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ON THE LEAST SQUARE ESTIMATION OF THRESHOLD
AUTOREGRESSIVE AND MOVING AVERAGE MODELS

By Dong Li, Wai Keung Li and Shiqing Ling

Hong Kong University of Science and Technology
and University of Hong Kong

Dedicated to Professor Howell Tong on the occasion of his 65th birthday

This paper considers the least square estimation and establishes
its asymptotic theory for threshold autoregressive and moving-average
models. Under some mild conditions, it is shown that the estimator
of the threshold is n-consistent and after normalization it converges
weakly to the smallest minimizer of a compound Poisson process,
while the estimators of other coefficients are strongly consistent and
asymptotically multivariate normal. This paper also provides a nu-
merical method to tabulate the limiting distribution of the estimated
threshold in practice. Simulation studies are carried out to assess the
performance of the least square estimation in finite samples.

1. Introduction. Since the seminal work of Tong (1978), the threshold
model has received considerable attention and is extensively investigated by
many researchers. Now it becomes a more or less standard model in nonlin-
ear time series and has been widely used in diverse areas, including biological
sciences, econometrics, environmental sciences, finance, hydrology, physics,
population dynamics, and among others. In comparison with other nonlin-
ear time series models existing in the literature, one of the leading reasons
behind the success of threshold models is that piecewise linear functions can
offer a relatively simple and easy-to-handle approximation to the complex
nonlinear dynamics, perhaps more importantly, it can offer a reasonable
model-interpretation. Threshold models can capture and be capable of pro-
ducing many nonlinear phenomena, such as amplitude dependent frequen-
cies, asymmetric limit cycle, chaos, jump resonance, harmonic distortion
and so on. A fairly comprehensive survey is available in Tong (1990) and a
selective review of the history of threshold models is given by Tong (2011).

Although threshold models have many important applications in practice,
there does not have a complete theory and methodology as compared with
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the linear ARMA models. Our knowledge on threshold models is still de-
veloping, in particular, for the threshold autoregressive and moving average
(TARMA) model.

In the past 30 years or so, the study on the threshold model mainly focuses
on threshold autoregressive (TAR) models and there are numerous existing
literature related to this topic. For example, on the probabilistic structure of
the TAR model, some basic results were given by Chan et al. (1985), Chan
and Tong (1985) and Tong (1990). More related results can be found in
An and Huang (1996), Brockwell et al. (1992), Chen and Tsay (1991), Ling
(1999), Liu and Suskov (1992) and so on. On the other hand, the asymptotic
theory of the least square estimation of the two-regime TAR model was
established by Chan (1993) and Chan and Tsay (1998), see also Petruccelli
(1986) and Qian (1998). The multi-regime TAR model was considered by
Li and Ling (2010). It is worth pointing out that Chan (1993) established
the limiting distribution of the estimated threshold, which is the smallest
minimizer of a two-sided compound Poisson process, when the autoregressive
function is not continuous.

In the development of threshold models, the threshold moving-average
(TMA) model, which can be viewed as the superposition of the random im-
pulses through the notion of thresholds, i.e. on-off feedback controllers, has
been overshadowed by TAR ones. Earlier works on the TMA model mainly
focus on the probabilistic structure, see Brockwell et al. (1992), Liu and
Susko (1992) and Ling (1999). Recently, more works enrich the literature on
TMA models. Ling et al. (2007) and Li, Ling and Tong (2011) considered
the existence, strict stationarity, ergodicity and invertibility of TMA mod-
els. Gooijer (1998) proposed the maximum likelihood estimation when the
driven impulse is normal. Li, Ling and Li (2010) developed the least square
estimation and established the asymptotic theory for general TMA models.
Ling and Tong (2005) studied a quasi-likelihood ratio test with linear MA
model as the null hypothesis against the TMA model as the alternative.
This test was extended to the heteroscedastic case by Li and Li (2008).

Up to date, however, it seems that TARMA models have not attracted
too much attention. There are only a few results available in the literature,
all of which mainly study probabilistic properties and give some sufficient
conditions for the (geometric) ergodicity, strict stationarity and existence
of the solution to TARMA models, although they are not easy to verify in
practice, see Brockwell et al. (1992), Giovanni (2005), Liu and Susko (1992)
and Ling (1999). Recently, Chan and Tong (2010) gave a sufficient condition
for the invertibility of nonlinear ARMA models. Li and Li (2011) proposed
a quasi-likelihood ratio test for ARMA models against their threshold ex-



THRESHOLD ARMA MODELS 3

tensions. To the best of our knowledge, the estimation of TARMA models
has not been considered yet. This is one of our motivations in this paper.

In the application, Ghaddar and Tong (1981) applied a TAR(11) model to
fit the annual sunspot data of the period 1700—1979, see also Tong (1990,
page 420), and Gooijer (1998) used a TMA(17) to fit the quarterly US real
GNP data covering the period 1947.I—1982.IV. More real examples can
be found in Tong (1990), Tsay (1989) and so on. These examples have a
common feature that the order of the model is too high. From a practical
point of view, TARMA models should have more advantages over pure TAR
or TMA models because they can provide a parsimonious form just like
linear ARMA models. This motivates us to study further TARMA models.
As a natural generalization of pure TAR and TMA models, it is necessary to
establish a unified theory for estimation, which is our another motivation.

In this paper, we shall study the least square estimation (LSE) of TARMA
models and establish its asymptotic theory. Under some mild conditions,
it is shown that the estimator of the threshold is n-consistent and after
normalization it converges weakly to the smallest minimizer of a two-sided
compound Poisson process, while the estimators of other coefficients are
strongly consistent and asymptotically multivariate normal. This paper also
proposes a numerical method to tabulate the limiting distribution of the
estimated threshold in practice. Simulation studies are carried out to assess
the performance of the least square estimation in finite samples.

The remainder of the paper is organized as follows. Section 2 introduces
the TARMA model and presents its LSE. Section 3 addresses some assump-
tions and states main results. Section 4 proposes a numerical approach on
simulating the limiting distribution of the estimated threshold. Simulation
studies are reported in Section 5 and some concluding remarks are given in
Section 6. All proofs of Theorems are left in the Appendix.

Throughout the paper, some symbols are conventional. C is a positive
constant, which may be different in different places. a ∨ b ≡ max{a, b} for
some a and b. The summation

∑0
i=1 ≡ 0 and the product

∏0
i=1 ≡ 1. I(·) is an

indicator function. Rk is the Euclidean space of dimension k and ‖·‖ denotes
the Euclidian norm. op(1) (Op(1)) denotes a sequence of random numbers

converging to zero (bounded) in probability and d−→ denotes convergence in
distribution.

