

Nn−1+Nn/4)

> (1− δ)g(Nn −Nn−1 −Nn/2)”.

Applying Lemma 2.1, we deduce that that for any δ′ > 0,
there exists 0 < δ < δ′ such that for sufficiently large n,

Ĉn(δ
′) ⊃ Cn(δ),

which, together with (10), implies that for any δ′ > 0

∞∑
n=1

P (Ĉn(δ
′)) = ∞.

Again, by Lemma 2.1, for any δ > 0, there exists 0 < δ′′ < δ
such that for sufficiently large n,

Ĉn(δ
′′) ⊂ Cn(δ).
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It then follows from an iterative application of Lemma 2.2 that
there exists 0 < θ < 1 such that for any n, l,

P (∩n+l
m=nC

c
m(δ)) ≤ P (∩n+l

m=nĈ
c
m(δ′′))

=

n+l∏
m=n

P (Ĉc
m(δ′′)) +

n+l∑
m=n

O(θN
m/4

)

=

n+l∏
m=n

(1− P (Ĉm(δ′′))) +

n+l∑
m=n

O(θN
m/4

)

≤ exp(−
n+l∑
m=n

P (Ĉm(δ′′))) +

l∑
m=n

O(θN
m/4

).

(11)

So, as l, n → ∞, P (∩n+l
m=nC

c
m(δ)) → 0, or equivalently, for

any δ > 0,
P (Cn(δ) i.o.) = 1. (12)

Let Bn be the event “SNn−1+Nn/2 > −2g(Nn−1 +Nn/2)”.
It then follows from (7) that

P (Bn i.o.) = 1,

which, together with (12), implies that for any δ̂ > 0

P (Bn ∩ Cn(δ̂) i.o.) = 1. (13)

One then checks that for δ > 0, there exists 0 < δ̂ < δ such
that for sufficiently large n,

“SNn > (1− δ)g(Nn) i.o.”

⊃ “SNn > (1−δ̂)g(Nn−Nn−1−Nn/2)−2g(Nn−1+Nn/2) i.o.”

⊃ “Bn ∩ Cn(δ̂) i.o.”.

It then follows from (13) that

P (SNn > (1− δ)g(Nn) i.o.) = 1,

which immediately implies (8).
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