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Investigating Stochastic Stability of Uncertain Genetic Networks via

LMIs

J. Li, G. Chesi and Y.S. Hung

Abstract— This paper addresses the problem of investigating
stochastic stability of uncertain genetic networks with SUM
regulatory functions. Specifically, the genetic network is as-
sumed to be affected by Wiener processes, and its coefficients
are parametrized by an unknown vector constrained in a
hypercube. By using the square matricial representation (SMR)
of matrix polynomials, it is shown that a condition for stochastic
stability of the uncertain genetic network with disturbance at-
tenuation guaranteed for all admissible values of the parameter
can be derived in terms of linear matrix inequalities (LMIs).
Some examples illustrate the proposed condition.

I. INTRODUCTION

The study of genetic regulatory networks has become

a fundamental challenge and accumulated a large amount

of experimental data. It explains how genes and proteins

interact to form a complex system that performs complicated

biological functions [1]. Since genetic networks are bio-

chemically dynamical systems, it is natural to model genetic

networks by using dynamical system models which provide a

powerful tool for studying gene regulation processes in living

organisms. In the literature, genetic networks are classified

into two types, i.e., the Boolean model (or discrete model)

and the differential equation model (or continuous model)

[2],[3],[4]. In Boolean models, the activity of each gene is

expressed in one of two states, ON or OFF, and the state of a

gene is determined by a Boolean function of the state of other

related genes. In differential equation models, the variables

describe the concentrations of gene products, such as mRNAs

and proteins, as continuous values of the gene regulation

system. See for example [5]-[10] and references therein for

a wider categorization of genetic regulatory network models.

This paper focuses on the genetic regulatory networks

which are described through differential equation models. In

such models, the dynamics of each concentration is expressed

by a function of all concentrations of the system. This

function typically consists of two parts: a linear part which

defines the natural decay rate of the concentration itself,

and a nonlinear part which defines the influence by all the

other concentrations. The nonlinear part can be described via

SUM logic, where each transcription factor acts additively

to regulate a gene, i.e., the regulatory function sums over
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all the inputs. Such a regulation by multiple promoters is

indeed found in many gene systems. For further details see

for example [11]-[13], [21], [22], [27], [28], [29].

Generally, gene regulation is an intrinsically noisy process,

which is subject to intracellular and extracellular noise

perturbations and environment fluctuations [14]-[18], [20].

Such stochastic noises may affect the dynamics of the

entire biological system, both qualitatively and quantitatively.

Moreover, some of the fluctuations in genetic networks are

not entirely random, and the fluctuations are better described

by the combination of noise perturbations and uncertainties,

which makes the mathematical model uncertain. This means

that one has to investigate the stability of an uncertain

nonlinear system.

In this paper, we consider a genetic network model af-

fected by stochastic noise and by parametric uncertainty. We

assume that the noise is bounded by known functions, and

that the uncertainty is constrained in a hypercube. We show

that a condition for ensuring stochastic stability with distur-

bance attenuation for all admissible values of the uncertainty

can be obtained in terms of a linear matrix inequality (LMI)

feasibility test. This condition is derived by adopting poly-

nomially parameter-dependent quadratic Lyapunov functions

and the SMR of matrix polynomials introduced in [24]. See

also [26] for details and algorithms about the SMR.

The paper is organized as follows. In Section II, we intro-

duce some preliminaries about uncertain genetic regulatory

network with stochastic noise, and the representation of

matrix polynomials via the SMR. In Section III, we derive

a sufficient condition for the stability of uncertain genetic

networks with disturbance attenuation. In Section IV, we

give several examples to illustrate the proposed condition.

Finally, in Section V, we report some concluding remarks

and possible extensions.

II. PRELIMINARIES

A. Problem formulation

Notation: In: n×n identity matrix; AT : transpose of matrix

A; A > 0(A ≥ 0): symmetric positive definite (semidefinite)

matrix A; A⊗B: Kronecker product of matrices A and B;

⌈c⌉: smallest integer greater than or equal to c; E(·) denotes

the expectation operator; L2[0,∞) is the space of square-

integrable vector functions over [0,∞); ‖ · ‖ stands for the

Euclidean vector norm, and ‖ · ‖L2
stands for the usual

L2[0,∞) norm.