2. Model and least square estimation. A time series {yt, t = 0,±1, ...}
is said to be a TARMA model with order (p1, p2, q1, q2), abbreviated to
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TARMA(p1, p2, q1, q2), if it satisfies

yt =





φ10 +
p1∑
i=1

φ1iyt−i + εt +
q1∑

i=1
ψ1iεt−i, if yt−d ≤ r,

φ20 +
p2∑
i=1

φ2iyt−i + εt +
q2∑

i=1
ψ2iεt−i, if yt−d > r,

(2.1)

where {εt} is a sequence of independent and identically distributed (i.i.d)
random variables with zero mean, r ∈ R, pi and qi are known nonnegative
integers and d is a positive integer. Here, r is called the threshold parameter
and d is the delay variable. When q1 = q2 = 0, model (2.1) reduces to a pure
TAR model. When p1 = p2 = 0, model (2.1) is a pure TMA model. If all
φ1i = φ2i and ψ1i = ψ2i, then model (2.1) becomes a linear ARMA model.

Without loss of generality, we assume that there exist two finite constants
r and r̄ such that r ∈ [r, r̄] since model (2.1) reduces to a linear ARMA model
when r = ±∞, which is not of our interest here. In addition, d is an unknown
parameter to be estimated and its true value is d0 with 1 ≤ d0 ≤ D0, where
D0 is a known positive integer. Let θ0 = (λ′0, r0, d0)′ be the true value of
the parameter θ = (λ′, r, d)′ ≡ (φ′1,ψ′

1,φ
′
2,ψ

′
2, r, d)′ with φi = (φi0, ..., φipi)

′

and ψi = (ψi1, ..., ψiqi)
′ for i = 1, 2. The parameter space Θ is denoted by

Θ = Λ× [r, r̄]× {1, ..., D0}, where Λ is a subset of Rp1+p2+q1+q2+2.
Assume that {y1, ..., yn} is a sample from model (2.1) with sample size n.

Given the initial value Y ∗
0 ≡ {ys : s ≤ 0}, the sum of square errors function

Ln(θ) is defined as

Ln(θ) =
n∑

t=1

ε 2
t (θ),

where

εt(θ) =yt −
(
φ10 +

p1∑

i=1

φ1iyt−i

)
I(yt−d ≤ r)−

(
φ20 +

p2∑

i=1

φ2iyt−i

)
I(yt−d > r)

−
( q1∑

i=1

ψ1iεt−i(θ)
)
I(yt−d ≤ r)−

( q2∑

i=1

ψ2iεt−i(θ)
)
I(yt−d > r).

The minimizer θ̂n = (λ̂′n, r̂n, d̂n)′ of Ln(θ) is called the LSE of θ0, that is,

θ̂n = arg min
θ∈Θ

Ln(θ).

Note that Ln(θ) is discontinuous in r and d. The way to get θ̂n is as follows.
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Algorithm A
Step A.1. For each fixed r ∈ R and d ∈ {1, ..., D0}, we minimize Ln(θ) and

get its minimizer λ̂n(r, d) and minimum L∗n(r, d) ≡ Ln(θ)|
λ=λ̂n(r,d)

.
Step A.2. Since L∗n(r, d) only takes on finite many possible values, we can

get the minimizer (r̂n, d̂n)′ of L∗n(r, d) by grid search over the set of
order statistics of {y1, ..., yn} and {1, ..., D0}.

Step A.3. Use a plug-in method, one can finally get λ̂n(r̂n, d̂n) and θ̂n.

Generally, there exist infinitely many r such that Ln(·) attains its global
minimum. One can choose the smallest of these r’s as an estimator of the
threshold. According to the procedure for obtaining θ̂n, it is not hard to
show that θ̂n is the LSE of θ0.

In practice, the initial value Y ∗
0 is not available and hence we have to re-

place it by some constants, e.g. Y ∗
0 = x ≡ {x1, ...}. Since supθ∈Θ ‖Ht,j(θ)‖ =

O(ρj) a.s. by Theorem A.1 in Ling and Tong (2005) under some assumptions,
where Ht,j(θ) is defined in (3.1) below, we can show that

sup
θ∈Θ

∣∣∣ε2
t (θ)− ε2

t (θ)|Y ∗0 =x

∣∣∣ = O(ρt) a.s.

for any given x and some ρ ∈ (0, 1). Thus, the initial value will not affect
the asymptotic properties of θ̂n. For simplicity, in what follows, we assume
that Y ∗

0 is from model (2.1). In this case, εt(θ0) = εt.

3. Main results. Let p = p1 ∨ p2 and q = q1 ∨ q2. In what follows,
Θ is assumed to be compact. We first give a sufficient condition for the
invertibility of model (2.1). This condition is easy to verify in practice and
similar to that of TMA models in Ling and Tong (2005).

Assumption 3.1.
∑q

j=1 |ψij | < 1, where ψij = 0 for j > qi, i = 1, 2.

If ψ1j = ψ2j , j = 1, ..., q, then the invertible region of model (2.1) is
the same as that of the ARMA model when q = 1, but is smaller than
that of ARMA model when q > 1. This assumption can be relaxed when
q > 1. A weaker condition available can be found in Chan and Tong (2010).
Under Assumption 3.1 and the condition that {yt} is strictly stationary with
E|yt| < ∞, by Theorem A.2 in Ling and Tong (2005), the residual εt(θ) has
the following representation:

εt(θ) =
∞∑

j=0

[e′Ht,j(θ)e]
{
yt−j −

(
φ10 +

p1∑

i=1

φ1iyt−i−j
)
I(yt−d−j ≤ r)

− (
φ20 +

p2∑

i=1

φ2iyt−i−j
)
I(yt−d−j > r)

}
,
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where e = (1, 0, ..., 0)′q×1 and

Ht,j(θ) =
j∏

i=1

[Ψ2 + (Ψ1 −Ψ2)I(yt−d−i+1 ≤ r)], j ≥ 0,(3.1)

with the convention
∏0

i=1 = Iq, the identity matrix of size q, and

Ψi =

(
−ψi1 · · · −ψiq

Iq−1 0

)
, i = 1, 2.(3.2)

The following result states the strong consistency of the estimator θ̂n.

Theorem 3.1. Suppose that (i) Assumption 3.1 holds, (ii) {yt} satisfy-
ing (2.1) is strictly stationary and ergodic with Ey2

t < ∞, (iii) φ10 6= φ20

or ψ10 6= ψ20 and (iv) εt has a bounded, continuous and strictly positive
density on R with Eεt = 0 and Eε2

t < ∞. Then, θ̂n → θ0 a.s. as n →∞.

