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1. Introduction

Let x1, . . . ,xn be a sequence of i.i.d. zero-mean random vectors in Rp or Cp,

with a common population covariance matrix Σp. When the population size

p is not negligible with respect to the sample size n, modern random matrix

theory indicates that the sample covariance matrix

Sn =
1

n

n∑
j=1

xjx
∗
j ,

does not approach Σp. Therefore, classical statistical procedures based on an

approximation of Σp by Sn become inconsistent in such high dimensional data

situations.

To be precise, let us recall that the spectral distribution (SD) GA of a m×m

Hermitian matrix (or real symmetric) A is the following measure generated by

the set of its eigenvalues {λAi },

GA =
1

m

m∑
i=1

δλAi ,

where δb denotes the Dirac point measure at b. Let (σi)1≤i≤p be the p eigen-

values of the population covariance matrix Σp. We are particularly interested

in the following SD

Hp := GΣp =
1

p

p∑
i=1

δσi .

Following the point of view of random matrix theory, both sizes p and n will

grow to infinity. It is then natural to assume that Hp weakly converges to a

limiting distribution H when p → ∞. We refer this limiting SD H as the

population spectral distribution (PSD) of the observation model.

The main observation is that under reasonable assumptions, when both di-

mensions p and n become large at a proportional rate say c, almost surely,
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the (random) SD GSn of the sample covariance matrix Sn will converge almost

surely and weakly to a deterministic distribution F , called limiting spectral

distribution (LSD). Naturally this LSD F depends on the PSD H, but in gen-

eral this relationship is complex and has no explicit form. The only exception

is the case where all the population eigenvalues (σi) are unit, i.e. H = δ1; the

LSD F is then explicit known to be the Marčenko-Pastur distribution with an

explicit density function. For a general PSD H, this relationship is expressed

via an implicit equation, see §2, Eq.(2).

An important question here is the recovering of the PSD H (or Hp) from

the sample covariance matrix Sn. This question has a central importance in

several popular statistical methodologies like Principal Component Analysis

([5]), Kalman filtering or Independent Component Analysis which all rely on

an efficient estimation of some population covariance matrices.

Recently, El Karoui [4] has proposed a variational and nonparametric ap-

proach to this problem based on an appropriate distance function using the

Marčenko-Pastur equation (2) below and a large dictionary made with base

density functions and Dirac point masses. The proposed estimator is proved

consistent in a nonparametric estimation sense assuming both the dictionary

size and the number of observations n tend to infinity. However, no result on

the convergence rate of the estimator, e.g. a central limit theorem, is given.

In another important work Raj Rao et al. [7], the authors propose to use a

suitable set of empirical moments, say the first q moments,

α̂k :=
1

p
trSkn =

1

p

p∑
i=1

λki , k = 1, · · · , q, (1)

where (λ`) are the eigenvalues of Sn (assuming p ≤ n). Here a pure parametric

approach is adopted: one assumes that the PSD depends on a set of real
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parameters θ: H = H(θ). To give an typical example, let the PSD be a mixture

of two values a1 and a2 with respective weights t and 1− t (0 < t < 1). For a

given dimension p the population covariance matrix Σp will have approximately

[pt] eigenvalues equal to a1 and [p(1− t)] others equal to a2. In this situation,

the PSD H depends on three parameters a1, a2 and t. For more details on this

example, we refer the reader to Section 1.1 of [7].

Therefore, when n → ∞ and under appropriate normalization, the sample

moments (α̂k) will have a Gaussian limiting distribution with asymptotic mean

and variance {mθ, Qθ} which are functions of the (unknown) parameters θ.

In [7], the authors propose an estimator θ̂R of the parameters by maximizing

the Gaussian likelihood; that is letting α̂ = (α̂j)1≤j≤q,

θ̂R = arg max
θ

[
−1

2

{
(α̂−mθ)

TQ−1
θ (α̂−mθ) + log detQθ

}]
.

Intensive simulations illustrate the consistency and the asymptotic normality

of this estimator. However, their simulation experiments are limited to simplest

situations and no theoretic result are provided concerning the consistency of

the estimator. An important difficulty in this approach is that the functionals

mθ and Qθ have no explicit form.

In a recent work [2], a modification of the procedure in [7] is proposed to

get a direct moments estimator based on the sample moments (α̂j). Compared

to [4] and [7], this moment estimator is simpler and robust. Moreover, the

convergence rate of this estimator (asymptotic normality) is also established.

However, all the aforementioned results assume that the dimension of the

parameters θ is fixed and known. The underlying problem of model selection

has been discussed and illustrated by simulations in [7] and [2], but no for-

mal analysis and consistency result have been proved so far. In this paper,
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we poursuie an approch introduced in [2] based on the cross-validation (CV)

principle. Note that in [2], the CV procedure is based on the likelihood func-

tion. It turns out that the lack of continuity in the likelihood function causes

serious analytic difficulties for a theoretic analysis of the underlying procedure.

The main contribution of the paper is that we have successfully modified the

contrast function together with a regularization step by convolution so that

the final model selection procedure can be analysed rigorously and we prove

its consistency by giving meaningful non asymptotic bounds on the achived

risk. This consistency is obtained in a wide sense where H can be an infinite

mixture of Dirac masses or a continuous distribution with a continuous density

function. An interesting by-product here is that when using a Cauchy kernel

for regularization, the smoothed eigenvalues densities can be evaluated effi-

ciently through Stieltjes transforms which satisfy a Marčenko-Pastur equation

(Section 5).

2. A moment estimator for the population spectral distribution H

We first recall the moment estimator introduced in [2] which serves as a

starting-block for our order selection method. The following three assumptions

define the precise framework of this theory. As explained in Introduction, this

moment estimator originated from [7] and was motivated as an improvement

of a procedure proposed in this reference. Throughout the paper, A1/2 stands

for any Hermitian square root of a non-negative definite Hermitian matrix A.

Assumption (a). The sample and population sizes n, p both tend to infinity,

and in such a way that p/n→ c ∈ (0,∞).
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Assumption (b). There is a doubly infinite array of i.i.d. complex-valued

random variables (wij), i, j ≥ 1 satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4) <∞,

such that for each p, n, letting Wn = (wij)1≤i≤p,1≤j≤n, the observation vectors

can be represented as xj = Σ1/2
p w.j where w.j = (wij)1≤i≤p denotes the j-th

column of Wn.

Assumption (c). The SD Hp of Σp weakly converges to a probability dis-

tribution H as n → ∞. Moreover, the sequence of spectral norms (‖Σp‖) is

bounded.

The Assumptions (a)-(c) are classical conditions for the celebrated Marčenko-

Pastur theorem ([6], see also [1]). More precisely, under these Assumptions,

it holds that almost surely, the empirical SD GSn of Sn, weakly converges,

as n → ∞, to the (nonrandom) generalized Marčenko-Pastur distribution F

which in particular depends on c and H. It is well-known that the LSD F

has a bounded support with a density function f on this support except an

eventual mass at the origin (when c > 1).

Note also that under Assumption (b), the sample covariance matrix takes

the form

Sn =
1

n
Σ1/2
p WnW

∗
nΣ1/2

p .

This representation form and the assumed boundedness of the spectral norms

(‖Σp‖) in Assumption (c) will be explicitly used later in the main Theorem 4.1

Unfortunately, except the simplest case where H ≡ δ1, the above LSD F

has no explicit form. In the general case, F is characterized as follows. Let s(z)
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denote the Stieltjes transform of F∗ := cF + (1− c)δ0 , which is an one-to-one

map defined on the upper half complex plan C+ = {z ∈ C : =(z) > 0}. This

transform satisfies the following fundamental Marčenko-Pastur equation:

z = − 1

s(z)
+ c

∫ t

1 + ts(z)
dH(t) , z ∈ C+. (2)

In [2] (see also [7]), an moment estimator of θ is introduced as follows. Let

(αj) and (βj) be the sequences of the moments of F and H, respectively.