A genetic regulatory network affected by time-invariant

parametric uncertainties can be modeled as follows:
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ṁ(t) = A(θ)m(t)+G(θ)g(p(t))+ l(θ)

ṗ(t) = C(θ)p(t)+D(θ)m(t)

θ ∈ Θ

(1)

where m(t) and p(t) ∈ R
n are concentrations of

mRNA and protein of the ith node. The functions

A(θ),C(θ),D(θ),G(θ)∈R
n×n and l(θ)∈R

n are linear, with

A(θ),C(θ) diagonal and Hurwitz for each θ ∈ Θ, and D(θ)
diagonal and positive definite for each θ ∈Θ. A(θ) and C(θ)
contain the degradation rates of the mRNA and protein, G(θ)
is the coupling matrix of the genetic network, that defines

the coupling topology, direction, and the transcriptional rate

of the genetic network, l(θ) is defined as a basal rate.

In the genetic network (1), θ ∈ R
r is the time-invariant

uncertainty vector and Θ is the uncertainty set described by

the hypercube

Θ = {θ ∈ R
r : θi ∈ [0,1] ∀i}. (2)

The function g(p(t)) is monotonically increasing with

respect to p(t) and its ith entry is given by

gi(p(t)) =
pi(t)

H

β H + pi(t)H
β > 0, pi(t) > 0 ∀i (3)

where H is the Hill coefficient and β is a positive constant.

See for example [21] for details and illustrations of the

structure and regulation mechanism of this genetic network.

Let (m∗(θ), p∗(θ)) be an equilibrium point of (1), i.e., a

solution of the nonlinear equations
{

A(θ)m∗(θ)+G(θ)g(p∗(θ))+ l(θ) = 0n

C(θ)p∗(θ)+D(θ)m∗(θ) = 0n.
(4)

Let us shift the origin to the unknown equilibrium point

(m∗(θ), p∗(θ)) by defining

{

x = m−m∗(θ)

y = p− p∗(θ).
(5)

Thus, system (1) becomes










ẋ(t) = A(θ)x(t)+G(θ) f (y(t), p∗(θ))

ẏ(t) = C(θ)y(t)+D(θ)x(t)

θ ∈ Θ

(6)

where the ith entry of the function f (y(t), p∗(θ)) is

fi(y(t), p∗(θ)) =
(yi(t)+ p∗i (θ))H

β H +(yi(t)+ p∗i (θ))H
−

p∗i (θ)H

β H +(p∗i (θ))H
.

(7)

Since g(p(t)) is a monotonically increasing function with

saturation, it satisfies

0 ≤
g(a)−g(b)

a−b
≤ k, ∀a,b ≥ 0, a 6= b. (8)

For all a,b ∈ R
n with a 6= b, from the relationship of f (·)

and g(·), we know that f (·) satisfies the sector condition

0 ≤ f (a)/a ≤ k, or equivalently

fi(a)[ fi(a)− ka] ≤ 0 ∀i = 1, . . . ,n. (9)

Since gene regulation is an intrinsically noisy process,

an uncertain genetic regulatory network with disturbance

attenuation can be modeled as follows [22]


















dx(t) = [A(θ)x(t)+G(θ) f (y(t), p∗(θ))]dt

+ϕ(x(t),y(t))dω1(t)+ v(t)dω2(t)

dy(t) = [C(θ)y(t)+D(θ)x(t)]dt

θ ∈ Θ

(10)

where θ ∈R
r, ϕ(x(t),y(t))∈R

n is the noise intensity matrix

and v(t) ∈ R
n belongs to L2[0,∞). The quantities ω1(t)

and ω2(t) are two independent one-dimensional Wiener

processes, and Θ is given in (2).

We assume that ϕ(x(t),y(t)) satisfies

ϕT (x(t),y(t))ϕ(x(t),y(t)) ≤ xT (t)H1x(t)+ yT (t)H2y(t).
(11)

for some positive definite matrices H1, H2.

For (10), if v(t) does not vanish in the steady state, the

network cannot achieve mean-square asymptotic stability. We

give the definition below extending to the uncertain case the

definition given in [22].

Definition: The network (10) is said to be stochastically

stable with disturbance attenuation γ(θ) if the network is

asymptotically stable in mean-square for v(t) = 0, and under

zero initial conditions, we have

‖ z(t) ‖E2
< γ(θ) ‖ v(t) ‖L2

(12)

for all nonzero v(t), where

z(t) =

[

x(t)
y(t)

]

(13)

‖ z(t) ‖E2
=

[

E

(

∫ ∞

0
‖ z(t) ‖2 dt

)]1/2

. (14)

Problem 1: To establish if, for each θ ∈ Θ, the network

(10) is stochastically stable with disturbance attenuation γ ,

i.e. to establish whether

γ(θ) < γ ∀θ ∈ Θ. (15)