The condition (iii) in Theorem 3.1 is required to ensure the identification
of the threshold. The strong consistency of θ̂n holds regardless if the au-
toregressive function is continuous or not. This result is similar to that of
TAR models in Chan (1993) and Chan and Tsay (1998) and of TMA models
in Li, Ling and Li (2010). From Theorem 3.1, we know that d̂n equals d0

eventually. Thus, without loss of generality, we assume that d is known for
the remainder and it is deleted from θ, i.e. θ = (λ′, r)′ and Θ is modified,
accordingly. Denote λ̂n(r) = λ̂n(r, d0).

To obtain the convergence rate of r̂n and the uniformly asymptotic nor-
mality of λ̂n ≡ λ̂n(r̂n), we need another four assumptions as follows.

Assumption 3.2. {εt} is a sequence of i.i.d. random variables with zero
mean and Eε4

t < ∞. The random variable ε1 has a bounded, continuous and
positive density fε on R.

Assumption 3.3. {yt} is strictly stationary with Ey4
t < ∞.

Let Zt = (yt, ..., yt−(p∨d)+1, εt, ..., εt−q+1)′ with {εt, ..., εk} = ∅ if k > t.
Then we can rewrite model (2.1) as a Markovian vectorial representation,
see equation (3) in Giovanni (2005) or (2.1)-(2.2) in Liu and Susko (1992),
that is, {Zt} is a Markov chain. Denote its l-step transition probability by
P l(z, A), where z ∈ R(p∨d)+q and A is a Borel set.

Assumption 3.4. {Zt} admits a unique invariant measure Π(·) and is
V -uniformly ergodic with V (z) = 1 + ‖z‖.
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Actually, Assumption 3.4 is stronger than geometric ergodicity. For the
notion of the V -uniform ergodicity, see Meyn and Tweedie (1993, Chapter
16). If the initial value Z0 is from the distribution Π(·), then Assumption
3.4 implies that {yt} is strictly stationary. For a pure TAR model, it is
relatively easy to find a sufficient condition on the coefficients to ensure that
Assumption 3.4 holds. See Chan (1989, 1993) and Chan and Tong (1985).
While for a pure TMA model Assumption 3.4 is not necessary since the
expression of the strictly stationary and ergodic solution to model (2.1) is
available and we can find other weaker conditions to substitute it in studying
the convergence rate of r̂n, see Li, Ling and Tong (2011) and Li, Ling and Li
(2010). As is well known, it is very hard to verify the V -uniform ergodicity
for general nonlinear time series models in practice. For TARMA model
(2.1), if Assumption 3.2, the conditions

∑p
j=1 |φij | < 1 and r 6= 0 hold with

φ10 = φ20 = 0, where φij = 0 for j > pi, i = 1, 2, then there exists a function

V1(Zt) = max
0≤i≤(p∨d)−1

{ρi
0|yt−i|}+

q−1∑

j=0

Lj |εt−j |+ 1

such that E[V1(Zt)|Zt−1 = z] ≤ ρ0V1(z) + [1 + (L0 + 1)E|ε1|], which implies
that {Zt} is V1-uniformly ergodic, where constants ρ0 and {Li} satisfy

ρ0 =
(

max
i=1,2

p∑

j=1

|φij |
)1/p

∈ (0, 1),

ρ0Lq−1 ≥ b ≡ max
i=1,2

max
1≤j≤q

|ψij |,
ρ0Li−1 ≥ Li + b, for i = 1, ..., q − 1.

It is easy to show that there exist positive constants c1 and c2 such that
c1V (z) ≤ V1(z) ≤ c2V (z). Thus, {Zt} is also V -uniformly ergodic by the
definition of V -uniform ergodicity. Unfortunately, for other cases, how to
verify Assumption 3.4 for TARMA models is still an open problem since
the irreducibility and T-continuity of {Zt} has not been solved. For more
details, see Giovanni (2005).

Assumption 3.5. There exist nonrandom vectors w = (1, w1, ..., wp)′ ∈
Rp with wd = r0 and a ∈ Rq such that (φ10 − φ20)′w + (ψ10 − ψ20)′a 6= 0,
where φij0 = 0 for j > pi and ψij0 = 0 for j > qi, i = 1, 2.

In Assumption 3.5, wd may not be a component of w if d > p. In this case,
Assumption 3.5 is equivalent to the condition ‖φ10−φ20‖+‖ψ10−ψ20‖ > 0.
The latter is necessary and sufficient for the identification of the threshold.
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When p = 0, that is, TARMA model (2.1) reduces to a pure TMA model,
Assumption 3.5 is identical to Assumption 2.2 in Li, Ling and Li (2010)
since (ψ10 − ψ20)′a 6= 0 for some a ∈ Rq implies that ‖ψ10 − ψ20‖ > 0 and
in turn r̂n has an n-convergence rate. When q = 0, e.g., model (2.1) reduces
to a pure TAR model, Assumption 3.5 is the same as Condition 4 in Chan
(1993), which implies that the autoregressive function is not continuous over
the hyperplane yd = r0 so that r̂n has an n-convergence rate. Assumption
3.5 plays a similar role in the convergence rate of r̂n for TARMA models.

For TAR models, from the results in Chan (1993) and Chan and Tsay
(1998), we know that the convergence rate of r̂n heavily depends on the
continuity of the autoregressive function over the hyperplane yd = r0. For
TARMA models, however, the convergence rate of r̂n depends not only on
the continuity of the autoregressive function, but also on the coefficients
in the moving-average part. That is, the continuity of the autoregressive
function is not a unique determinant for n-convergence rate of r̂n. This
point is extremely different from TAR models.

If Assumption 3.5 is violated and the threshold can be identified, then
d ≤ p and model (2.1) becomes

yt = φ0 +
p∑

i=1
i6=d

φiyt−i + φ−d (yt−d − r)− + φ+
d (yt−d − r)+ +

q∑

i=0

ψiεt−i,(3.3)

where φi, ψj , φ−d and φ+
d are the parameters, ψ0 = 1, (y)− = min{y, 0}

and (y)+ = max{y, 0}. Model (3.3) can be regarded as an extension of the
TAR model of Chan and Tsay (1998) when the autoregressive function is
continuous, under which r̂n has a

√
n-convergence rate like other coefficients

and is asymptotically normal. We conjecture that similar results hold for
model (3.3) under some suitable conditions. Here, we will not pursue this
problem.

Theorem 3.2 below shows the convergence rates of r̂n and the uniformly
asymptotic normality of λ̂n(r̂n).

Theorem 3.2. If Assumptions 3.1-3.5 hold, then

(i). n(r̂n − r0) = Op(1),

(ii).
√

n sup
|r−r0|≤B/n

∥∥λ̂n(r)− λ̂n(r0)
∥∥ = op(1)

for any fixed constant B ∈ (0,∞). Furthermore,
√

n(λ̂n − λ0) =
√

n(λ̂n(r0)− λ0) + op(1) d−→ N (0, σ2Σ−1) as n →∞,

where σ2 = Eε2
1 and Σ = E[(∂εt(θ0)/∂λ)(∂εt(θ0)/∂λ′)].
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Generally, since σ2 and Σ are unknown, we estimate them consistently by

σ̂2
n =

1
n

n∑

t=1

ε 2
t (θ̂n) and Σ̂n =

1
n

n∑

t=1

∂εt(θ̂n)
∂λ

∂εt(θ̂n)
∂λ′

.

Using these estimators, one can easily construct approximate confidence
regions for the coefficient parameters in TARMA models in terms of the
limiting distribution in Theorem 3.2. For example, an approximate (1− α)
confidence region for the coefficient vector λ is obtained as

{
λ : (λ̂n − λ)′Σ̂n(λ̂n − λ) ≤ σ̂2

nχ2
p1+p2+q1+q2+2(1− α)/n

}
,

where χ2
k(1−α) is the 100αth percentile of the χ2-distribution with k degrees

of freedom.
To study the limiting distribution of r̂n, we need to consider the following

profile sum of square errors function:

L̃n(z) = Ln
(
λ̂n(r0 +

z

n
), r0 +

z

n

)− Ln
(
λ̂n(r0), r0

)
, z ∈ R.

It is not hard to show that L̃n(z) can be approximated in D(R), the space
of all cadlag functions on R being equipped with the Skorokhod metric, by

℘n(z) =I(z < 0)
n∑

t=1

ζ1tI(r0 +
z

n
< yt−d ≤ r0)

+ I(z ≥ 0)
n∑

t=1

ζ2tI(r0 < yt−d ≤ r0 +
z

n
),

where

ζ1t =
{ ∞∑

j=0

[
e′Ht+j,j(θ0)e

]2 }
δ2
t + 2

{ ∞∑

j=0

εt+j
[
e′Ht+j,j(θ0)e

] }
δt,

ζ2t =
{ ∞∑

j=0

[
e′Ht+j,j(θ0)e

]2 }
δ2
t − 2

{ ∞∑

j=0

εt+j
[
e′Ht+j,j(θ0)e

] }
δt

(3.4)

and

δt = (φ100 − φ200) +
p∑

i=1

(φ1i0 − φ2i0)yt−i +
q∑

i=1

(ψ1i0 − ψ2i0)εt−i.

Let Fk(·|r0) be the conditional distribution of ζk,d+1 given y1 = r0 for
k = 1, 2. We define a two-sided compound Poisson process ℘(z) as follows,

{℘(z), z ∈ R} = {℘(1)(−z)I(z < 0) + ℘(2)(z)I(z ≥ 0), z ∈ R},(3.5)
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where {℘(1)(z), z ≥ 0} and {℘(2)(z), z ≥ 0} are two independent Poisson
processes with ℘(1)(0) = ℘(2)(0) = 0 a.s., with the same jump rate π(r0) > 0,
where π(x) is the density of y0, and with the jump distributions F1(·|r0)
and F2(·|r0), respectively. Clearly, ℘(z) goes to +∞ a.s. when |z| tends to
infinity since

∫
xFk(dx|r0) > 0. Thus, there exists a unique random interval

[M−,M+) on which the process {℘(z), z ∈ R} attains its global minimum
a.s.. Here, we work with the left continuous version for ℘(1) and the right
continuous version for ℘(2). Now, we can state our another main result as
follows.

Theorem 3.3. Suppose Assumptions 3.1-3.5 hold. Then n(r̂n− r0)
d−→

M− and n(r̂n − r0) is asymptotically independent of
√

n(λ̂n − λ0) which is
always asymptotically normally distributed.

Now, we give some remarks on (3.4) to end this section. When q = 0,
model (2.1) is a pure TAR model, that is, all ψij = 0. Thus, (3.4) reduces
to ζ1t = δ2

t +2εtδt and ζ2t = δ2
t −2εtδt with δt = (φ100−φ200)+

∑p
i=1(φ1i0−

φ2i0)yt−i. If the condition yt−d = r0 is given, then this coincides with the
jump sizes of the compound Poisson process used in Chan (1993). When
p = 0, model (2.1) reduces to a pure TMA model and (3.4) does not change
except for δt with δt = (φ100−φ200)+

∑q
i=1(ψ1i0−ψ2i0)εt−i. This is identical

to those in Li, Ling and Li (2010).

4. Numerical Implementation of M−. In this section, we describe
how to simulate the distribution of M−. From (3.5), we know that two factors
determine the density of M−, that is, the jump rate π(r0) and the jump
distributions F1(·|r0) and F2(·|r0). We can simulate M− via simulating the
compound Poisson process (3.5) on the interval [−T, T ] for any given T > 0
large enough since the expectations of the jumps are positive. Modifying
Algorithm 6.2 in Cont and Tankov (2004, pp.174) for a one-sided compound
Poisson process, we have an algorithm for a two-sided compound Poisson
process as follows:

Algorithm B
Step B.1. Generate two i.i.d. Poisson random variables N1 and N2 with

the parameter π(r0)T as the total number of jumps on the intervals
[−T, 0] and [0, T ], respectively.

Step B.2. Given N1 and N2, generate {U1, · · · , UN1} and {V1, · · · , VN2} as
two independent jump time sequences , where {Ui} i.i.d.∼ U [−T, 0] and
{Vi} i.i.d.∼ U [0, T ]. Here, U [a, b] denotes the uniform distribution on the
interval [a, b].
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Step B.3. Given N1 and N2, generate {Y1, · · · , YN1} and {Z1, · · · , ZN2}
as two independent jump-size sequences from F1(·|r0) and F2(·|r0),
respectively.

For z ∈ [−T, T ], the trajectory of (3.5) is given by

℘(z) = I(z < 0)
N1∑

i=1

I(Ui > z)Yi + I(z ≥ 0)
N2∑

j=1

I(Vj < z)Zj .(4.1)

Then, we take the smallest minimizer of ℘(z) on [−T, T ] as M−. By repeating
the above algorithm B times and using the nonparametric kernel method,
we can get the density of M− numerically.