A fundamental consequence of Marčenko-Pastur equation (2) is that for any

N ≥ 1, there is an one-to-one and explicitly known map ΨN which links both

sets of N first moments:

(α1, α2, . . . , αN) = ΨN(β1, β2, · · · , βN). (3)

For the precise definition of ΨN , we refer to the references [2] and [7]. Assume

that the unknown PSD H depend on k parameters θ = (θ1, . . . , θk) belonging

to a k-dimensional real parameter space Θ. Let F (θ) thus denote the associated

LSD and fθ its density function (all density functions are with respect to the

Lebesgue measure throughout the paper). For example, in the discrete case,

we are often considering a family of finite mixture of Dirac masses

H(θ) =
m∑
`=1

t`δa` ,

with a` ≥ 0, t` ≥ 0 and
∑
t` = 1. Here we have k = 2m − 1 parameters (a`)

and (t`). Note that such a PSD H corresponds, for a given dimension p, to

the situation where the population eigenvalues (σi) of the covariance matrix

Σp coincide with the a`’s whose multiplicity number approximately equals to

[t`p].
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In general and given a parametric form H(θ), we can define an explicit map

which links the k parameters to the k first moments of H:

(β1, · · · , βk) = Φ(θ) .

For instance in the previous discrete case, we have simply for any j ≥ 1,

βj =
m∑
`=1

t`a
j
` .

For the general case, we have for an explicit function Ξk = Ψk ◦ Φ

(α1, α2, . . . , αk) = Ξk(θ). (4)

Recalling the empirical moments (α̂j) defined in (1), the moment estimator

θ̂n of the parameter θ is defined to be any solution of the moment equation

(α̂1, . . . , α̂k) = Ξk(θ), θ ∈ Θ. (5)

When the model order k is known and under suitable regularity conditions,

the strong consistency and the asymptotic normality of the moment estimator

θ̂n are established in [2].

3. A cross-validation procedure to estimate the model order

When the model order k, i.e. the number of the parameters which determine

the PSD H, is unknown, we need also to estimate it from the data. A main

difficulty here is that the data, namely the sample eigenvalues (λj) are depen-

dent observations. In this work, we propose an order selection procedure based

on the cross-validation. From now on, we denote by H0 the true PSD to be

estimated, and by F0 and g := f0 the associated LSD and its density function,

respectively.
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Let (Jn) be an increasing sequence of positive integers and {x1, · · · ,xn,

xn+1, · · · ,xm+n} a sample of i.i.d. random vectors as before. We first split it to

a training set X1 = {x1, · · · ,xn}, and a validation set X2 = {xn+1, · · · ,xn+m}.

Let

S1 =
1

n

n∑
j=1

xjx
∗
j , S2 =

1

m

n+m∑
j=n+1

xjx
∗
j ,

be the associated sample covariance matrices, with eigenvaluesD1 = {λ1, · · · , λp}

and D2 = {λ′
1, · · · , λ

′
p}, respectively.

To simplify the presentation, we will hereafter assume that both training

and validation sets have a equal size m = n although the general case with

m 6= n can be handled exactly in the same manner.

For each 1 ≤ k ≤ Jn, let θ̂(k)
n be the moment estimator based on D1, that is

from the learning set X1 and model dimension k, as recalled in §2. Let H(θ̂(k)
n )

be the associated PSD estimate, f
θ̂
(k)
n

the density function of the associated

LSD estimate F
θ̂
(k)
n

. We need to choose an appropriate contrast function K(f)

on the validation set to estimate the order k0 of the true PSD H0. Naturally,

we consider the likelihood method and we may obtain the estimation of k0 as

follows: :

k̂1 = arg max
1≤k≤Jn

p∑
i=1

log f
θ̂
(k)
n

(λ′i) , λ
′

i ∈ D2 . (6)

An additional difficulty happens here because the density functions fθ have no

explicit expressions even when H(θ) is known. To solve this problem, we use

an approximation f̂θ(λ
′) for any given θ and λ′ introduced in [2] and based on

the inversion formula of Stieltjes transform, see also Eq.(13) below.

The likelihood-based selection rule (6) is tested on several simulation ex-

periments leading to relatively satisfying results (see [2]). However, for a the-

oretical analysis of this rule, we have a serious difficulty when some of the
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sample eigenvalues λ′i from the validation set approach the boundary of the

support of the LSD estimate F
θ̂
(k)
n

. Indeed, at these values, the log-likelihoods

log f
θ̂
(k)
n

(λ′i) become unbounded. To overcome such analytical difficulty, we are

led to substitute a smoother contrast function for the likelihood function. A

first idea is to use the following least-squares function

K0
n(f) =

1

2

∫
f(x)2dx− 1

p

p∑
i=1

f(λ′i), λ′i ∈ D2 . (7)

Note that this the usual L2 distance widely used in the literature of nonpara-

metric density estimation.

Actually, this is a valid contrast function since its mean equals

K0(f) = EK0
n(f) =

∫ (
1

2
f(x)2 − f(x)g(x)

)
dx,

and we have

K0(f)−K0(g) =
1

2
‖f − g‖2

2 .

We can then propose a new cross-validation rule:

k̂2 = arg min
1≤k≤Jn

K0
n(f

θ̂
(k)
n

). (8)

Unfortunately, a Marčenko-Pastur density function f lacks smoothness at

the boundary. Indeed, near a boundary point a, f(λ) behaves as
√
|λ− a|

([6],[8]). Therefore, f is not differentiable at boundary. This makes the analysis

of the selection rule (7)-(8) difficult.

Our solution to this problem is to use a smoothed version of f in (7). Let ϕ

be a smooth kernel function. We propose to use the following contrast function

Kn(f) =
1

2

∫
fϕ(x)2dx− 1

p

p∑
i=1

fϕϕ̌(λ′i), λ′i ∈ D2 , (9)
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where fϕ = f ∗ ϕ, fϕϕ̌ = f ∗ ϕ ∗ ϕ̌, ϕ̌(x) = ϕ(−x). This is again a

valid contrast function since simple computations prove that its mean function

K(f) = EKn(f) satisfies

K(f)−K(g) =
1

2
‖fϕ − gϕ‖2

2 .

Finally, here is the cross-validation rule we introduce in this paper

k̂ = arg min
1≤k≤Jn

Kn(f
θ̂
(k)
n

). (10)

With this order estimate, we have

ĝ = f
θ̂
(̂k)
n

, (11)

as the final estimate of the density g = f0 of the true LSD F0.

4. Consistency of the cross-validation procedure

Define the risk function

r(f) =
1

2
‖(f − g) ∗ ϕ‖2

2

and g is the density function of the true LSD F0. The main result of the paper

is the following

Theorem 4.1. Assume that Assumptions (a)-(b)-(c) hold with the matrix

entries {wij} uniformly bounded by a constant κ. Then, for the cross-validation

estimate ĝ in (11) and any ε > 0

(1− ε)E[r(ĝ)] ≤ min
1≤k≤Jn

r(f
θ̂
(k)
n

) + α0
log(Jn)

εnp
,
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where the expectation is conditional to D1 and

α0 = 64a4
(
‖ϕ′‖2 +

p

n
a2‖ϕ′′‖2

)2

,

a = κ sup
p≥1
‖Σ1/2

p ‖.

To explain the content of the above theorem, let us first consider a para-

metric setting. Assume then there is a finite order k0 and a true parameter

value θ0 at this order such that the unknown PSD is H = H(θ0). Therefore,

there is a true LSD density g = fθ0 . According to [2] (see also §2), the moment

estimator θ̂(k0)
n at the order k0 has an asymptotic Gaussian distribution. In

particular,

θ̂(k0)
n − θ0 = OP (

1
√
np

) .

It follows that under reasonable continuity conditions on the map θ 7→ fθ, we

will have

r(f
θ̂
(k0)
n

) = OP (
1

np
).

Therefore, if this true order k0 were known, one would use this value of k0

and would not get, for the minimum risk mink r(f̂θ̂(k)n
), better than the order

(np)−1. The additional logarithmic term in the theorem above is thus a stan-

dard adaptation cost which typically behaves as log(np) when e.g. Jn is some

power of np.

Otherwise, we run into a nonparametric framework, g 6= fθ(k) for any finite-

dimensional parameter θk, and the minimum risk term could not be expected

to be smaller than (np)−α for some α < 1, and the additional logarithmic term

becomes negligible.

The proof of Theorem 4.1 relies on the following concentration inequality

for eigenvalues of random matrices proposed in Delyon [3]. Let ‖x‖ be the
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Euclidean norm on Rd and ‖M‖ the associated operator norm for a d × d

matrix M .

Proposition 4.1. [3] Let B be a p × p deterministic matrix, Z = (Zij),

1 ≤ i ≤ p, 1 ≤ j ≤ n be a matrix of random independent entries, and set

M = 1
n
BZZ∗B∗. Let λ 7→ q(λ) be a differentiable symmetric function on Rp

and define the random variable W = q(λ) = q(λ1, ...λp) where (λ1, ...λp) is the

vector of the eigenvalues of M . Then

E
[
eW−E[W ]

]
≤ exp

(
64p

n
a4
(
γ1 +

p

n
a2γ2

)2
)
, (12)

where

a = ‖B‖ sup
ij
‖Zij‖∞, γ1 = sup

k,λ

∣∣∣∣∣ ∂q∂λk (λ)

∣∣∣∣∣ ,
γ2 = sup

λ
‖∇2q(λ)‖, ∇2q(λ) :=

(
∂2q

∂λj∂λk
(λ)

)
1≤j,k≤p

.

Proof of Theorem 4.1. With the empirical contrast function Kn defined

in (9), we have

R(f) := Kn(f)−Kn(g) =
1

2

∫ {
fϕ(x)2 − gϕ(x)2

}
dx

− 1

p

p∑
i=1

{fϕϕ̌ − gϕϕ̌} (λ′i), λ′i ∈ D2 ,

and

r(f) = E[R(f)] =
∫ (

1

2
fϕ(x)2 − fϕ(x)gϕ(x)− 1

2
gϕ(x)2 + gϕ(x)2

)
dx

=
1

2

∫
(fϕ(x)− gϕ(x))2dx.

We are going to apply Proposition 4.1 to the random variable W = −cR(f)

with some positive constant c > 0 and the sample covariance matrix S2 =
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1
n
Σ1/2
p WnW

∗
nΣ1/2

p . As the entries (wij) of Wn are bounded by κ, we can take

for the constant a

a = κ sup
p≥1
‖Σ1/2

p ‖ .

Next, we have

q(λ′) = q(λ′1, . . . , λ
′
p) = −cR(f) ,

so that

∂q

∂λ′k
(λ′) =

c

p
(f ′ϕϕ̌ − g′ϕϕ̌)(λ′) ,

∂2q

∂λ′j∂λ
′
k

(λ′) =
c

p
(f ′′ϕϕ̌ − g′′ϕϕ̌)(λ′j)1{j=k} .

Hence,

sup
k,λ′
| ∂q
∂λ′k

(λ′)| ≤ c

p
‖f ′ϕϕ̌ − g′ϕϕ̌‖∞ =:

c

p
γ1(f) ,

sup
λ′
‖∇2

λ′‖ ≤
c

p
‖f ′′ϕϕ̌ − g′′ϕϕ̌)‖∞ =:

c

p
γ2(f) ,

where we have denoted the infinite norms by γ1(f) and γ2(f). Applying Propo-

sition 4.1 we obtain for any f

E
[
e−cR(f)+cr(f)

]
≤ exp

(
64p

n
a4c2

(
2γ1(f) +

p

n
a2γ2(f)

)2
)
.

Next we need to bound the two infinite norms by the risk function r(f). Notice

that for any h ∈ L2, one has

‖(h ∗ ϕ̌)′‖∞ =‖h ∗ (ϕ̌′)‖∞ ≤ ‖h‖2‖ϕ′‖2 ,

and similarly

‖(h ∗ ϕ̌)′′‖∞ ≤‖h‖2‖ϕ′′‖2 ,
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and applying these inequalities with h = (f − g) ∗ ϕ, we get

γ1(f) ≤ ‖ϕ′‖2‖fϕ − gϕ‖2 = ‖ϕ′‖2

√
r(f) ,

γ2(f) ≤ ‖ϕ′′‖2‖fϕ − gϕ‖2 = ‖ϕ′′‖2

√
r(f) .

Hence

E
[
e−cR(f)+cr(f)

]
≤ exp

(
64

np
a4c2

(
‖ϕ′‖2 +

p

n
a2‖ϕ′′‖2

)2

r(f)

)

= exp

(
α0

np
c2r(f)

)
,

with

α0 := 64a4
(
‖ϕ′‖2 +

p

n
a2‖ϕ′′‖2

)2

.

This inequality is true for any of the f
θ̂
(k)
n

, k ≤ Jn and we remind the reader

that the expectation is taken over the validation data conditionally to the

training data D1. We recall that k̂ = k̂(ω) is the minimizer of Kn(f
θ̂
(k)
n

) which

is also the minimizer of R(f
θ̂
(k)
n

). If we set

Rk = R(f
θ̂
(k)
n

),

k̂ = k̂(ω) is the random index such that

R
k̂
≤ Rk, k ≤ Jn.

Let m denote the index j which attains the minimum of rj, 1 ≤ j ≤ Jn; this
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is the best possible choice. For any 0 < λ ≤ 1:

λE[r
k̂
] ≤E[λr

k̂
+Rm −Rk̂

]

=rm + E[λr
k̂
−R

k̂
]

≤rm + c−1 logE
[
ec(λrk̂−Rk̂)

]
≤rm + c−1 logE[

∑
j

ec(λrj−Rj)]

≤rm + c−1 log Jn sup
j
ecλrjE[e−cRj ]

≤rm + c−1 log Jn sup
j
e−c(1−λ)rje

α0c
2

np
rj

=rm + c−1 log Jn + c sup
j

(
−(1− λ)rj +

α0c

np
rj

)
,

where 1 ≤ j ≤ Jn. By taking λ = 1− cα0/(np),

(1− cα/(np))E[r
k̂
] ≤ min

j
rj +

log(Jn)

c
.

We take now c = εnp/α0,

(1− ε)E[r
k̂
] ≤ min

j
rj + α0

log(Jn)

εnp
.

The proof is complete.

5. Implementation of the procedure with a canonical choice of ϕ

This section is aimed to describe the practical implementation of our proce-

dure. First of all we need to choose a smoothing kernel ϕ. An amazing and

important fact here is that there is a very natural choice for ϕ and it seems to

us that any other choice will result in considerable computing difficulties for

the proposed cross-validation procedure.
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Indeed, the family of Cauchy densities

Cη(x) =
η

π(x2 + η2)
, x ∈ R,

where η > 0 is a parameter, is intimately related to the Stieltjes transfor-

mation. Given a LSD F with a density function f , let us recall its Stieltjes

transform

sF (z) =
∫ 1

λ− z
dF (λ), z ∈ C+.

It is easy to see by letting z = x+ iη with x ∈ R and η > 0 that

1

π
=sF (x+ iη) =

1

π

∫ η f(λ)

(x− λ)2 + η2
dλ = f ∗ Cη(x).

Since (Cη) is a regular approximation of the unity (for the convolution opera-

tor) when η → 0, we get immediately the following Stieltjes inversion formula:

for any x ∈ R,

f(x) = lim
η→0
=sF (x+ iη) . (13)

Coming back to the smoothed contrast function Kn(f) in (9), there is then

a canonical choice ϕ = Cη for some given width η > 0, since the values of

sF (x+ iη) can be obtained through the Marčenko-Pastur equation (2) for any

given PSD H and the associated LSD F .

Let us summarize all the steps of our cross-validation method as follows:

1. First split the data into the training and validation sets as described

before;

2. Compute then the eigenvalues D1 = {λi} and D2 = {λ′j} from the

associated sample covariance matrices;

3. Choose a small positive value η for the Cauchy kernel ϕ = Cη;

4. Choose Jn as an a priori upper bound for the unknown model order.
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Next for each 0 ≤ k ≤ Jn, we obtain the moment estimator f
θ̂
(k)
n

based on

D1. We then compute its CV contrast value based on D2 using the kernel Cη:

Kn(f
θ̂
(k)
n

) =
1

2

∫
(f
θ̂
(k)
n
∗ Cη)2(x)dx− 1

p

p∑
j=1

f
θ̂
(k)
n
∗ Cη ∗ Čη(λ

′

i),

by observing the following property:

f
θ̂
(k)
n
∗ Cη(x) =

1

π
=ŝF

θ
(k)
n

(x+ iη).

Here, the estimator ŝF
θ
(k)
n

of s is calculated using the equation

s =
∫ 1

t(1− c− czs)− z
dH

θ
(k)
n

(t),

which is another well-known relation on the Stieltjes transforms equivalent to

Eq. 2 (see [1] for more details).

Furthermore as Cη ∗ Čη = Cη ∗Cη = C2η, we have f
θ̂
(k)
n
∗Cη ∗ Čη = f

θ̂
(k)
n
∗C2η.

Therefore substituting 2η for η in the previous computation, we are also able

to evaluate the second term of the contrast function Kn.

Finally, the order estimate k̂ is picked up as the one minimizing these Kn

values.

6. Extension to the case where H is absolutely continuous

In this section, we indicate an extension of our estimation method as well as

the cross-validation procedure for order selection to the case where the PSD

H has a density (with respect to Lebesgues measure):

dH(x) = h(x)dx, x ∈ (0,∞).
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We assume that the unknown density function h is a continuous function, so

that it has an expansion through the family of Laguerre polynomials {ψi(x)}i≥0

([9, Chap.2,4]):

h(x) =
∞∑
i=1

ciψi−1(x)e−x =
∞∑
i=1

ζix
i−1e−x .

The family of coefficients {ci} are solution to the system

ci =
∫
ψi(x)h(x)dx =

i∑
j=1

dij

∫
xjh(x)dx =

i∑
j=1

dijβj, i = 0, 1, . . .

where βj is the jth moment of H and {dij} a family of explicitly known

constants.

Furthermore, for any given truncation order k, we can, as for the discrete

case, obtain estimates {β̂j}1≤j≤k of the first k moments of H through Eqs. (1)

and (3). A moment estimator for the unknown PSD density h thus follows

ĥk(x) =
k∑
i=1

ĉiψi−1(x)e−x, (14)

with

ĉi =
i∑

j=1

dijβ̂j, 1 ≤ i ≤ k.

Next, for selection of the truncation order k, we adapt the previous cross-

validation rule (9)-(10) to the present case. We split a data set to a training

set and a validation set exactly as before. Using the training set, we get, for

any 1 ≤ k ≤ Jn, a density estimate ĥk by the moment method, Eq. (14).

Therefore, the order estimate is defined as

k̂c = arg min
1≤k≤Jn

Kn(ĥk), (15)

where the contrast function Kn is the one defined in (9) using the validation

data.
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7. Simulation results

All the simulations reported in this section use i.i.d. Gaussian variates {wij}

and the following parameters: n = m = 500 and p = 100; η = 0.025 for the

discrete case and η = 0.015 for the continuous case. In the following Is denotes

the s-dimensional identity matrix.

Case of a discrete PSD H of order 2. We consider a true PSD of

order k0 = 2: H0 = tδa1 + (1 − t)δa2 , with t = 0.4 and (a1, a2) = (5, 1). The

population covariance matrix is set to be

Σp =

5I0.4p 0

0 I0.6p

 .
For order selection, we use Jn = 6 and repeat 200 independent experi-

ments. The frequencies of the cross-validation model order estimates k̂ over

the 200 replications are summarized in Table 1. Note that the last line in the

table displays for each class the average δ of first-order Wasserstein distance

W1(H0, H(θ̂(k)
n )) (here for discrete distributions).

Case of a discrete PSD H of order 3. Next we consider a true PSD

of order k0 = 3: H0 = t1δa1 + t2δa2 + (1− t1 − t2)δa3 , with (t1, t2, a1, a2, a3) =

(0.2, 0.4, 10, 5, 1). The population covariance matrix is set to be

Σp =


10I0.2p 0 0

0 5I0.4p 0

0 0 I0.4p

 .
Table 2 summarizes the frequency distribution of the cross-validation order

estimate k̂ from 200 independent replications using Jn = 6, and the averaged

Wasserstein distance δ.
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Case of a continuous PSD H. Here for the true PSD H0 , we con-

sider a Gamma-distribution with shape parameter 3 and scale parameter 1, i.e

h(x) = 1
2
x2e−x.

Based on the cross-validation rule (15), Table 3 summarizes the frequency

distribution of the cross-validation order estimate k̂ from 200 independent

replications using Jn = 5, and the average of L1 distance
∫
|h(x) − ĥ

k̂
(x)|dx

within the classes.

On the influence of the smoothing parameter η. It is not trivial

to define a priori choice of the smoothing parameter η. Here we provide some

empirical findings by running the previous simulation experiments over a range

of values for η.

Tables 4 and 5 display the observed distributions of the order estimate k̂ for

the two discrete cases considered above. Overall, the cross-validation procedure

seem very robust against the choice of η, except for very low values like 0.0004

and 0.0005 where the criterion become to loss efficiency.

Effect of the population to sample ratio p/n.

Here we want to see experimentally the effect of the population to sample

ratio p/n on our procedure. Table 6 reports an experiment with fixed m =

n = 500 while increasing p from 100 to 500 and for the discrete PSD of order

2 above.

One can observe that the method becomes less accurate as p increases. A

possible explanation of this is that when the ratio p/n increases to 1, the pro-

portion of small sample eigenvalues increases near the left edge of the support.

As the density function is highly increasing (its derivative equals infinity at
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the edges) in this area, it is expected that the density estimates used in our

procedure are less accurate.

This phenomenon is also confirmed by the risk bounds given in Theorem 4.1

involving the constant α0 which is increasing with the ratio p/n so that the

estimation problem becomes harder.

8. Discussions

Undoubtedly in statistical problems involving high-dimensional data, we need

to develop new tools to answer the question of model selection. We have pro-

posed in this paper an order selection method using cross-validation in the

specific context of determining the population spectral distribution from the

observed sample covariance matrices.

In the view of the authors, several related issues merit further investiga-

tion. First, estimations based on high moments tend to be fairly unstable and

there is a need for modification of the proposed parameter estimators in order

to reduce this unstability. Secondly, our cross-validation criterion is based on

a kernel smoothing step. How to choose the used smoothing parameter in a

data-driven fashion remains an open and unsolved question. A last point we

would mention is about the concentration inequality (Proposition 4.1) used in

this paper. A restrictive assumption is made on the entries of the considered

random matrices (boundedness of independent elements). Although it is nat-

ural to think about a truncation-like technique to get rid of this restriction,

such results are lacking as far as we know.
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Table 1
Distribution of the model order estimate k̂ and averages of intra-class Wasserstein

distances from 200 replications. n = m = 500, p = 100, η = 0.025 and Jn = 6. True model
order k0 = 2.

k̂ 1 2 3 4 5 6 total
frequency 0 187 5 0 4 4 200

δ - 0.0597 0.1297 - 0.4115 0.3365

Table 2
Distribution of the model order estimate k̂ and averages of intra-class Wasserstein

distances from 200 replications. n = m = 500, p = 100, η = 0.025 and Jn = 6. True model
order k0 = 3.

k̂ 1 2 3 4 5 6 total
frequency 0 0 166 14 15 5 200

δ - - 0.3268 0.3935 0.8084 0.6860

Table 3
Distribution of the model order estimate k̂ for a continuous PSD density and averages of

intra-class L1 distances from 200 replications. n = m = 500, p = 100, η = 0.015 and
Jn = 5. True model order k0 = 3.

k̂ 1 2 3 4 5 total
frequency 0 0 155 7 38 200
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Table 4
Distribution of the model order estimate k̂ based on cross-validation from 200 replications.
n = m = 500, p = 100 with η varying in (0.05, 0.025, 0.0125, 0.0063, 0.001, 0.0004) and

Qn = {1, 2, 3, 4, 5, 6}. True model order k0 = 2.

η \ k̂ 1 2 3 4 5 6 total
0.05 0 168 7 0 14 11 200

0.025 0 187 5 0 4 4 200
0.0125 0 196 4 0 0 0 200
0.0063 0 198 1 0 0 1 200
0.001 0 182 10 3 3 2 200

0.0004 0 113 25 25 21 16 200

Table 5
Distribution of the model order estimate k̂ based on cross-validation from 200 replications.

n = m = 500, p = 100 with η varying in (0.05, 0.025, 0.0125, 0.0063, 0.0005) and
Qn = {1, 2, 3, 4, 5, 6}. True model order k0 = 3.

η \ k̂ 1 2 3 4 5 6 total
0.05 0 0 152 15 26 11 200

0.025 0 0 166 14 15 5 200
0.0125 0 1 165 9 22 3 200
0.0063 0 1 163 10 16 10 200
0.0005 0 7 121 20 34 18 200

Table 6
Distribution of the model order estimate k̂ from 200 replications. n = m = 500, η = 0.025,
Jn = {1, 2, 3, 4, 5, 6} and p varying in {100, 200, 300, 400, 450, 500}. True model order

k0 = 2.

p \ k̂ 1 2 3 4 5 6 total
100 0 187 5 0 4 4 200
200 0 194 0 4 2 0 200
300 0 189 7 1 2 1 200
400 0 159 19 1 19 2 200
450 0 169 9 2 16 4 200
500 3 130 16 7 37 7 200