Problem 2: To find the worst case γ(θ), i.e.:

γ∗ = sup
θ∈Θ

γ(θ). (16)

B. Representation of matrix polynomials

Let us introduce a key representation of polynomials. Let

s(x) be a polynomial in x ∈ R
q of degree 2m. The square

matricial representation (SMR) of s(x) is defined as

s(x) = x{m}T

(S +L(α))x{m}. (17)

In (17), x{m} ∈ R
σ(q,m) is a vector containing all monomials

of degree less than or equal to m in x, S is any symmetric

matrix S ∈ R
σ(q,m)×σ(q,m) satisfying

s(x) = x{m}T

Sx{m} (18)

L(α) is a linear parameterization of the linear space.

L = {L = LT : x{m}T

Lx{m} = 0 ∀x ∈ R
q} (19)
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and α ∈ R
µ(q,m) is a vector of free parameters.

The length of x{m} is given by

σ(q,m) =
(q+m)!

q!m!
(20)

whereas the length of α is given by

µ(q,m) =
1

2
σ(q,m)[σ(q,m)+1]−σ(q,2m). (21)

The SMR allows one to establish whether a polynomial

s(x) is a sum of squares of polynomials (SOS), indeed, s(x)
is SOS if and only if [19]

∃α : S +L(α) ≥ 0 (22)

which is an LMI feasibility test, and hence a convex opti-

mization problem.

For example, consider the polynomial of degree 4 in one

variable

s(x) = 2+2x1 + x4
1. (23)

Then, we have m = 2, x{m} =





1

x1

x2
1



 and

S =





2 1 0

1 0 0

0 0 1



 , L(α) =





0 0 −α
0 2α 0

−α 0 0



 . (24)

Similarly to what has been done for scalar polynomials,

one can introduce the SMR for matrix polynomials. Let

M(x)∈R
n×n be a matrix polynomial of degree 2m in x∈R

q.

Then, M(x) can be written as

M(x) = (x{m}⊗ In)
T M̄(x{m}⊗ In) (25)

where M̄ ∈ R
nσ(q,m)×nσ(q,m) is a suitable matrix. Such a

matrix is not unique and, indeed, all matrices M̄ describing

M(x) are given by

M̄ +Ū Ū ∈ U (26)

where

U = {Ū = ŪT ∈ R
nσ(q,m)×nσ(q,m) : (x{m}⊗ In)

T

×Ū(x{m}⊗ In) = 0n×n ∀x ∈ R
q}. (27)

The set U in (27) is a linear space of dimension

u(q,n,m) =
1

2
n{σ(q,m)[nσ(q,m)+1]− (n+1)σ(q,2m)}.

(28)

Let Ū(α), α ∈ R
u(q,n,m), be a linear parameterization of

U . The SMR of M(x) is

M(x) = (x{m}⊗ In)
T (M̄ +Ū(α))(x{m}⊗ In). (29)

The matrix polynomial M(x) is said SOS if it can be

written as

M(x) = ∑
i

Ni(x)
T Ni(x) (30)

for some matrix polynomials Ni(x).

Then, M(x) is SOS if and only if the following LMI holds

[24]:

∃α : M̄ +U(α) ≥ 0. (31)

See also [25], [26] for further details and for the gap

between positive polynomials and SOS polynomials.

III. STABILITY CONDITIONS OF UNCERTAIN GENETIC

NETWORKS WITH NOISE PERTURBATIONS

In this section, we study the stochastic stability of the un-

certain genetic network model (10) via the SMR introduced

in Section II-B.

Lemma 1: Given a scalar γ > 0, suppose that there are

matrix functions P11(θ), P12(θ), P22(θ), Λ(θ), and a function

ρ(θ), such that the following conditions hold ∀θ ∈ Θ:

M(θ) =





(1,1) (1,2) P11(θ)G(θ)
(1,2)T (2,2) (2,3)

GT (θ)P11(θ) (2,3)T −2Λ(θ)



 < 0

P(θ) =

[

P11(θ) P12(θ)
PT

12(θ) P22(θ)

]

> 0

P11(θ) ≤ ρ(θ)I

Λ(θ) = diag(λ1(θ), ...,λn(θ)), λi(θ) > 0, ∀i = 1, ...,n

ρ(θ) > 0

(32)

where

(1,1) = P11(θ)A(θ)+AT (θ)P11(θ)+P12(θ)D(θ)

+D(θ)PT
12(θ)+ρ(θ)H1 +[ρ(θ)/γ2]I

(1,2) = D(θ)P22(θ)+AT (θ)P12(θ)+P12(θ)C(θ)

(2,2) = P22(θ)C(θ)+CT (θ)P22(θ)+ρ(θ)H2 +[ρ(θ)/γ2]I

(2,3) = PT
12(θ)G(θ)+ kΛ(θ).