In the above algorithm, the key step is how to draw the jump-size se-
quences {Yi} and {Zi} from F1(·|r0) and F2(·|r0) in Step B.3, respectively.
Note that ζk,d+1’s in (3.4) are sums of infinite series and ‖Hd+1+j,j(θ0)‖ =
O(ρj) a.s., we truncate them and use the finite-term sums to approximate
them as follows:

ζ
(m)
k,d+1 =

{ m∑

j=0

(
e′

j∏

i=1

[Ψ20 + (Ψ10 −Ψ20)I(yi+1 ≤ r0)]e
)2}

δ 2
d+1

+ 2(−1)k+1
{ m∑

j=0

εd+1+j

(
e′

j∏

i=1

[Ψ20 + (Ψ10 −Ψ20)I(yi+1 ≤ r0)]e
)}

δd+1,

where Ψi0 is defined in (3.2) with ψij ’s replaced by true values ψij0’s, since
the remaining terms are negligible when m is large enough, where ρ ∈ (0, 1).
Then,

Fk(x|r0) ≈ P (ζ(m)
k,d+1 ≤ x|y1 = r0)

=
∫

P (ζ(m)
k,d+1 ≤ x|y1 = r0,Z0 = z)

π(r0|z)
π(r0)

G(dz)

≈
K∑

i=1

P (ζ(m)
k,d+1 ≤ x|y1 = r0,Z0 = zi)

π(r0|zi)∑K
l=1 π(r0|zl)

by the property of conditional expectation, strong law of large numbers (i.e.,
K →∞) and E[π(r0|Z0)] = π(r0), where Z0 = (y0, ..., y1−(p∨d), ε0, ..., ε1−q)′,
zi ∈ R(p∨d)+q, G(·) is the distribution of Z0, π(r0|z) is the conditional density
of y1 given Z0 = z. Clearly, there has a function h(·, ·) such that model (2.1)
can be written as yt = εt + h(Zt−1,θ0). Given y1 = r0 and Z0 = z, we
have ε1 = r0 − h(z,θ0) and π(r0|z) = fε(r0 − h(z,θ0)). Let Fε(·) be the
cumulative distribution function of εt. When θ0, π(r0), Fε(·) and G(·) are
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known, the following algorithm describes how to sample Y1 from F1(x|r0)
approximately.

Algorithm C:
Step C.1. Choose sufficiently large positive integers m and K and then

draw a sample {z1, ..., zK} from G(·).
Step C.2. For fixed i, generate an i.i.d. sequence {εt : 2 ≤ t ≤ d + 1 + m}

from Fε(·) and iterate model (2.1) to generate {yt : 2 ≤ t ≤ d+1+m}
with the initial value y1 = r0 and Z0 = zi. Here, the initial value of
ε1 is obtained by ε1 = r0−h(zi,θ0). And use these values to calculate
ζ
(m)
1,d+1 and denote its value as ξ

(i)
1,d+1.

Step C.3. Calculate π(r0|zi)’s and generate a random variable U such that
P (U = i) = π(r0|zi)/[

∑K
l=1 π(r0|zl)] for i = 1, ..., K, conditionally

independent of {yt, t ≥ 2} and {εt, t ≥ 2}.
Step C.4. Obtain Y1 = ξ

(U)
1,d+1.

It is not hard to prove that the distribution of Y1 is F1(x|r0) approximately.
Similarly, we can sample Z1 from F2(x|r0) approximately. By Algorithm
B and C, we can get an M̃

(m)
K as an approximation of M− by Theorem 16

in Pollard (1984, pp. 134) and Lemma A.3 in Seijo and Sen (2010). Without
loss of generality, in what follows, we regard M̃

(m)
K as M−.

In practice, however, since only one sample X ≡ {y1, ..., yn} is available,
we can use it to estimate θ0 and π(r0) a.s., denoting the estimators as θ̂n

and π̂(r̂n), respectively, where π̂(·) is the kernel density estimator of π(·),
and calculate the residuals {ε̂t : k0 + 1 ≤ t ≤ n}, where k0 = max(p, d, q).
Based on the residuals, we construct the estimators F̂ε(·) and f̂ε(·) of Fε(·)
and fε(·) such that ‖F̂ε−Fε‖∞ → 0 and f̂ε → fε a.s. as n →∞. Denote the
conditional measure PX(·|A) ≡ P (·|A, X).

Algorithm D:
Step D.1. Set ẑi = (yi, ..., yi−(p∨d)+1, ε̂i, ..., ε̂i−q+1)′ for i = k0 + 1, ..., n.
Step D.2. For fixed i, generate a conditionally i.i.d. sequence {ε̃t : 2 ≤ t ≤

d + 1 + m} from F̂ε and iterate model (2.1) to generate {ỹt : 2 ≤ t ≤
d+1+m} with the initial value y1 = r̂n and Z0 = ẑi. Here, the initial
value of ε1 is obtained by ε1 = r̂n − h(ẑi, θ̂n). And use these values to
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calculate ζ̃
(m)
1,d+1 and denote its value as ξ̃

(i)
1,d+1, where

ζ̃
(m)
1,d+1 =

{ m∑

j=0

(
e′

j∏

i=1

[Ψ̂2n + (Ψ̂1n − Ψ̂2n)I(ỹi+1 ≤ r̂n)]e
)2}

δ∗ 2
d+1

+ 2
{ m∑

j=0

ε̃d+1+j

(
e′

j∏

i=1

[Ψ̂2n + (Ψ̂1n − Ψ̂2n)I(ỹi+1 ≤ r̂n)]e
)}

δ∗d+1

and

δ∗d+1 = (φ̂10n − φ̂20n) +
p∑

s=1

(φ̂1sn − φ̂2sn)y∗d+1−s +
q∑

s=1

(ψ̂1sn − ψ̂2sn)ε∗d+1−s

with

y∗j =





ỹj , if j ≥ 2,
r̂n, if j = 1,
yi−j , if j ≤ 0,

and ε∗j =





ε̃j , if j ≥ 2,
r̂n − h(zi, θ̂n), if j = 1,
ε̂i−j , if j ≤ 0,

Step D.3. Calculate π̂(r̂n|zi)’s and generate a random variable U such that
P (U = i) = π̂(r̂n|zi)/[

∑K
l=1 π̂(r̂n|zl)] for i = k0 + 1, ..., n, conditionally

independent of {ỹt, t ≥ 2} and {ε̃t, t ≥ 2} given X.
Step D.4. Obtain Ỹ1 = ξ̃

(U)
1,d+1.

Denote M̂
(m)
n,K obtained by Algorithm B and D as another approximation

of M−. Then, we have

Theorem 4.1. Suppose Assumptions 3.1-3.5 hold. Then

lim
m→∞ lim

n→∞
K→∞

|PX(M̂ (m)
n,K ≤ x)− P (M− ≤ x)| = 0

whenever P (M− = x) = 0.

We now consider the following TARMA(1,1,1,1) model:

yt =

{
φ10 + φ11yt−1 + εt + ψ11εt−1, if yt−1 ≤ r0,
φ20 + φ21yt−1 + εt + ψ21εt−1, if yt−1 > r0,

(4.2)

where θ0 = (φ10, φ11, ψ11, φ20, φ21, ψ21, r0)′ = (0.6, 0.6,−0.7,−1, 0.4, 0.5, 0.2)′

and {εt} is i.i.d standard normal. Since it is difficult to obtain the exact value
of π(r0), we adopt the kernel method to estimate it, where the sample size
is N = 10, 000 and the Gaussian kernel is used. The bandwidth is chosen by

ĥ∗opt = ĥopt

(
1 +

35
48

γ̂4 +
35
32

γ̂2
3 +

385
1024

γ̂2
4

)−1/5
,
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where ĥopt = 1.06sN−1/5 is the reference bandwidth selector, and s, γ̂3 and
γ̂4 are the sample standard deviation, skewness and kurtosis, respectively.
See Fan and Yao (2003, pp.201). To ensure the precision of the estimation,
100 replications are used. Finally, we get π(r0) ≈ 0.3241.
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Fig 1. The density of M− for different values of T . (a). T = 50; (b). T = 100.

Fig 1 gives the densities of M− when T = 50 and 100 by using Algorithm
B and C. 1001 observations (i.e., K = 1000) together with the driven noises
generated by model (4.2) and m = 200 are used to calculate the jump
sizes ζ

(m)
k,d+1, k = 1, 2. Then, minimizing the process (4.1), we can obtain

an observation of M−. Here, 10,000 replications are used to get the density
of M−. From Fig 1, we can see that the densities of M− are very close to
each other for T = 50 and 100. In theory, the larger T , the more precise
the density of M−. How to select a suitable T is an interesting and open
problem and there is no theory to support this in the literature.

Table 1 gives the quantiles of M− under model (4.2) when the significance
level α =0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99 and 0.995.

Table 1
Quantiles for M− under model (4.2).

α 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%
Q -22.05 -19.18 -14.74 -11.61 7.27 10.88 15.86 20.06
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Fig 2. (a). The empirical cumulative distribution functions of M̃
(m)
K (M−) and M̂

(m)
n,K .

(b). The density of M̂
(m)

n,K , where the sample size is n = 400 and 1000 replications are
used.

For Algorithm D, simulation studies show that it works well in practice.
Suppose that a sample {y1, ..., y400} is from model (4.2) and fixed. Then we
consistently estimate the quantities involved in Algorithm D. m = 200 and
1000 replications are used to obtain M̂

(m)
n,K . Fig 2 (a) shows the empirical

cumulative distribution functions of M̂
(m)
n,K and M̃

(m)
K . Fig 2 (b) gives the

density of M̂
(m)
n,K , which is close to those in Fig 1.

To further evaluate the performance of the simulation method above, we
consider another example, e.g., a higher-order TARMA(3,3,0,0) model:

yt =

{
1 + 0.2yt−1 − 0.4yt−2 + 0.3yt−3 + εt, yt−3 ≤ 0,

−1 + 0.6yt−1 + 0.1yt−2 − 0.2yt−3 + εt, yt−3 > 0,
(4.3)

where εt ∼ i.i.d. N (0, 1). The simulation results are displayed in Fig 3. The
density of n(r̂n − r0) is given in Fig 3 (a), where the sample size is 600
and 10,000 replications are used. Fig 3 (b) shows the density of M−, where
10,000 replications are used. Fig 3 (c)-(d) show the density of M̂− (obtained
by Algorithm B and D) for a given and fixed sample {y1, ..., y600} from
model (4.3), where 1000 and 10,000 replications are used for (c) and (d),
respectively. From Fig 3, we can see that (a), (b) and (d) are very matching.



16 LI, D., LI, W.K. AND LING, S.

(a)

D
en

si
ty

−40 −20 0 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(b)

−40 −20 0 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(c)

D
en

si
ty

−40 −20 0 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(d)

−40 −20 0 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Fig 3. (a). The density of n(r̂n − r0). (b). The density of M−. (c). The density of M̂−
when 1000 replications are used. (d). The density of M̂− when 10,000 replications are
used.
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5. Simulation studies. To assess the performance of the LSE of θ0

in finite samples, we use sample sizes n =200, 400, 600 and 800, each with
replications 1000 for model (4.2) with εt ∼ N (0, 1). In Table 2, we summarize
the empirical mean, empirical standard deviation (ESD) and asymptotic
standard deviation (ASD). Here, the ASD of λ̂ are computed using Σ in
Theorem 3.2 and the ASD of r̂n is obtained by simulating M−.

Table 2
Simulation studies for model (4.2) with θ0 = (0.6, 0.6,−0.7,−1, 0.4, 0.5, 0.2)′.

n φ10 φ11 ψ11 φ20 φ21 ψ21 r

EM 0.6149 0.6099 -0.7241 -1.0063 0.4046 0.5107 0.1877
200 ESD 0.1315 0.1920 0.1935 0.2103 0.2101 0.1936 0.0325

ASD 0.1167 0.1636 0.1553 0.2003 0.1837 0.1535 0.0296

EM 0.6083 0.6047 -0.7092 -1.0057 0.4076 0.4987 0.1953
400 ESD 0.0879 0.1215 0.1226 0.1529 0.1406 0.1196 0.0165

ASD 0.0825 0.1157 0.1098 0.1416 0.1299 0.1085 0.0148

EM 0.6086 0.6059 -0.7071 -1.0058 0.4073 0.4951 0.1965
600 ESD 0.0691 0.0952 0.0958 0.1128 0.1064 0.0944 0.0093

ASD 0.0674 0.0945 0.0897 0.1156 0.1061 0.0886 0.0099

EM 0.5999 0.6060 -0.7127 -1.0001 0.4026 0.4973 0.1967
800 ESD 0.0601 0.0836 0.0796 0.0987 0.0930 0.0804 0.0071

ASD 0.0583 0.0818 0.0777 0.1001 0.0919 0.0767 0.0074

From Table 2, we see that the consistency of the estimators is shown by
the empirical means and the closeness of the empirical standard deviations
to the asymptotic standard deviations. We also see that the values of the
ESDs for r̂n are about halfed each time when the value of n is doubled.
This partially illustrates the n-consistency of the threshold estimator, under
which the estimator of the threshold parameter would approach the true
parameter much faster than the coefficient parameter estimators.

Table 3 reports the coverage probabilities of the estimator r̂n for n =200,
400, 600 and 800, respectively, based on the critical values in Table 1. From
the table, we can see that the coverage probability is rather accurate even
though the sample size n is 200.

Table 3
Coverage probabilities.

α 200 400 600 800
0.01 0.979 0.986 0.991 0.988
0.05 0.936 0.936 0.966 0.960
0.10 0.890 0.888 0.917 0.911

Fig 4 shows the density of n(r̂n − r0) when the sample size n = 200, 400,
600 and 800, respectively. From Fig 4, we see that the densities of n(r̂n−r0)
and M− in Fig 1 are matching, which supports Theorem 3.3 empirically. We
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Fig 4. The density of n(r̂n − r0) when the sample size n = 200, 400, 600 and 800,
respectively.
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also see that the density of n(r̂n − r0) is leptokurtic and asymmetric. Here
the skewness of M− is 0.234 and the kurtosis is 8.96. Due to the skewness
and kurtosis, we must be careful in constructing confidence intervals of the
estimated threshold in practice.

6. Concluding remarks. This paper considers the general TARMA
model which contains the pure TAR model and the pure TMA model as two
special cases and has established the asymptotic theory of the least square
estimation. The limiting distribution of the estimated threshold, which is
the smallest minimizer of a two-sided compound Poisson process, has been
derived. A numerical method is proposed to simulate this limiting distri-
bution and simulation studies show that it does work well. These results
are obtained under which the order (p1, p2, q1, q2) is known. In applications,
since the order is generally unknown, one can use either the AIC or BIC to
determine it and we do not pursue this problem anymore. As for TARMA
model (3.3) where the autoregressive function is continuous and there is
no threshold in the moving-average part, we conjecture that the estimated
threshold has a

√
n-convergence rate and is asymptotically normal as well

as other parameters. This conjecture corresponds to the results in Chan and
Tsay (1998) on TAR models when the autoregressive function is continuous.
For this case, further study will be needed in the future.

APPENDIX A: PROOF OF THEOREM 3.1

In this section, we give the proof for the case p = q = 1 without the
constant terms in each regime. The general case can be proved similarly.
Temporarily, φi and ψi are abbreviated to φi and ψi. The proof of Theorem
3.1 is similar to that of Theorem 2.1 in Li et al. (2010) and can be complete
by Huber’s method and the following Lemma A.1. Hence, it is omitted.

Lemma A.1. If the conditions of Theorem 3.1 hold, then Eε2
t (θ) ≥ σ2

and the equality holds if and only if θ = θ0.

Proof. By Theorem A.2 in Ling and Tong (2005), Eε2
t (θ) < ∞. Clearly,

Eε2
t (θ0) = σ2 since εt(θ0) = εt. A conditional argument yields

E{ε 2
t (θ)− ε 2

t } = E{[εt +∇t−1(θ)]2 − ε 2
t }

= E∇2
t−1(θ) + 2E{∇t−1(θ)E(εt|F t−1

−∞)}
= E∇2

t−1(θ) ≥ 0,

where ∇t−1(θ) is measurable with respect to F t−1
−∞ = σ(εj : j ≤ t− 1).
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If there exists a θ∗ such that E{ε 2
t (θ∗) − ε 2

t } = 0, then ∇t−1(θ∗) = 0
a.s. for each t since {εt(θ∗)} is strictly stationary, and hence εt(θ∗) ≡ εt +
∇t−1(θ∗) = εt a.s. for each t. Thus,

[(φ20 − φ∗2) + (φ10 − φ20)I(yt−d0 ≤ r0)− (φ∗1 − φ∗2)I(yt−d∗ ≤ r∗)]yt−1

= [(ψ∗2 − ψ20) + (ψ∗1 − ψ∗2)I(yt−d∗ ≤ r∗)− (ψ10 − ψ20)I(yt−d0 ≤ r0)]εt−1.

which implies that

(φ20 − φ∗2) + (φ10 − φ20)I(yt−d0 ≤ r0)− (φ∗1 − φ∗2)I(yt−d∗ ≤ r∗) = 0,(A.1)
(ψ∗2 − ψ20) + (ψ∗1 − ψ∗2)I(yt−d∗ ≤ r∗)− (ψ10 − ψ20)I(yt−d0 ≤ r0) = 0,(A.2)

since εt−1 has a continuous and positive density on R and so does yt−1 by
the convolution property, and yt−1 is not proportional to εt−1.

Now, we first prove that d∗ = d0. Otherwise, without loss of generality,
assume that d0 > d∗. Then, (A.1) reduces to

(φ10 − φ∗1)I(yt−d0 ≤ r0, yt−d∗ ≤ r∗) + (φ10 − φ∗2)I(yt−d0 ≤ r0, yt−d∗ > r∗)+
(φ20 − φ∗1)I(yt−d0 > r0, yt−d∗ ≤ r∗) + (φ20 − φ∗2)I(yt−d0 > r0, yt−d∗ > r∗) = 0.

Using the orthogonality among the indicators in the previous equation, it
follows that

(φ10 − φ∗1)
2P (yt−d0 ≤ r0, yt−d∗ ≤ r∗) + (φ10 − φ∗2)

2P (yt−d0 ≤ r0, yt−d∗ > r∗)+

(φ20 − φ∗1)
2P (yt−d0 > r0, yt−d∗ ≤ r∗) + (φ20 − φ∗2)

2P (yt−d0 > r0, yt−d∗ > r∗) = 0.

We can write yt−d∗ into the form: yt−d∗ = εt−d∗ + ξt−d∗−1, where ξt−d∗−1 is
a random variable and independent of εt−d∗ . Since εt−d∗ has a continuous
and positive density on R and independent of yt−d0 ,

P (yt−d∗ ≤ r|yt−d0 = x) = E

[∫ r−ξt−d∗−1

−∞
h(z)dz

∣∣∣∣∣yt−d0 = x

]
> 0

for r ∈ [r, r̄] and any fixed x, where h(x) is the density function of εt. Hence,
all probabilities above are positive, which implies that φ∗1 = φ∗2 = φ10 = φ20.
Similarly, for (A.2), we have ψ∗1 = ψ∗2 = ψ10 = ψ20. This is a contradiction
with the condition (iii) in Theorem 3.1. Thus, d∗ = d0.

Secondly, without loss of generality, suppose that r∗ ≤ r0. Then, using
the preceding procedure, it follows that from (A.1)

(φ10 − φ∗1)2P (yt−d0 ≤ r∗) + (φ10 − φ∗2)2P (r∗ < yt−d0 ≤ r0)
+(φ20 − φ∗2)2P (yt−d0 > r0) = 0.

Note that yt has a continuous and positive density on R by Assumption 3.2,
we have φ∗1 = φ10, φ∗2 = φ20 and r∗ = r0. Similarly, ψ∗1 = ψ10, ψ∗2 = ψ20.
Thus, θ∗ = θ0. ¤
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APPENDIX B: PROOF OF THEOREM 3.2

In this section we give the proof for the case q = 1 and 1 ≤ d ≤ p. For
general case, the proof is similar. We first give a lemma.

Lemma B.1. Suppose that Assumptions 3.1-3.5 hold. Then, for any ε >
0 and η > 0, there exists a constant B > 0 such that for any fixed δ ∈ (0, 1)
small enough and any n ≥ 1

P

(
sup

B/n<u<δ

∣∣∣∣
∑n

t=1 I∗(r0 < yt−d ≤ r0 + u)
nG∗(u)

− 1
∣∣∣∣ < η

)
> 1− ε,(B.1)

P

(
sup

B/n<u<δ

∣∣∣∣
∑n

t=1 At(0, u)
nG(u)

∣∣∣∣ < η

)
> 1− ε,(B.2)

P

(
sup

B/n<u<δ

∣∣∣∣
∑n

t=1 εt[εt(λ0, r0 + u)− εt]
nG(u)

∣∣∣∣ < η

)
> 1− ε,(B.3)

where I∗(r0 < yt−d ≤ r) = I(r0 < yt−d ≤ r, ‖Zt−1 − Z∗‖ ≤ β), G∗(u) =
P (r0 < yt−d ≤ r0 + u, ‖Zt−1 − Z∗‖ ≤ β), G(u) = P (r0 < yt−d ≤ r0 + u)
and At(u1, u2) = I(r0 + u1 < yt−d ≤ r0 + u2)

∑∞
j=0 ρj‖Zt−2−j‖I(r0 + u1 <

yt−1−d−j ≤ r0 + u2) for u, u1, u2 ∈ [0, δ]. Here β is a fixed positive constant
and Z∗ = (w′,a′)′ defined in Assumption 3.5.

Proof. The proof of (B.1) is simple by Assumption 3.4, similar to that
of (4.4a) in Chan (1993) and hence it is omitted. Since the proof of (B.3)
is similar to that of (B.2), we only prove (B.2). It is sufficient to verify the
following inequalities for 0 ≤ u1, u2 ≤ δ

E[At(u1, u2)] ≤ C[G(u2)−G(u1)],(B.4)
Var(At(u1, u2)) ≤ C[G(u2)−G(u1)],(B.5)

Var
( n∑

t=1

At(u1, u2)
)
≤ Cn[G(u2)−G(u1)].(B.6)

First, note that the following two facts. One is that for k ≥ 1

P (r0 < y0 ≤ r0 + u, r0 < yk ≤ r0 + u) ≤ Cu2.

by a conditional argument. The other is that there exist two finite positive
constants m0 and M0 such that

m0(u2 − u1) ≤ G(u2)−G(u1) ≤ M0(u2 − u1), r0 − 1 ≤ u1 ≤ u2 ≤ r0 + 1,
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since the density of yt is continuous and positive on R by Assumption 3.2
and the convolution property.

For (B.4), by Hölder’s inequality and Assumptions 3.3-3.4, it follows that

E[At(u1, u2)] ≤ C(u2 − u1)3/2 ≤ C[G(u2)−G(u1)].(B.7)

The first inequality in (B.7) implies that it is not necessary to subtract
E[At(u1, u2)] from At(u1, u2).

For (B.5), by Hölder’s inequality and Assumptions 3.3 -3.4 again, we have

Var(At(u1, u2)) ≤ E[A2
t (u1, u2)] ≤ C(E‖Zt‖4)1/2[G(u2)−G(u1)].

For (B.6), by a simple calculation, we have

|E(At|G0)− E(At)| ≤ Ctρt(1 + ‖Z0‖) + Cρt + Cρt
∞∑

j=0

ρj‖Z−j‖,

where G0 = σ(Zt, t ≤ 0), which implies that

|Cov(A0(u1, u2), At(u1, u2))| ≤ E{A0|E(At|G0)− EAt|}
≤ Ctρt[G(u2)−G(u1)].

Thus,

Var
( n∑

t=1

At(u1, u2)
)

= nVar(At(u1, u2)) + 2
n−1∑

k=1

(n− k)Cov(A0(u1, u2), Ak(u1, u2))

≤ Cn
{ ∞∑

k=1

kρk
}
[G(u2)−G(u1)] ≤ Cn[G(u2)−G(u1)].

The proof of is complete. ¤
Proof of Theorem 3.2 (i). Since θ̂n is consistent, we restrict Θ to an

open neighborhood of θ0, defined by Uδ = {θ ∈ Θ : ‖λ−λ0‖ < δ, |r−r0| < δ}
for some 0 < δ < 1 to be determined later. Then it suffices to show that
there exist constants B > 0, γ > 0, such that for n large enough

P
(

inf
B/n<|r−r0|≤δ

θ∈Uδ

Ln(λ, r)− Ln(λ, r0)
nG(|r − r0|) > γ

)
> 1− 4ε.(B.8)

Here, we only treat the case r > r0. The proof for the case r < r0 is similar.
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Let r = r0 + u for some 0 < u < 1. Decompose Ln(λ, r)− Ln(λ, r0) as

Ln(λ, r)− Ln(λ, r0) = {[Ln(λ, r)− Ln(λ, r0)]− [Ln(λ0, r)− Ln(λ0, r0)]}
+ [Ln(λ0, r)− Ln(λ0, r0)]

≡ L(1)
n (λ, r) + L(2)

n (r).

We first consider L
(2)
n (r). Note that

εt(λ0, r)− εt =f(Zt−1) + g(Zt−1)[εt−1(λ0, r)− εt−1]

=
∞∑

j=0

{ j∏

i=1

g(Zt−i)
}
f(Zt−1−j),

where

f(Zt−1) =
{ p∑

i=1

(φ2i0 − φ1i0)yt−i + (ψ20 − ψ10)εt−1

}
I(r0 < yt−d ≤ r),

g(Zt−1) =− [ψ20 + (ψ10 − ψ20)I(yt−d ≤ r)].

By Assumption 3.5, there exists β > 0 such that ((φ10−φ20)′, (ψ10−ψ20)′)′Z
is bounded away from 0 for all Z satisfying ‖Z−Z∗‖ ≤ β with Z∗ = (w′,a′)′.
Thus,

ε2
t (λ0, r)− ε2

t ≥ [f(Zt−1)]2I(‖Zt−1 − Z∗‖ ≤ β) + 2εt[εt(λ0, r)− εt]
+ 2f(Zt−1)I(‖Zt−1 − Z∗‖ ≤ β)g(Zt−1)[εt−1(λ0, r)− εt−1].

Clearly, |f(Zt−1)| ