
Title Privacy-Preserving Aggregation of Time-Series Data

Author(s) Shi, E; Chan, HTH; Rieffel, E; Chow, R; Song, D

Citation
The 18th Annual Network & Distributed System Security
Symposium (NDSS), San Diego, California, USA, 6-9 February
2011

Issued Date 2011

URL http://hdl.handle.net/10722/135709

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37958979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Privacy-Preserving Aggregation of Time-Series Data

Elaine Shi
PARC/UC Berkeley

elaines@eecs.berkeley.edu

T-H. Hubert Chan
The University of Hong Kong

hubert@cs.hku.hk

Eleanor Rieffel
FxPal

rieffel@fxpal.com

Richard Chow
PARC

rchow@parc.com

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

Abstract

We consider how an untrusted data aggregator can
learn desired statistics over multiple participants’ data,
without compromising each individual’s privacy. We
propose a construction that allows a group of partici-
pants to periodically upload encrypted values to a data
aggregator, such that the aggregator is able to compute
the sum of all participants’ values in every time period,
but is unable to learn anything else. We achieve strong
privacy guarantees using two main techniques. First, we
show how to utilize applied cryptographic techniques to
allow the aggregator to decrypt the sum from multiple
ciphertexts encrypted under different user keys. Second,
we describe a distributed data randomization procedure
that guarantees the differential privacy of the outcome
statistic, even when a subset of participants might be
compromised.

1 Introduction

In many practical applications, a data aggregator
wishes to mine data coming from multiple organizations
or individuals, to study patterns or statistics over a pop-
ulation. An important challenge in these applications is
how to protect the privacy of the participants, especially
when the data aggregator is untrusted.

This paper describes novel Private Stream Aggrega-
tion (PSA) algorithms which allow users to upload a
stream of encrypted data to an untrusted aggregator, and
allow the aggregator to decrypt (approximate) aggregate
statistics for each time interval with an appropriate ca-
pability. We guarantee a strong notion of privacy. First,
our aggregation scheme is aggregator oblivious, mean-
ing that the aggregator is unable to learn any unintended
information other than what it can deduce from its aux-
iliary knowledge and the desired statistics. Second, we

guarantee distributed differential privacy for each in-
dividual participant, in the sense that the statistic re-
vealed to the aggregator will not be swayed too much by
whether or not a specific individual participates. There-
fore, users may safely contribute their encrypted data, as
presence in the system will not lead to increased risk
of privacy breach. Our privacy guarantees hold even
when the aggregator has arbitrary auxiliary information
about an individual’s inputs (but has not compromised
her secret key). Such auxiliary information may be ob-
tained from publicly available datasets, personal knowl-
edge about an individual participant, or through collu-
sion with a small subset of corrupted participants.

The proposed privacy mechanisms represent a
promising approach to ensuring user privacy in numer-
ous application, including cloud services, medical pri-
vacy, sensor network aggregation, and smart metering.

1.1 Contributions

Formulation of a privacy model. One important con-
tribution we make is the formulation of a notion of pri-
vacy. A good way to understand our contributions is
to compare our notion of privacy with differential pri-
vacy [5]. The differential privacy literature assumes the
presence of a trusted data aggregator who wishes to pub-
lish statistics about a population. The trusted data aggre-
gator is entitled to see all participants’ data in the clear.
Our privacy model is stronger in the sense that we do
not trust the data aggregator. We ensure that the data
aggregator is able to learn only the intended statistics
and no additional information. Furthermore, the statis-
tics revealed to the data aggregator satisfies differential
privacy guarantees. Our scheme protects each individual
participant’s privacy even when the aggregator has ar-
bitrary auxiliary information about an individual’s data
(but has not compromised her secret key), or colludes
with a subset of corrupted participants.

Computing the sum statistic for time-series data.
We propose novel constructions that allow an untrusted
data aggregator to compute the sum statistic for time-
series data. Imagine a data aggregator who wishes to
keep track of the total sales revenue of n companies ev-
ery week. Our scheme allows each individual company
to upload a noisy encryption of their revenue every week
to the data aggregator. With an appropriate capability,
the data aggregator is able to decrypt the noisy sum of
all companys’ revenues, but is unable to infer additional
information about an individual company.

Our effort is a first step towards this new notion of
privacy. In Section 8, we propose several open problems
that remain to be addressed for this new direction. We
hope that our effort will inspire future research in this
area to address these interesting challenges.

1.2 Applications

Sensor network aggregation. Sensor networks are
being widely-deployed to monitor the safety of build-
ings, measure traffic flows, or track environmental pollu-
tants. In a typical setting, deployed sensor nodes period-
ically send their readings to a base station, which mines
the data for some pattern or statistic. In many scenarios,
the readings from each individual sensor may be privacy
sensitive, especially if the sensors are deployed across
multiple organizations. Our construction may provide a
promising approach to address privacy issues arising in
sensor network aggregation.

Smart metering. Another example is the advent of the
electrical “smart grid” and “smart metering” [4]. Smart
meters read electrical usage at a much finer granularity
than traditional meters; smart meters might read usage
every 15 minutes as opposed to once a month. See [15]
for a sampling of what might be gleaned from your fine-
grained electrical usage. For instance, one can deduce
the number of individuals in the household and their
sleep/work habits, as well as their use of common house-
hold appliances. These privacy concerns could be much
reduced if household usage information were only re-
leased in the aggregate. Membership in the aggregation
groups would be flexible and open, and these aggregate
statistics would still be enough for the smart grid opera-
tors to do much of their monitoring and price optimiza-
tion.

Public health and clinical research. Medical re-
search benefits greatly from medical data, but privacy
concerns restrict the extent to which this data is col-
lected and disseminated. Molina et al. [14] use mul-
tiparty computation by caregivers to answer researcher
aggregation queries, especially for medical telemetry

data. PSA algorithms would enable researchers to ob-
tain those statistics, and only those statistics, from data
uploaded continually by the caregivers or the telemetry
devices, without need for further interaction.

Population monitoring and sensing. There are many
examples of population polling, sensing, and monitor-
ing spurring privacy concerns. As one example, Rief-
fel et al. [17] use data from cameras, wifi, and com-
puter activity to estimate a user’s availability, and help
co-workers identify the best means for communication
with that user. A lot of information about a user’s work
habits can be deduced from her communication avail-
ability. For this reason, users were reluctant to have any
long-term data stored for fear that it would be misused
by their managers. As they used the system, however,
users became interested in sharing information with se-
lected individuals, and were open to allowing managers
to learn statistical data across the group. Rieffel et al.’s
work addressed the oblivious aggregation problem, but
was susceptible to collusion.

Cloud services. As cloud computing gains popularity,
individuals and organizations will store an increasing
amount of data on third-party cloud services. Cloud ser-
vice providers wish to compute useful statistics over this
data, to realize various social and economic goals. Un-
fortunately, companies cite concerns about the security
and privacy of their data as a top reason for not making
more use of cloud services. Our constructions represent
a promising approach in cloud applications, especially
when the cloud services wishes to track some aggregate
statistics from multiple users over time.

2 Related Work

To understand our contributions, it helps to know the
relationship of this paper with well-known privacy tech-
niques such as differential privacy, homomorphic en-
cryption and secure multi-party computation.

Differential privacy. The differential privacy notion
was first formulated by Dwork et al. [5, 7]. Differen-
tial privacy ensures that a user is not at increased risk
of privacy when she participants in a certain statistical
database. Previous work on differential privacy consid-
ers a trusted data aggregator who has access to all users’
data. The trusted aggregator typically adds appropri-
ate noise to some statistics before releasing them. In
comparison, our work provides stronger privacy guar-
antees as we ensure the privacy of individual partici-
pants even against the data aggregator itself. This is

valuable in many real-world settings (e.g., cloud appli-
cations) where users may not entrust the data aggregator
or storage server with their data. Dwork et al. [6] have
also considered distributed randomness among partici-
pants in order to achieve differential privacy. However,
their scheme involves interactions among all users.

Homomorphic encryption. Most previous work on
homomorphic encryption considers homomorphic oper-
ations on ciphertexts encrypted under the same key [2,
8]. These schemes do not directly apply in our case,
since if participants encrypted their data under the ag-
gregator’s public key, the aggregator would not only be
able to decrypt the aggregate statistics, but also each in-
dividual’s values. By contrast, our cryptographic con-
struction allows additive homomorphic operations over
ciphertexts encrypted under different users’ secret keys.

Castelluccia et al. [3] designed a symmetric-key ho-
momorphic encryption scheme that allows an aggregator
to efficiently decrypt the mean and variance of encrypted
sensor measurements. However, they also assume a
trusted aggregator who is allowed to decrypt each in-
dividual sensor’s values. Yang et al. [19] designed an
encryption scheme that allows an aggregator to compute
the sum over encrypted data from multiple participants.
As pointed out by Magkos et al. [11], their construc-
tion only supports a single time step, and an expensive
re-keying operation is required to support multiple time
steps.