(33)

Then, the uncertain genetic network (10) is stochastically

stable with disturbance attenuation γ .

The proof of this lemma follows the same line of the

certain case considered in [22]. Let us observe that the

condition of Lemma 1 requires to test feasibility of an infinite

family of LMIs. In order to solve this problem, we can

restrict our attention to polynomial matrix functions in (32).

Hence, let us consider that the functions P(θ), M(θ), Λ(θ)
and ρ(θ) are matrix polynomials, in particular:

P(θ) = P(θ)T ∈ P(δ ,2n) (34)

M(θ) = M(θ)T ∈ P(δ +1,3n) (35)

Λ(θ) = Λ(θ)T ∈ P(δ +1,n) (36)

ρ(θ) ∈ P(δ +1,1) (37)

where P(η ,ζ ) is the set of matrix polynomials of degree η
and size ζ × ζ . Thus, by using the SMR, we can express

P(θ), M(θ), λi(θ) and ρ(θ) as:

P(θ) = (θ {m1}⊗ I2n)
T P̄(θ {m1}⊗ I2n) (38)

M(θ) = (θ {m2}⊗ I3n)
T M̄(θ {m2}⊗ I3n) (39)
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λi(θ) = (θ {m2}⊗ In)
T Λ̄i(θ

{m2}⊗ In) (40)

ρ(θ) = θ {m2}
T

R̄θ {m2} (41)

where m1 = ⌈ δ
2
⌉, m2 = ⌈ δ+1

2
⌉, and P̄, M̄, Λ̄i and R̄ are sym-

metric matrices of suitable dimension. The vector θ {m2} ∈
R

σ(r,m2) contains all monomials of degree m2 in θ .

Let L(α) be a linear parameterization of

L = {L = LT ∈ R
nσ(r,m2)×nσ(r,m2) : (θ {m2}⊗ I3n)

T

×L(θ {m2}⊗ I3n) = 03n×3n ∀θ ∈ R
r}.

(42)

Let us define the matrix polynomial

T (θ) =
r

∑
i=0

θi(1−θi)(θ
{m2−1})TU(θ {m2−1}) (43)

where U = UT , and let Z(U) = Z(U)T be a linear matrix

function satisfying

T (θ) = (θ {m2}⊗ I3n)
T Z(U)(θ {m2}⊗ I3n). (44)

We have the following result.

Theorem 1: If there exist symmetric matrices P̄, Λ̄i, R̄, U

and a vector α satisfying the following LMIs:

P̄ > 0, Λ̄i > 0, R̄ > 0, U > 0

M̄ +L(α)+Z(U) < 0
(45)

where L(α) is a linear parameterization of the linear space

described in (42), then (15) holds.

Proof: Suppose that (45) holds. Since P̄ > 0, one gets from

(38) that:

P(θ) > 0 ∀θ . (46)

Similarly, one gets that

λi(θ) > 0, ρ(θ) > 0 ∀θ . (47)

Let us consider now M(θ). From (45), pre- and post-

multiplying by (θ {m2}⊗ I3n)
T and (θ {m2}⊗ I3n), one gets

0 > (θ {m2}⊗ I3n)
T (M̄ +L(α)+Z(U))(θ {m2}⊗ I3n)

= M(θ)+T (θ)
(48)

since

(θ {m2}⊗ I3n)
T L(θ {m2}⊗ I3n) = 03n×3n ∀θ ∈ R

r. (49)

Consider any θ ∈ Θ. Since U > 0, from (43) we have
{

θi(1−θi) ≥ 0 ∀i

(θ {m2−1})TU(θ {m2−1}) > 0.
(50)

This implies that:

T (θ) ≥ 0 ∀θ ∈ Θ. (51)

Therefore, from (48) and (51) it follows that:

M(θ) < 0 ∀θ ∈ Θ. (52)

Consequently, the condition of Lemma 1 holds since there

exist P(θ), Λ(θ), and ρ(θ) fulfilling (32). Hence, γ(θ) <
γ ∀θ ∈ Θ. ¤

Theorem 1 provides a sufficient condition for Problem 1

via a LMI feasibility test. This condition has been obtained

by exploiting polynomially parameter-dependent quadratic

Lyapunov functions and the SMR of matrix polynomials.

From Theorem 1 one can obtain an upper bound of γ∗ via

a one-parameter sequence of LMI feasibility test. Indeed, let

us define

γ̂∗ = in f {γ : (45) holds f or some P̄, Λ̄i, R̄, U, α}. (53)

We have from Theorem 1 that:

γ̂∗ ≥ γ∗. (54)

The upper bound γ̂∗ can be found in various way, e.g., via

a bisection algorithm on the scalar γ where (45) is tested at

each step.

IV. EXAMPLES

In this section, we present three examples to illustrate the

proposed contidion.

A. Example 1

Let us consider system (10) with H = 2, β = 1, n = 2,

r = 1 and

A(θ) = diag(−1+0.3θ ,−1)

C(θ) = diag(−1−0.2θ ,−1)

D(θ) = diag(1+0.3θ ,1+0.2θ)

G(θ) =

[

0 −0.1−0.3θ
0.3+0.2θ 0

]

.

(55)

It is easy to know that k is less than 0.65 in the sector

condition (8). Similarly to [22], we set the noise intensity as

ϕ(x(t),y(t)) =

[

ϕ1(x(t),y(t))
ϕ2(x(t),y(t))

]

(56)

with ϕi(x(t),y(t)) = 0.05[xi(t)+∑2
j=1 y j(t)] for all i. Condi-

tion (11) can hence be satisfied by choosing H1 = 0.2I2, H2 =
0.2I2. From Theorem 1, with the simple choice δ = 1, we

obtain γ̂∗ = 1.5.
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B. Example 2

In this example we illustrate the application of the pro-

posed results to an existing biological system, the repressila-

tor investigated in Escherichia coli [23]. In this system, the

repressilator is a cyclic negative-feedback loop comprising

three repressor genes (lacl, tetR and cl) and their promoters.

The system has the form






























ṁi = −mi +
α

rep
i

1+ pH
j

ṗi = −β
rep
i (pi −mi)

i = lacl, tetR,cl

j = cl, lacl, tetR

(57)

where mi and pi are the concentrations of the three mR-

NAs and repressor-proteins. In [21] this system has been

investigated for a specific choice of the coefficients α
rep
i and

β
rep
i . Here we consider the case of uncertain coefficients, in

particular

α
rep
1 = 0.5 β

rep
1 = 1.5

α
rep
2 = 1 β

rep
1 = 2.5

α
rep
3 = 2.5−2.5θ β

rep
1 = 3.5

(58)

Let us rewrite this repressilator in the form of the genetic

network (10): we have n = 3, r = 1 and

A(θ) = diag(−1,−1,−1)

G(θ) =





0 0 −0.5
−1 0 0

0 −2.5+2.5θ 0





C(θ) = diag(−1.5,−2.5,−3.5)

D(θ) = −C(θ).
From Theorem 1, with the simple choice δ = 1, we obtain

γ̂∗ = 2.1.

C. Example 3

In this example we consider a more difficult case with

larger state dimension. Let us consider (10) with H = 2,

β = 1, n = 4, r = 1 and

A(θ) = diag(−0.3,−0.8−0.5θ ,−1.5−0.4θ ,−0.8)

G(θ)i, j =































0.5+0.5θ i f (i, j) = (1,2)

−0.4−0.2θ i f (i, j) = (2,3)

−0.3−0.1θ i f (i, j) = (3,1)

0.5+0.5θ i f (i, j) = (4,3)

0 otherwise

C(θ) = diag(−1.1+0.3θ ,−1.5,−0.8−0.3θ ,−1.3)

D(θ) = diag(1,1.4+0.2θ ,0.6,0.7+0.1θ).
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Fig. 1. Trajectories of the concentrations of mRNA and protein of the
genetic network.

With the simple choice of H = 2, β = 1, r = 1, the

trajectories of m(t) and p(t) of the uncertain genetic network

are shown in Fig. 1 with different uncertainty parameter θ
and different concentrations of mRNA and protein.

According to Theorem 1, with the simple choice δ = 1,

we easily obtain γ̂∗ = 3.0.

V. CONCLUSIONS

In this paper, we have addressed the problem of establish-

ing stochastic stability of the uncertain genetic networks with

SUM regulatory function. Specifically, by using the SMR

of matrix polynomials, it has been shown that a condition

for establishing stochastic stability of the uncertain genetic

network with disturbance attenuation can be derived in terms

of an LMI feasibility test.

Future work will be devoted to extend the proposed

condition to the presence of time delays.
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