Secure multi-party computation. Secure multi-party
computation (SMC) [10] is a well-known crypto-
graphic technique allowing n parties with inputs x =
(x1, x2, . . . xn) respectively to privately compute func-
tions f1(x), f2(x), . . . , fn(x). At the end of the proto-
col, party i learns the value of fi(x) but nothing more.
In a sense, SMC is orthogonal and complementary to
differential privacy techniques. SMC does not address
potential privacy leaks through harmful inferences from
the outcomes of the computation, but one can potentially
build differential privacy techniques into a multi-party
protocol to address such concerns.

Most SMC constructions are interactive. Therefore,
directly employing SMC in our setting would require
participants to interact with each other whenever an ag-
gregate statistic needs to be computed. Such a multi-way
interaction model may not be desirable in practical set-
tings, especially in a client-server computation model as
often seen in cloud computing applications.

Most closely related work. To the best of our knowl-
edge, Rastogi et al. [16] and Rieffel et al. [17] were the

first ones to consider the problem of privately aggregat-
ing sums over multiple time periods.

Rastogi and Nath [16] also consider periodic aggre-
gation of the sum statistic in the presence of an untrusted
aggregator. Their work differs from our work in several
aspects. (1) One of our contributions is to present a for-
mal security definition. Rastogi et al. prove that the
aggregator cannot compute linear combinations of the
users’ values other than the sum – and this implicit secu-
rity defintion they adopted is incomplete in some sense.
Note that although we define security specifically for the
sum statistic in this paper, our security definitions can
potentially be generalized for the aggregation of general
statistics. (2) The construction by Rastogi et al. requires
that the aggregator engage in an extra round of interac-
tion with the participants to decrypt the sum for every
time interval. In our scheme, the aggregator need not in-
teract with the participants to decrypt the sum. (3) Ras-
togi et al. also consider how the users can jointly con-
tribute randomness to achieve differential privacy. In-
terestingly, they propose a noise generation algorithm
different from ours. In contrast to Rastogi et al., our
scheme and privacy analysis explicitly address the issue
of rounding when the underlying algebraic structure of
the encryption scheme supports only finite discrete val-
ues.

Rieffel et al. consider an application scenario where
a manager would like to periodically decrypt a summary
statistic across a set of users, while not being able to
decrypt individual values [17]. Their construction does
not provide distributed differential privacy guarantees,
and is not fully resistant against collusions, i.e., users
and the manager may collude to decrypt a victim user’s
value. They raise the question whether it is possible to
design a scheme fully resistant against collusion. This
paper gives explicit formalizations of the privacy model
implicit in their work, and provides a positive answer to
the question they raised.

3 Problem Definition and Overview

Suppose we have one data aggregator and n partici-
pants. For notational convenience, we number the par-
ticipants 1, . . . , n, and we number the data aggregator 0.
Let [n] := {1, 2, . . . , n}. In every time period t ∈ N,
each participant i ∈ [n] has a value xi,t ∈ D from a cer-
tain domain D. When the context is clear, we omit the
subscript t and write xi instead. Let x = (x1, . . . , xn) ∈
Dn denote the vector of values from all participants in
some time period. The aggregator would like to com-
pute some aggregate statistics represented by the func-
tion f : Dn → O. The function f(x) produces some
value from the some range O, representing the desired
statistics.

To achieve strong privacy guarantees when the ag-
gregator may have arbitrary auxiliary information about
users’ inputs, each participant generates independent
random noise from some sample space Ω, represented
by r := (r1, . . . , rn) ∈ Ωn. Let χ : D × Ω→ D denote
some randomization function allowing each participant
to compute a noisy version of her data x̂i := χ(xi, ri)
before encrypting and uploading it to the aggregator.
From the encrypted values of x̂ := (x̂1, x̂2, . . . , x̂n),
the aggregator computes a noisy statistic f(x̂), which
should be close to the desired statistic f(x). Throughout
the remainder of the paper, we use hatted variables to de-
note the randomized versions of a participants’ data (as-
sociated with some random r and randomization func-
tion χ), and we use non-hatted versions to denote the
original data.

Remark 1 (More general setting). In general, each par-
ticipant i can generate noise ri according to her own
distribution. Moreover, each pariticipant i can apply a
different randomization function χi(xi, ri) to her data
xi. In an even more general setting, each participant
may encrypt her data xi and her randomness ri sepa-
rately before sending to the aggregator, who computes a
randomized aggregate function f̂ : Dn × Ωn → O on
the encrypted inputs.

For simplicity, this paper considers the special case
when f̂(x, r) = f(x̂). Furthermore, we assume that
each participant applies the same randomization χ func-
tion before encrypting her data.

Our goal is to design a privacy mechanism such that
for every time period, the aggregator is able to learn
some aggregate statistic f(x̂), but not each individual’s
value even when it has arbitrary auxiliary information.
We call a scheme that meets the above requirements a
Private Stream Aggregation (PSA) mechanism. More
formally, a Private Stream Aggregation scheme consists
of the following algorithms.

Setup(1λ): Takes in a security parameter λ, and out-
puts public parameters param, a private key ski for
each participant, as well as a aggregator capabil-
ity sk0 needed for decryption of aggregate statistics
in each time period. Each participant i obtains the
private key ski, and the data aggregator obtains the
capability sk0.

NoisyEnc(param, ski, t, x, r): During time step t, each
participant calls the NoisyEnc algorithm to en-
code its data x with noise r. The result is a
noisy encryption of x randomized with the noise
r. Without risk of ambiguity, we sometimes write
NoisyEnc(param, ski, t, x̂) where x̂ := χ(x, r) is
the noisy version of the participant’s data, and χ is
some underlying randomization function.

AggrDec(param, sk0, t, c1, c2, . . . , cn) The decryption
algorithm takes in the public parameters param, a
capability sk0, and ciphertexts c1, c2, . . . , c2 for the
same time period t. For each i ∈ [n], let ci =
NoisyEnc(ski, t, x̂i), where each x̂i := χ(xi, ri).
Let x := (x1, . . . , xn) and x̂ := (x̂1, . . . , x̂n). The
decryption algorithm outputs f(x̂) which is a noisy
version of the targeted statistics f(x).

3.1 The Case for Summation: Overview of Our
Solution

In this paper, we mainly consider a simple but com-
mon statistic: summation. Each participant’s data xi
comes from Zp for some prime p. Define the aggregat-
ing function sum(x) :=

∑n
i=1 xi. Moreover, each par-

ticipant generates noise ri from the set of integers and
applies the randomization function χ(xi, ri) := xi + ri
mod p, i.e., a participant incorporates additive noise be-
fore encrypting her data.

Figure 3.1 gives a high-level overview of our con-
struction. In the remainder of the paper, we first formal-
ize the privacy notions in Section 4. We then describe
the two building blocks in our solution in following two
sections: 1) Section 5 describes a cryptographic con-
struction to ensure that the aggregator learns nothing but
the noisy sum; 2) Section 6 describes how each partici-
pant should choose her noise distribution so that the dif-
ferential privacy of an individual participant is protected
even when a subset of the participants may be compro-
mised.

4 Formal Privacy Notions

We consider an untrusted aggregator who may have
arbitrary auxiliary information. For example, the aggre-
gator may collude with a set of corrupted partipants. The
corrupted participants can reveal their data and noise
values to the aggregator. Such information leaked from
corrupted participants can be considered as a form of
auxiliary information. Auxiliary information about par-
ticipants can also be obtained in other ways, such as
from public datasets on the web, or through personal
knowledge about a specific participant.

Our goal is to guarantee the privacy of each individ-
ual’s data against an untrusted aggregator, even when the
aggregator has arbitrary auxiliary information. At a high
level, our formal privacy notions consists of two proper-
ties:

• Aggregator oblivious. Suppose that an aggregator
has auxiliary information aux. With an appropri-
ate capability, the aggregator learns a noisy aggre-
gate statistics f(x̂) at the end of a time period. We

data noise

1

2

n

participants aggregator

c1 := E(sk1, x1 + r1)

c1 := E(sk2, x2 + r2)

cn := E(skn, xn + rn)

AggrDec(sk0, c1, c2, . . . , cn) ∑n
i=1(xi + ri)

..

.

Figure 1: Overview of our construction. In every time period, each participant adds noise ri to her value xi before encrypting it.
The aggregator uses the capability sk0 to decrypt a noisy sum, but learns nothing more. The noisy sum output by this distributed
mechanism ensures each participant’s differential privacy.

would like to guarantee that the aggregator learns
nothing other than what can be inferred from aux
and the revealed statistics f(x̂). In addition, we re-
quire that a party without an appropriate aggregator
capability learns nothing.

• Distributed differential privacy. We require that
a user’s participation in the system leaks only neg-
ligible information about herself. In other words,
the aggregate statistic f(x̂) revealed is roughly the
same whether or not a specific user participates in
the system. To achieve this goal, we adopt a privacy
model similar to the differential privacy notion first
introduced by Dwork et al. [5, 7]. While traditional
differential privacy considers a trusted aggregator
who sees the participants’ data in the clear and is
trusted to add noise to the published statistics, in
our model, the participants need not trust the data
aggregator or other participants. The final noise in
the revealed statistic is collected from each indi-
vidual participant. Our privacy guarantee is strong,
even when the aggregator may have arbitrary aux-
iliary information, or collude with a small subset of
corrupted participants.

Malicious participants can also perform a data pol-
lution attack where they lie about their values in an at-
tempt to sway the final output. Although data pollution
attacks are outside the scope of the paper, we would like
to mention that one possible defense is for each partic-
ipant to use a non-interactive zero-knowledge proof to
prove that her encrypted data lies within a valid range,
e.g., {0, 1, . . . ,∆}. In this way, each participants’s in-
fluence is bounded.

4.1 Aggregator Oblivious

For simplicity, we define the aggregator oblivious no-
tion of security only for the sum statistic. Intuitively, we
would like to capture the following security notions:

• The aggregator can learn only the noisy sum for
each time period, and nothing more. For example,
the aggregator cannot learn any partial information
from a proper subset of all participants’ ciphertexts.

• Without knowing the aggregator capability, one
learns nothing about the encrypted data, even if
several participants form a coalition against the re-
maining users.

• If the aggregator colludes with a subset of the par-
ticipants, or if a subset of the encrypted data has
been leaked, then the aggregator can inevitably
learn the sum of the remaining participants. We
require that in this case, the aggregator learns no
additional information about the remaining partici-
pants’ data.

We describe the following Aggregator Oblivious
(AO) security game. We assume that each participant
incorporates additive noise (which we see later is to en-
sure privacy) to their data before encrypting them.

Setup. Challenger runs the Setup algorithm, and re-
turns the public parameters param to the adversary.

Queries. The adversary makes the following types of
queries adaptively. As described later, certain con-
straints must be met for these queries.

• Encrypt. The adversary may specify
(i, t, x, r), and ask for the ciphertext.
The challenger returns the ciphertext
NoisyEnc(ski, t, x, r) to the adversary.

• Compromise. The adversary specifies an in-
teger i ∈ {0, . . . , n}. If i = 0, the challenger
returns the aggregator capability sk0 to the ad-
versary. If i 6= 0, the challenger returns ski,
the secret key for the ith participant, to the ad-
versary.

• Challenge. This query can be made only
once throughout the game. The adversary
specifies a set of participants U and a time t∗.
Any i ∈ U must not have been compromised
at the end of the game.
For each user i ∈ U , the adver-
sary chooses two plaintext-randomness pairs
(xi, ri), (x′i, r

′
i). The challenger flips a ran-

dom bit b. If b = 0, the challenger computes
∀i ∈ U : NoisyEnc(ski, t, xi, ri), and returns
the ciphertexts to the adversary. If b = 1,
the challenger computes and returns the ci-
phertexts ∀i ∈ U : NoisyEnc(ski, t, x′i, r

′
i)

instead.

Guess. The adversary outputs a guess of whether b is 0
or 1.

We say that the adversary wins the game if she cor-
rectly guesses b and the following condition holds. Let
K ⊆ [n] denote the set of compromised participants at
the end of the game (not including the aggregator). Let
Q ⊆ [n] denote the set of participants for whom an En-
crypt query has been made on time t∗ by the end of
the game. Let U ⊆ [n] denote the set of (uncompro-
mised) participants specified in the Challenge phase. If
U = K ∪Q := [n]\(K ∪ Q), and the adversary has
compromised the aggregator capability, the following
condition must be met:∑

i∈U
x̂i =

∑
i∈U

x̂′i. (1)

Definition 1 (Aggregator oblivious security). A PSA
scheme is aggregator oblivious, if no probabilistic
polynomial-time adversary has more than negligible ad-
vantage in winning the above security game.

Explanation. Suppose that the adversary has compro-
mised the aggregator capability sk0. In addition, for ev-
ery participant i /∈ U , the adversary knows a ciphertext
ci for the time t∗ as well as the corresponding random-
ized plaintext x̂i. Such an adversary is able to use the
AggrDec function to learn the sum of all participants in
time period t∗. From this sum, the adversary is able to
infer the partial sum over the subset U . Note that the
the adversary may be able to learn a plaintext and ci-
phertext pair for i /∈ U in two ways. The adversary
can either make an Encrypt query for i /∈ U and time

t∗, or compromise the secret key of participant i so that
it is able to produce the ciphertexts on its own. There-
fore, when U = K ∪Q and the aggregator capability
has been compromised, we require that apart from the
sum over the subset U , the adversary is unable to in-
fer additional information about the honest participants
in U . This means that the adversary in the above secu-
rity game is unable to distinguish which plaintext vector
x̂U := {x̂i|i ∈ U} or x̂′U := {x̂′i|i ∈ U} the challenger
encrypted, as long as x̂U and x̂′U are equivalent with re-
spect to summation.

On the other hand, under the following conditions,
the adversary learns nothing from the challenge cipher-
texts corresponding to the set U of participants. 1) The
adversary has not compromised the aggregator capabil-
ity; or 2) U 6= K ∪Q, i.e., there exists at least one
i /∈ U for whom the adversary does not know a cipher-
text for time period t∗. Under these situations, for arbi-
trary choices of x̂U and x̂′U that the adversary submits
in the Challenge phase, the adversary is unable to dis-
tinguish which one the challenger encrypted.

Remark 2 (General statistic). The notion of aggregator
oblivious security may be extended to general statistics
other than sum. Extra care must be taken, however. If an
adversary has compromised the set K ⊆ [n] of partici-
pants, she is able to encrypt anything on behalf of these
participants. Therefore, she can plug in any plaintext
vector x̂K = {x̂i|i ∈ K} of her choice for the set K,
encrypt them, and then call the AggrDec function to de-
crypt the aggregate statistics conditioned on x̂K . Such
attacks are inherent in the problem definition and cannot
be avoided. The security definition must reflect the fact
that this is the best and only strategy for the adversary,
i.e., the adversary is unable to learn extra information
other than information gleaned from this attack. For the
sum statistic, this requirement boils down to Equation 1.
Basically, as long as the two challenge plaintexts are
equivalent with respect to sum, the adversary is unable
to distinguish which one the challenger encrypted. This
condition is more tricky to state for general queries. For
simplicity, this paper defines the aggregator oblivious
security game specifically for the sum statistic.

Encrypt-once security. Our construction makes one
additional assumption that each honest participant only
encrypts once in each time period. Formally, this condi-
tion is reflected in the game as follows.

Definition 2 (Encrypt-once security). We say that a PSA
scheme is aggregator oblivious in the “encrypt-once”
model, if no probabilistic polynomial-time adversary
has more than negligible advantage in the above security
game, and in addition, the following constraint holds:

∀i ∈ U , ∀(x, r) ∈ D × Ω: the tuple (i, t∗, x, r) must
not have appeared in any Encrypt query.

4.2 Distributed Differential Privacy

Previous differential privacy literature assumes that
all users send their data to the aggregator in the clear.
In this case, if the users wish to guarantee their privacy
against an untrusted aggregator, each participant must
add sufficient noise to her value to ensure her differen-
tial privacy. As a result, the aggregate noisy statistic may
accumulate too much noise, and the resulting f(x̂) may
have a huge error. In contrast, we guarantee that the
aggregator learns only the noisy statistic, but not each
individual’s values. In this way, each individual may
add less noise to her data. As long as the final statistic
f(x̂) has accumulated sufficient randomness, each indi-
vidual’s privacy is guaranteed. We also consider the case
when a certain fraction of participants are compromised.
The compromised participants can collude with the data
aggregator and reveal their data or randomness to the ag-
gregator. In this case, we would like to ensure that the
remaining uncompromised participants’ randomness is
sufficient to protect their privacy.

We referred to the above notion of privacy as Dis-
tributed Differential Privacy (DD-Privacy), to reflect the
fact that the noise in the the released statistic is collected
from all participants. We formalize this notion of dis-
tributed differential privacy below.

Recall that the aggregator evaluates a function f :
Dn → O on randomized data x̂ ∈ Dn of n participants,
which are generated in the following way. Each partici-
pant generates independent randomness ri ∈ Ω accord-
ing to some distribution, and apply some randomization
function χ : D×Ω→ D on her data xi to produce x̂i :=
χ(xi, ri). Given x ∈ Dn and r ∈ Ωn, we use the nota-
tion x̂ = x̂(r) := (χ(x1, r1), χ(x2, r2), . . . , χ(xn, rn)),
i.e., the dependence of x̂ on r is implicit.

Given a subset K of participants, we let rK := {ri :
i ∈ K} and K be the complement of K, i.e., K =
{1, 2, . . . , n} \K.

We require that the following notion of distributed
differential privacy applies to every time period t ∈ N.

Definition 3 ((ε, δ)-DD-Privacy). Suppose ε > 0, 0 ≤
δ < 1 and 0 < γ ≤ 1. We say that the data random-
ization procedure, given by the joint distribution r :=
(r1, . . . , rn) and the randomization function χ achieves
(ε, δ)-distributed differential privacy (DD-privacy) with
respect to the function f and under γ fraction of uncom-
promised participants if the following condition holds.
For any neighboring vectors x,y ∈ Dn, for any subset
S ⊆ O, and for any subset K of uncompromised partic-

ipants of size at least γn,

Pr[f(x̂) ∈ S|rK] ≤ exp(ε) · Pr[f(ŷ) ∈ S|rK] + δ.
(2)

In the above definition, two vectors x,y ∈ Dn are
said to be neighbors or neighboring vectors if they dif-
fer in exactly one coordinate. This corresponds to the
scenario when exactly one user changes her data.

When K is the set of compromised nodes, the above
definition requires that the remaining honest partici-
pants’ randomness be sufficient to ensure differential
privacy. Therefore, the probability is conditioned on
the randomness rK from compromised participants. In
other words, the probability is taken over the random-
ness rK from honest participants. The definition of DD-
privacy requires that for any set K of uncompromised
participants, as long as |K| ≥ γn, Equation 2 holds.

Strictly speaking, we achieve differential privacy
against polynomial-time adversaries, as our constructoin
relies on an encryption scheme that is secure against
polynomial-time adversaries. Computational differen-
tial privacy was first introduced by Mironov et al. [13].
In fact, it is possible to define a computational version
of the above DD-privacy notion as well, and prove our
scheme secure under the computational differential pri-
vacy model. We leave the computational definition and
proofs to the expanded journal version.

5 Achieving Aggregator Oblivious Secu-
rity

In this section, we describe a cryptographic construc-
tion that allows us to achieve aggregator oblivious se-
curity. For simplicity, in this section, we assume that
each participant incorporates additive noise r to her data
x before encrypting it. To avoid writing the plaintext
and noise terms separately, we use the notation x̂i,t :=
xi,t+ri,t to denote participant i’s noisy plaintext in time
t. When the context is clear, we omit one or more of the
subscripts and write x̂i or x̂ instead.

5.1 Intuition

One challenge we face when designing the mech-
anism is how to minimize the necessary communica-
tion between the participants and the data aggregator.
If one allows the participants and the aggregator to en-
gage in an interactive multiple-party protocol in every
time period, then standard Secure Multi-Party Computa-
tion [10] techniques can be used to ensure that the data
aggregator learns only the sum. However, the require-
ment that all participants must be simultaneously online
and interact with each other perodically renders many

applications impractical, especially large-scale cloud ap-
plications. In contrast, in our solution, after a trusted
setup phase between all participants and the data aggre-
gator, no further interaction is required except for up-
loading a noisy encryption to the data aggregator in each
time period. The trusted setup may be performed by a
trusted third-party or through a standard Secure Multi-
Party protocol.

We now explain the intuition behind our construc-
tion. Suppose that for every time period t ∈ N, the par-
ticipants and the aggregator had means of determining
n+ 1 random shares of 0. In other words, they generate
ρ0,t, ρ1,t, . . . , ρn,t ∈ Zp, such that

n∑
i=0

ρi,t = 0.

Specifically, ρ0,t is the aggregator’s capability for time
t, and participants 1 through n obtain ρ1,t through ρn,t
respectively. Then the following simple idea allows the
aggregator to decrypt the sum of all participants for all
time periods, without learning each individual’s values.

NoisyEnc. To encrypt the value x̂i,t := xi,t + ri,t in
time period t, participant i simply computes the fol-
lowing ciphertext

ci,t = x̂i,t + ρi,t.

AggrDec. At time t ∈ N, the aggregator receives
c1,t, . . . , cn,t. The aggregator may obtain the plain-
text simply by summing up these ciphertexts and its
capability ρ0,t.

V ← ρ0,t +
n∑
i=1

ci,t.

Since
∑n
i=0 ρi,t = 0, the aggregator obtains V =∑t

i=1 x̂i as the desired sum.

The question is how participants and the aggregator
can obtain random shares of 0 without having to interact
with each other in every time period. Our scheme relies
on a trusted setup phase during which each participant
obtains a secret key ski where i ∈ [n], and the aggrega-
tor obtains a capability sk0. Moreover,

∑n
i=0 ski = 0.

Let H denote a hash function (modeled as a random or-
acle) that maps an integer to an appropriate mathemati-
cal group. In every time period t, each participant com-
putes Ri,t = H(t)ski for i ∈ [n], and the aggregator
computes R0,t = H(t)sk0 . Since the ski sum to zero,∏n
i=0Ri,t = 1. We leverage this property to construct

a scheme in which the participants never have to com-
municate with each other after the trusted setup phase.

Furthermore, if Decisional Diffie-Hellman is hard in the
mathematical group in question, we prove that the num-
bers Ri,t are “seemingly” random under the random or-
acle model.

5.2 Basic Construction

Let G denote a cyclic group of prime order p for
which Decisional Diffie-Hellman is hard. Let H : Z →
G denote a hash function modelled as a random oracle.

Setup(1λ). A trusted dealer chooses a random
generator g ∈ G, and n + 1 random secrets
s0, s1, . . . , sn ∈ Zp such that s0 + s1 + s2 + . . .+
sn = 0. The public parameters param := g. The
data aggregator obtains the capability sk0 := s0,
and participant i obtains the secret key ski := si.

NoisyEnc(param, ski, t, x̂). For participant i to encrypt
a value x̂ ∈ Zp for time step t, she computes the
following ciphertext:

c← gbx ·H(t)ski

Becuase we assume that each participant adds noise
to her data before encryption, we use the term x̂ :=
x+ r mod p to denote the randomized plaintext.

AggrDec(param, sk0, t, c1, c2, . . . , cn). Compute

V ← H(t)sk0

n∏
i=1

ci.

Suppose ci = NoisyEnc(param, sk0, t, x̂i) for i ∈
[n]. It is not hard to see that V is of the form

V = g
Pn
i=1 bxi .

To decrypt the sum
∑n
i=1 x̂i, it suffices to com-

pute the discrete log of V base g. When the plain-
text space is small, decryption can be achieved
through a brute-force search. A better approach
is to use Pollard’s lambda method [12] which re-
quires decryption time roughly square root in the
plaintext space. For example, suppose each partic-
ipant’s input is in the range {0, 1, . . . ,∆}. Then
the sum of the participants fall within the range
{0, 1, . . . , n∆}. In this case, decryption would re-
quire

√
n∆ time using Pollard’s method. In other

words, we require that n∆ is polynomial in the
security parameter λ to ensure successful decryp-
tion in polynomial time. Note that the limitation
of small plaintext space is in fact typical of Diffie-
Hellman-based encryption schemes when used as
additively homomorphic encryption schemes, e.g,

El Gamal encryption and the BGN homomorphic
encryption scheme [2].

The careful reader may now question how each par-
ticipant picks noise to add to her data. In Section 6,
we show that it is possible to pick an appropriate
distribution of noise that guarantees differential pri-
vacy and meanwhile ensures the ability to decrypt
with high probability.

Theorem 1. Assuming that the Decisional Diffie-
Hellman problem is hard in the group G and that the
hash functionH is a random oracle, then the above con-
struction satisfies aggregator oblivious security in the
“encrypt-once” model.

We present the proof of Theorem 1 in Appendix A.

Practical performance. In the proposed crypto-
graphic construction, encryption consists of a hash oper-
ation (e.g., SHA-256), two modular exponentiations and
one multiplication in a Diffie-Hellman group. The run-
ning time is dominated by the two modular exponentia-
tions, as the time for computing the hash function and
group multiplication are much smaller in comparison
with the time for an expenentiation. According to bench-
marking numbers reported by the eBACS project [1],
on a modern 64-bit desktop PC, it takes roughly 3 ms
to compute a modular exponentiation using a classic
Diffie-Hellman group modular a 1024-bit prime. Us-
ing high-speed elliptic curves such as “curve25519”,
it takes only 0.3 ms to compute a modular exponen-
tiation. Therefore, encryption can be done in roughly
0.6 ms on a modern computer. Decryption of the aggre-
gate statistics requires taking a discrete log, and if one
uses the brute-force method, it takes one modular expo-
nentiation, that is 0.3 ms to try each possible plaintext.
Therefore, our scheme is practical in situations where
the plaintext space is small. For example, in the appli-
cation described by Rieffel et al. [17], each participant’s
plaintext is a bit indicating her availability for commu-
nication. In this case, with roughly 1000 participants,
decryption can be done in about 0.3 s using the brute-
force approach. We can have a further speed-up if we
adopt Pollard’s lambda method for decryption, reducing
the running time to about

√
n∆, where n is the number

of participants, and assuming each participant’s value
comes from {0, 1, . . . ,∆}.

6 Achieving Distributed Differential Pri-
vacy

6.1 Inituition

The cryptographic construction of Section 5 ensures
that the aggregator learns nothing other than what it al-
ready knows and the noisy statistic revealed during each
time period. Therefore, the aggregator has no direct ac-
cess to each individual’s data. Individual privacy can
be violated indirectly, however, as the revealed statistic
may enable deductions about an individual’s data. In
this section, we show how to build a guarantee of (ε, δ)-
differential privacy into the cryptographic construction.

In previous differential privacy literature, a trusted
aggregator is responsible for releasing statistics. The
trusted aggregator has access to all data, and is charged
with meeting privacy guarantees when releasing data. A
standard procedure for ensuring differential privacy is
for the aggregator to add an appropriate magnitude of
noise before publishing the desired statistic.

In our case, the participants do not trust the aggrega-
tor. Therefore, we cannot reveal the true statistic to the
aggregator. Instead, we must add noise before the aggre-
gator is able to decrypt the statistic. Our approach is to
let the participants be responsible for ensuring the differ-
ential privacy of their own data. Each participant would
add noise to their data before encrypting them. We need
to address the following two challenges when designing
a differentially private mechanism:

• Compromised participants. To ensure the differ-
ential privacy for participating individuals, the re-
vealed statistic must contain random noise r of an
appropriate magnitude. One naive solution is to
rely on a single participant to add an appropriate
magnitude of noise r to her data before submission.
However, this solution is problematic, because this
designated user knows the noise and hence can de-
duce from the output the true aggregated value. In
real-world settings, participants may not trust each
other. In particular, a subset of the participants may
be compromised and collude with the data aggrega-
tor. In the worst case, if every participant believes
that the other n − 1 participants may be compro-
mised and collude with the aggregator, each partic-
ipant would need to add sufficient noise to ensure
the privacy of her own data. The resulting statistic
would accumulate a big error.

If at least γ fraction of the participants are honest
and not compromised, then we can distribute the
noise generation task amongst these participants.
Each participant may add less noise, and as long

as the noise in the final statistic is large enough, in-
dividual privacy is protected. Our scheme assumes
that the participants have an apriori estimate on the
lower bound for γ. However, they need not know
exactly which participants are compromised. Each
participant is supposed to generate noise from a dis-
tribution that depends on γ. Honest participants
will follow this protocol, but the compromised par-
ticipants may reveal their noise to the data aggre-
gator or choose not to add noise. Our construction
guarantees that, with high probability, the revealed
statistic will accumulate sufficient noise from the
honest participants, while keeping the error of the
final statistic small.

• Algebraic constraints. Another challenge is to
work within the algebraic constraints induced by
the cryptographic construction. Most encryption
schemes require that the plaintext be picked from
a group comprised of discrete elements. Therefore,
we need to be able to encode our data and noise
values in a discrete group. Moreover, the crypto-
graphic construction proposed in Section 5 imposes
one more constraint, that the plaintext space must
be small. To work with discrete groups, we choose
to use a symmetric geometric distribution instead
of the more commonly used Laplace distribution.

The symmetric geometric distribution is un-
bounded, so it may overflow the size of the group,
or the size of the plaintext space. Our construction
ensures that the probability of an overflow is small,
so that the aggregator can successfully decrypt the
noisy statistics with high probability.

Next, we introduce some preliminaries on differential
privacy, and then detail our construction.

6.2 Differential Privacy Preliminaries

The differential privacy literature commonly adds
noise sampled from a Laplace distribution to the true
output to ensure individual privacy. However, as pointed
out earlier, because the encryption scheme uses discrete
groups, we need a discrete distribution instead. We
use symmetric geometric distribution, which can be re-
garded as a discrete approximation to the Laplace distri-
bution. The use of geometric distribution for the noise
was pioneered by Ghosh et al. [9]. We now provide
some background on the geometric distribution.

Definition 4 (Geometric Distribution). Let α > 1. We
denote by Geom(α) the symmetric geometric distribu-
tion that takes integer values such that the probability
mass function at k is α−1

α+1 · α
−|k|.

We denote by Geom+(α) the one-sided geometric
distribution that takes positive integer values such that
the probability mass function at k is (α− 1)α−k.

The symmetric geometric distribution Geom(α) can
be viewed as a discrete version of the Laplace distri-
bution Lap(b) (where α ≈ exp(1

b)), whose probabil-
ity density function is x 7→ 1

2b exp(− |x|b). The follow-
ing property of Geom distribution is useful for design-
ing differentially private mechanisms that output integer
values.

Fact 1. Let ε > 0. Suppose u and v are two integers
such that |u− v| ≤ ∆. Let r be a random variable hav-
ing distribution Geom(exp(ε∆)). Then, for any integer
k, Pr[u+ r = k] ≤ exp(ε) · Pr[v + r = k].

Fact 1 suggests that if the targeted statistic f(x) has
sensitivity ∆, then adding geometric noise with magni-
tude proportional to ∆ is sufficient to achieve differen-
tial privacy. As mentioned before, participants do not
trust the aggregator or each other. As a result, we can-
not entrust the aggregator with the task of noise gener-
ation, since revealing the true statistic to the aggregator
clearly violates differential privacy. Neither can we en-
trust any single participant with this task, since other-
wise, this designated participant would be able to learn
true statistic as well.

6.3 Achieving DD-Privacy for Summation

Let x = (x1, . . . , xn) ∈ Dn and r = (r1, . . . rn) ∈
Ωn represent the data and noise values respectively from
all participants in a certain time period. Here we have
D = O = Zp, the cyclic group equipped with ad-
dition modulo p, and Ω = Z. We consider the ag-
gregating function sum : Dn → O, with sum(x) =∑n
i=1 xi mod p. Each participant uses the same ran-

domization function χ(xi, ri) := xi + ri mod p.
For any two elements u, v ∈ Zp, we define |u − v|

to be the smallest non-negative integer s such that u =
v + s mod p or v = u + s mod p. Moreover, when
we add an integer to an element in Zp, we assume that
addition is performed modulo p.

We assume that each participant’s original data falls
within the domain {0, 1, . . . ,∆}, and hence the sensitiv-
ity of sum is ∆ with respect to one participant’s change.
In other words, if a single participant changes her data,
the sum changes by at most ∆. Recall from Fact 1 that if
a Geom(exp(ε∆)) noise is incorporated into the output,
then ε-differential privacy is achieved. In our case, the
participants jointly generate the noise in the final output.
Our goal is to ensure that if at least γn participants are
honest and uncompromised, we will accumulate noise of
a similar magnitude. In this way, we not only guarantee

Algorithm 1: DD-Private Data Randomization Procedure.

Let α := exp(ε∆) and β := 1
γn log 1

δ .
Let x = (x1, . . . xn) denote all participants’ data in a certain time period.
foreach participant i ∈ [n] do

Sample noise ri according to the following distribution.

ri ←

{
Geom(α) with probability β
0 with probability 1− β

Randomize data by computing x̂i ← xi + ri mod p.

differential privacy, but also ensure that the accumulated
noise is bounded in the final output so that the error is
small.

Informally, our mechanism guarantees (ε, δ)-DD-
privacy, and meanwhile ensures small error of roughly
O(∆

ε

√
1
γ) magnitude. As long as a constant fraction

γ of participants are honest, the error term is indepen-
dent of n, the number of participants. In fact, our re-
sult is nearly optimal, since an accumulated noise of
magnitude Θ(∆

ε) is necessary to ensure differential pri-
vacy. Furthermore, consider the extreme case when
γ = O(1

n), i.e., each participant believes that all other
participants may be compromised, or only a constant
number of them are honest. Then, our accumulated
noise would be O(∆

ε

√
1
γ) = O(∆

ε

√
n). This agrees

with our intuition as well, since each participant must
add a symmetric noise of magnitude Θ(∆

ε) in this case
to ensure her privacy. It is not hard to show that the sum
of n independent symmetric noises of magnitude Θ(∆

ε)
results in a final noise of magnitude O(∆

ε

√
n) with high

probability.
Below, we first state the main theorem of this section,

and then describe our construction.

Theorem 2 (DD-Private Procedure with Low Error).
Let ε > 0 and 0 < δ < 1. Suppose each partic-
ipant’s data comes from integers inside an interval of
width ∆ in Zp, where ∆ ≥ ε

3 . Suppose at least γ frac-
tion of the n participants are uncompromised such that
γ ≥ 1

n log 1
δ . Then, there is a randomized procedure

to generate r = (r1, . . . , rn) that is (ε, δ)-DD-private
with respect to sum. Moreover, for all x ∈ (Zp)n,
for all 0 < η < 1 such that log 2

η ≤
1
γ log 1

δ , with
probability at least 1 − η over the random choice of
r, |sum(x) − sum(x̂)| ≤ 4∆

ε

√
1
γ log 1

δ log 2
η , where

x̂ := x̂(r) := (x1 + r1, x2 + r2, . . . , xn + rn) mod p.

Algorithm 1 describes a procedure that achieves the
guarantee in Theorem 2. We give the analysis in
Lemma 1 and Theorem 3.

Lemma 1. Let ε > 0 and 0 < δ < 1. Suppose at least
γ fraction of participants are uncompromised. Then,
the above randomization procedure achieves (ε, δ)-DD-
privacy with respect to sum, for β = min{ 1

γn log 1
δ , 1}.

Proof. Let K be a set of uncompromised users of size
at least γn. Let B be the bad event that none of the
users from K samples from Geom(α). Observe that the
event B is independent from the random variables rK .
It follows that Pr[B] ≤ (1 − β)γn ≤ exp(−βγn). We
use the inequality that 1 − t ≤ exp(−t) for all reals t.
By the choice of β, this probability is at most δ.

Let x,y be neighboring vectors, with each coordinate
having range at most ∆. Let S be some subset of Zp.
Conditioning on the good event B and rK , we know
there is at least one independent copy of Geom(exp(ε∆))
incorporated into the final sum, hence, by Fact 1, we
have Pr[sum(x̂) ∈ S|rK , B] ≤ exp(ε) · Pr[sum(ŷ) ∈
S|rK , B]. Finally, we have

Pr[sum(bx) ∈ S|rK]

= Pr[sum(bx) ∈ S ∩B|rK] + Pr[sum(bx) ∈ S ∩B|rK]

≤ Pr[B|rK] · Pr[sum(bx) ∈ S|rK , B] + Pr[B|rK]

≤ Pr[B|rK] · exp(ε) · Pr[sum(by) ∈ S|rK , B] + Pr[B]

= exp(ε) · Pr[sum(by) ∈ S ∩B|rK] + Pr[B]

≤ exp(ε) · Pr[sum(by) ∈ S|rK] + δ,

hence proving the DD-privacy of the randomization
procedure.

6.4 Analyzing Utility

We next analyze how much the noisy statistic sum(x̂)
deviates from the true output sum(x). Since |sum(x̂)−
sum(x)| ≤ |

∑n
i=1 ri|, it suffices to bound the magni-

tude of Z :=
∑n
i=1 ri.

Theorem 3 (Bounding Error). Let ε > 0 and 0 < δ < 1.
Suppose each participant’s data comes from integers
inside an interval of width ∆, where ∆ ≥ ε

3 . Sup-
pose at least γ ≥ 1

n log 1
δ fraction of the n participants

are uncompromised. Suppose the randomized proce-
dure described in Section 6.3 is run to produce r :=

(r1, . . . , rn) with α := exp(ε∆) and β := 1
γn log 1

δ ≤ 1.
Then, for all 0 < η < 1 such that log 2

η ≤
1
γ log 1

δ , with
probability at least 1− η,

|
n∑
i=1

ri| ≤ 4
√

1
γ

log
1
δ

log
2
η
·
√
α

α− 1
≤ 4∆

ε

√
1
γ

log
1
δ

log
2
η
.

According to Theorem 3, the accumulated error is
bounded by O(∆

ε

√
1
γ) with high probability. Suppose

each participant’s value is picked from the domain D =
{0, . . . ,∆}. Then, the aggregator simply has to try to

decrypt the sum within the range [−O(∆
ε

√
1
γ), n∆ +

O(∆
ε

√
1
γ)] mod p, where p is the size of the mathe-

matical group in use. Decryption will succeed with high
probability.

Theorem 3 is a measure concentration result, and we
prove it by analyzing the moment generating function of
each ri. Observe that as long as there is a constant frac-
tion γ of uncompromised participants, the error bound
is independent of n. Because the variance of Geom(α)
distribution is 2α

(α−1)2 , with high probability the error is
at most a constant factor worse than adding one copy
of Geom(α) to the final answer, which is, in the sense
described in [9], the minimal amount of noise required
to ensure ε-differential privacy. We provide a proof of
Theorem 3 in Appendix B.

Empiricial error. Figure 6.4 shows simulation result
where we compare our scheme against a naive scheme.
In the simulation, we assume that each participant’s in-
put is a bit from {0, 1}. The naive scheme is where
each participant adds independent geometric noise to her
input, and uploads the perturbed data to the aggrega-
tor. The naive scheme ensures differential privacy, but
not aggregator obliviousness. We varied the number of
participants n, and compare the utility of our scheme
and the naive scheme under fixed privacy parameters
(ε = 0.1 and ε = 0.5 respectively). For each value
of n, we compute the mean and standard deviation over
200 runs. γ is set to be 1 in both plots, i.e., assuming no
compromised users. The simulation shows that the error
of our scheme is independent of the number of partici-
pants, thereby confirming our theoretic analysis.

7 Extensions and Variants

Evaluating distributions. Analysts often would like
to study distributions over a population. Our scheme
can be extended to allow the aggregator to periodi-
cally evaluate the (approximate) distribution of n partici-
pants’ data. For example, suppose that the distribution is

known to be a Gaussian, then it suffices for each partici-
pant to encrypt the orginal value as well as its square. It
is not hard to see that the aggregator can then recover the
distribution through the mean and the variance (or sec-
ond moment). For other distributions, the participants
may need to encrypt higher moments as well. In gen-
eral, the more moments each participant encrypts, the
better the aggregator is able to estimate the distribution.

Public access to a statistic. A slight variant on our
scheme enables public access to the sum, but not to indi-
vidual values. In this variant, we simply set the aggrega-
tor capability sk0 = 0, essentially making this capability
public. The n participants receive values sk1, . . . , skn
that add up to zero. Encryption and decryption of ag-
gregate statistcs are done as before. To obtain the aggre-
gate sum, a discrete log must be computed, so again the
plaintext space must be small.

Multiple-level hierarchies. The protocol can be
nested in order to support access control hierarchies,
as described in Rieffel et al. [17], in which entities at
higher levels have access only to statistics pooled over
all leaf nodes under them. In the setup phase, an entity
at level j > 1 is given the sum of the secrets of the en-
tities at the level below. (For j = 1, each entity above
the leaf nodes is given the negative of the sum of the se-
crets of the participants below it, as is done in the basic
construction.)

Product, rather than sum. The basic construction
can be easily modified to support oblivious computa-
tion of a product instead of a sum. Simply encrypt χ
as c ← χ · H(t)ski . Because the plaintext is no longer
in the exponent, this scheme for products does not suffer
from the small plaintext restriction.

8 Open Research Challenges

This paper defined a new problem – how an untrusted
data aggregator can compute aggregate statistics over ci-
phertexts from multiple sources, while preserving each
individual’s privacy in a strong sense. We formally de-
fined privacy notions, and demonstrated a construction
allowing the aggregator to compute the sum statistic for
time series data.

This paper leaves open several problems that are both
intriguing and challenging. We hope to inspire future re-
search efforts in this new direction, especially in solving
the challenges stated below.

Construction supporting large plaintext space. One
limitation of our cryptographic construction is that it

(a) ε = 0.1, δ = 0.001 (b) ε = 0.5, δ = 0.1

Figure 2: Empirical error of our scheme and the naive scheme. The x-axis is the number of participants, and the y-axis shows
the mean and standard deviation of error (in absolute value). Each participant’s data is a bit from {0, 1}. The naive scheme is where
each participant adds independent geometric noise to her input and uploads the perturbed data to the aggregator.

supports only polynomial-sized plaintext spaces for
computing sums. However, when our construction is
modified to support the product statistic, it can readily
support large plaintext spaces. One interesting chal-
lenge, therefore, is to design a scheme that supports
large plaintext spaces for computing sums. A promis-
ing direction is to try other algebraic primitives such as
bilinear groups, Paillier groups, lattices, etc.

Richer statistics. An important goal in this research
direction is the ability to support rich statistics. In gen-
eral, we can imagine that the aggregator may wish to
evaluate an arbitrary polynomial-time function f on the
participants inputs. While recent advances on fully-
homomorphic encryption schemes [8, 18] are encour-
aging, they do not directly apply in our setting, as their
homomorphic operations are performed over ciphertexts
encrypted under the same key. In general, it is inter-
esting and challenging to consider expressive homomor-
phic encryption schemes over ciphertexts encrypted un-
der multiple user keys.

Dynamic joins and leaves. In our scheme, whenever
a participant dynamically joins or leaves the system, we
need to perform the trusted setup phase again. This
makes our scheme more suitable for scenarios where the
set of participants is relatively static over time. An im-
portant open problem is to provide better support for dy-
namic joins and leaves, a capability that is valuable in
systems with high churn.

Node failures. One or more participants may fail to
upload their encrypted values in a certain time period.

Malicious participants may also fail to respond in the
form of a Denial-of-Service attack. When this happens,
our scheme requires that the aggregator is unable to de-
crypt any partial information about the remaining partic-
ipants. This requirement is inherent in our security defi-
nition – had we allowed the aggregator to decrypt partial
information about a subset of the users, then even when
all participants are functioning, a malicious aggregator
is free to use inputs from only a subset of the partici-
pants. We acknowledge that this mode of failure may
not be desirable in some practical settings. Therefore,
one open problem is how to support graceful degrada-
tion in the face of failures. This question is challeng-
ing to answer, as it remains unclear what security notion
one might employ to deal with node failures. The se-
curity definition must somehow reconcile two conflict-
ing goals, the requirement of graceful degradation in the
presence of failures, and the requirement that the aggre-
gator should not learn anything from a subset of the in-
puts.

Acknowledgments

We gratefully thank the anonymous reviewers for in-
sightful comments and feedback.

Dawn Song is partially supported by the National
Science Foundation under Grants No. 0716230,
0448452 and CCF-0424422, and by the Office of Naval
Research under MURI Grant No. N000140911081. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation, or the Office of Naval Research.

References

[1] D. J. Bernstein and T. L. (editors). eBACS:
ECRYPT benchmarking of cryptographic systems.
http://bench.cr.yp.to, accessed 7 March
2011.

[2] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating
2-DNF formulas on ciphertexts. In TCC, 2005.

[3] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and
G. Tsudik. Efficient and provably secure aggrega-
tion of encrypted data in wireless sensor networks.
ACM Trans. Sen. Netw., 5(3):1–36, 2009.

[4] A. Cavoukian, J. Polonetsky, and C. Wolf. Smart-
Privacy for the smart grid: embedding privacy into
the design of electricity conservation. Identity
in the Information Society, 3(2):275–294, August
2010.

[5] C. Dwork. Differential privacy. Invited talk at
ICALP, 2006.

[6] C. Dwork, K. Kenthapadi, F. McSherry,
I. Mironov, and M. Naor. Our data, our-
selves: Privacy via distributed noise generation. In
EUROCRYPT, 2006.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data anal-
ysis. In TCC, 2006.

[8] C. Gentry. Fully homomorphic encryption using
ideal lattices. In STOC, pages 169–178, 2009.

[9] A. Ghosh, T. Roughgarden, and M. Sundarara-
jan. Universally utility-maximizing privacy mech-
anisms. In STOC ’09: Proceedings of the 41st
annual ACM symposium on Theory of computing,
2009.

[10] O. Goldreich. Secure multi-party computa-
tion. http://www.wisdom.weizmann.ac.
il/˜oded/PS/prot.ps.

[11] E. Magkos, M. Maragoudakis, V. Chrissikopou-
los, and S. Gritzalis. Accurate and large-scale
privacy-preserving data mining using the election
paradigm. Data & Knowledge Engineering, 2009.

[12] J. Menezes, P. C. V. Oorschot, and S. A. Vanstone.
Handbook of applied cryptography. CRC Press,
1997.

[13] I. Mironov, O. Pandey, O. Reingold, and S. Vad-
han. Computational differential privacy. In
CRYPTO, 2009.

[14] A. D. Molina, M. Salajegheh, and K. Fu. HIC-
CUPS: health information collaborative collection
using privacy and security. In SPIMACS’09, pages
21–30, 2009.

[15] E. L. Quinn. Privacy and the new energy infras-
tructure. SSRN, Feb 2009.

[16] V. Rastogi and S. Nath. Differentially private ag-
gregation of distributed time-series with transfor-
mation and encryption. In SIGMOD 2010, pages
735–746, 2010.

[17] E. G. Rieffel, J. Biehl, W. van Melle, and A. J.
Lee. Secured histories: computing group statis-
tics on encrypted data while preserving individual
privacy. In submission, 2010.

[18] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikun-
tanathan. Fully homomorphic encryption over the
integers. In EUROCRYPT, 2010.

[19] Z. Yang, S. Zhong, and R. N. Wright. Privacy-
preserving classification of customer data without
loss of accuracy. In In SIAM SDM, 2005.

A Proof of Aggregator Oblivious Security

First, prove that the following intermediate game is
difficult to win, given that Decisional Diffie-Hellman is
hard. Let G be a group of prime order p.

Setup. The challenger picks random generators g, h ∈
G, and random α0, α1, . . . , αn ∈ Zp such that∑
i αi = 0. The challenger gives the adversary

g, h, gα0 , gα2 , . . . , gαn .

Queries. The adversary can make “compromise”
queries adaptively and ask for the value of αi. The
challenger returns αi to the adversary when asked.

Challenge. The adversary speficies an uncompromised
set U ⊆ {0, . . . , n}. The challenger flips a random
coin b. If b = 0, the challenger returns to the adver-
sary {hαi |i ∈ U}. If b = 1, the challenger picks
|U | random elements h′1, . . . , h

′
|U | from the group

G, such that ∏
i∈U

h′i =
∏
i∈U

hαi (3)

The challenger returns h′1, . . . , h
′
|U | to the adver-

sary.

More Queries. The adversary can make more “com-
promise” queries, as in the previous query stage.

Guess. The adversary guesses either b = 0 or b = 1.

The adversary wins the game if she has not asked for
any αi for i ∈ U , and if she successfully guesses b. We
also require that |U | ≥ 2, since otherwise, the distribu-
tions of the outputs of the challenger when b = 0 and
b = 1 are trivially indistinguishable.

Lemma 2. The above game is difficult for computation-
ally bounded adversaries assuming Decisional Diffie-
Hellman is hard for group G.

Proof. By the hybrid argument. Define the follow-
ing sequence of hybrid games. Assume that the set
U specified by the adversary in the challenge stage
is U = {i1, i2, . . . , im}. For simplicity, we write
(β1, . . . , βm) := (αi1 , . . . , αim). In Gamed, the chal-
lenger reveals the following to the adversary:

R1, R2, . . . , Rd, h
βd+1 , . . . , hβm

Here, each Ri(i ∈ [d]) means an independent fresh ran-
dom number, and the following condition holds:∏

1≤i≤d

Ri =
∏

1≤i≤d

hβi

It is not hard to see that Game1 is equivalent to the
case when b = 0. Moreover, Gamem−1 is equivalent to
the case when b = 1.

Due to the hybrid argument, it suffices to show that
adjacent games Gamed−1 and Gamed are computation-
ally indistinguishable. To demonstrate this, we show
that if, for some d, there exists a polynomial-time ad-
versary A who can distinguish between Gamed−1 and
Gamed, we can then construct an algorithm B which can
solve the DDH problem.

Suppose B obtains a DDH tuple (g, gx, gy, T). B’s
task is to decide whether T = gxy or whether T is a
random element from G. Now B randomly guesses two
indices j and k to be the dth and the (d + 1)th values
of the set U specified by the adversary in the challenge
phase. The guess is correct with probability 1

n2 , and in
case the guess turns out to be wrong later, the algorithm
B simply aborts.

Now B picks random exponents {αi}i 6=j,i 6=k. B im-
plicitly sets αk = x and αj = −

∑
i 6=j αi. Notice that

B does not know the values of αj and αk, however,
it knows or can compute the values of gαk = gx and
gαj = (

∏
i 6=j g

αi)−1 = (gx)−1 ·
∏
i 6=j,i 6=k g

αi . B gives
A the tuple (g, h = gy, gα1 , . . . , gαn).

When A asks for any exponent except αj and αk, B
simply returns the corresponding αi value to A. If A
asks for αj or αk, the algorithm B aborts.

In the challenge phase, A submits a set U =
{i1, i2, . . . im}. If j and k are not the dth and the (d+1)th

values of the set U , i.e., if id 6= j or id+1 6= k, the algo-
rithm B aborts.

If id = j and id+1 = k, the algorithm B returns the
following tuple to A.

R1, R2, . . . , Rd−1,

(
∏
i/∈{i1,...,id+1}(g

y)αi ·
∏d−1
i=1 Ri · T)−1, T,

(gy)αid+2 , . . . , (gy)αim

It is not hard to see that if T = gxy , then the above game
is equivalent to Gamed−1. Otherwise, if T ∈R G, then
the above game is equivalent to Gamed. Therefore, if the
adversary A has a non-negligible advantage in guessing
whether it is playing game Gamed−1 or Gamed with B,
then the algorithm B would be able to solve the DDH
problem with non-negligible advantage as well.

Proof of Theorem 1: First, we will make a small
modification to the aggregator oblivious security game.
In the Encrypt queries, if the adversary submits a re-
quest for some tuple (i, x, t∗) where t∗ is the time step
specified in the Challenge phase, the challenger treats
this as a Compromise query, and simply returns the ski
to the adversary. Given ski, the adversary can compute
the requested ciphertext herself. Therefore, this modifi-
cation actually gives more power to the adversary. From
now on, we will assume that the adversary does not
make any Encrypt queries for the time t∗.

We divide our security game into two cases. Let
K ⊆ [n] denote the set of compromised participants (not
including the aggregator). Let K := [n]\K denote the
set of uncompromised participants.

• Case 1. U 6= K or the aggregator capability has
not been compromised. In other words, either there
exists an uncompromised participant or the aggre-
gator capability has not beem compromised. In
this case, it suffices to show that the adversary can-
not distinguish between “real” or “random”, that is,
whether the challenger returns a faithful encryption
of the plaintext submitted in the challenge stage, or
a random tuple picked from the appropriate group.

• Case 2. U = K and the aggregator capability
has been compromised. In this case, we show that
the adversary cannot distinguish whether the chal-
lenger returns a faithful encryption of the plaintext
submitted in the challenge stage, or a random tuple
with the same product.

Given an adversary A who can break the PSA game
with non-negligible probability, we construct an algo-
rithm B who can solve the above intermediate problem
with non-negligible probability.

Setup. B obtains from its challenger C the fol-
lowing tuple g, h, gα0 , gα1 , . . . , gαn . B implicitly
sets α0 to be the data aggregator’s capability, and
α1, . . . , αn to be the secret keys of participants 1
through n respectively. The public params is g.

The algorithm B makes a random guess as to
whether Case 1 or Case 2 will happen, and if the
guess turns out to be wrong, the simulator sim-
ply aborts. Moreover, if B guesses Case 1, then
B will randomly guess a participant (or aggregator)
j∗ ∈ (K\U) ∪ {0} that remains uncompromised
at the end of the game. If the guess turns out to be
wrong later, B aborts.

Let qH denote the total number of oracle queries
made by the adversary A and by the algorithm B
itself. B guesses at random an index k ∈ [qH].
Suppose the input to the kth random oracle query
is t∗. The algorithm B assumes that t∗ will be the
challenge time step. If the guess turns out to be
wrong later, B simply aborts.

Hash Function Simulation. The adversary submits a
hash query for the integer t. B first checks the list
L to see if t has appeared in any entry (t, z). If so,
B returns gz to the adversary. Otherwise, if this is
not the kth query, B picks a random exponent z and
returns gz to the adversary, and saves (t, z) to a list
L. For the kth query, B returns h.

Queries.

• Encrypt. The adversary A submits an En-
crypt query for the tuple (i, x, t). As men-
tioned above, in the modified version of the
game, we ensure that t 6= t∗, since otherwise,
we simply treat it as a Compromise query.
B checks if a hash query has been made on
t. If not, B makes a hash oracle query on t.
As a result, B knows the discrete log of H(t).
Let H(t) = gz , then B knows z. Since B
also knows gαi , B can compute the ciphertext
gx · (gz)αi as gx · (gαi)z .

• Compromise. B forwards A’s query to its
own challenger C, and forwards the answer
αi to A.

Challenge. The adversary A submits a set U and a
time t∗, as well as plaintexts {xi|i ∈ U}. (We
consider the real-or-random version of the security
game.) If t∗ does not agree with the value submit-
ted in the kth hash query, then B aborts.

If B has guessed Case 1 at the beginning of the
game, then it submits the set U ∪ {j∗} in a Chal-
lenge query to its own challenger C. As a result, it
obtains a tuple {Ti}i∈U , Tj∗ .

If B has guessed Case 2, then it simply submits the
set U in a Challenge query to its own challenger.
As a result, it obtains a tuple {Ti}i∈U .

In both cases, the challenger returns the following
ciphertexts to the adversary:

∀i ∈ U : gxi · Ti

More queries. Same as the Query stage.

Guess. If the adversary A guesses that B has returned
a random tuple then B guesses b′ = 1. Otherwise,
B guesses that b′ = 0.

• Case 1. If the challenger C returns to B a faith-
ful Diffie-Hellman tuple ∀i ∈ U : Ti = hαi , and
Tj∗ = hαj∗ , then the ciphertext returned to the ad-
versary A is a faithful encryption of the plaintext
submitted by the adversary. Otherwise, if the chal-
lenger returns to B a random tuple under the prod-
uct constraint, then the ciphertext returned to A is
a random tuple.

• Case 2. If the challenger C returns gives B a faith-
ful Diffie-Hellman tuple ∀i ∈ U : Ti = hαi , then
the ciphertext returned to the adversaryA is a faith-
ful encryption of the plaintext submitted by the ad-
versary. Otherwise, if the challenger returns to B a
random tuple under the product constraint, then the
ciphertext returned toA is a random tuple under the
product constraint.

B Proof of Utility

Lemma 3 (Moment Generating Function). Suppose 1 <
α ≤ 22. For each i, E[exp(hri)] ≤ exp(4αβ

(α−1)2 · h
2),

for |h| < α−1
2
√
α

.

Proof. Let α > 1. Let G be a random variable having
distribution Geom(α) and W be a random variable hav-
ing distribution Geom+(α). It follows that ri and G can
be sampled in the following way.

ri :=
{

0 with probability 1− β
G with probability β

G :=

0 with probability α−1

α+1

W with probability 1
α+1

−W with probability 1
α+1

By standard computation, for h < lnα,
E[exp(hW)] = (α−1)eh

α−eh .

Hence, for |h| < lnα,

E[exp(hG)]

=
α− 1

α+ 1
· e0 +

1

α+ 1
· E[exp(hW)] +

1

α+ 1
· E[exp(−hW)]

=
α− 1

α+ 1
+

1

α+ 1
· (α− 1)eh

α− eh
+

1

α+ 1
· (α− 1)e−h

α− e−h

=
(α− 1)2

α2 + 1− α(eh + e−h)
≤ (α− 1)2

(α− 1)2 − 2αh2
,

where in the last inequality, we assume |h| ≤ 2.5 so
that eh+e−h ≤ 2 + 2h2, and also |h| < α−1√

2α
so that the

denominator remains positive. We next further assume
|h| ≤ α−1

2
√
α

and use the inequality (1 − u)−1 ≤ 1 + 2u
for 0 ≤ u ≤ 1

2 to obtain the following bound.
For |h| ≤ min{lnα, α−1

2
√
α
, 2.5} = α−1

2
√
α

(for 1 < α ≤
22), E[exp(hG)] ≤ 1 + 4α

(α−1)2 · h
2.

Hence, for the same bound on h, we have

E[exp(hri)] = (1− β) · e0 + βE[exp(hG)]

≤ 1− β + β(1 +
4α

(α− 1)2
· h2)

≤ exp(
4αβ

(α− 1)2
· h2),

where in the last inequality, we use 1 + u ≤ exp(u),
for all reals u.

Proof of Theorem 3: Let α := exp(ε∆). From
assumption, ε

∆ ≤ 3 and hence we have 1 < α ≤ 22.

Let Z :=
∑n
i=1 ri and λ := 4

√
log 2

η ·
√
nβ ·

√
α

α−1 .
For positive h satisfying the bound in Lemma 3, we

have

Pr[Z ≥ λ]
≤ exp(−λh)E[exp(hZ)]

≤ exp(−λh+
4αβn

(α− 1)2
· h2)

The first inequality comes from a standard applica-
tion of Markov inequality. The second inequality comes
from the independence of the ri’s and Lemma 3. Set

h := λ(α−1)2

8αβn =

q
log 2

η√
nβ
· α−1

2
√
α
≤ α−1

2
√
α

, where the last
inequality follows from the choice of η.

Hence, it follows that Pr[Z ≥ λ] ≤ exp(− 1
2λh) =

η
2 . Since Z is symmetric, Pr[|Z| ≥ λ] ≤ η.

Hence, it follows that with probability at least 1− η,
|Z| ≤ λ = 4

√
1
γ log 1

δ log 2
η ·
√
α

α−1 .
Finally, the result follows by observing that for all

α > 1,
√
α

α−1 ≤
1

lnα = ∆
ε .

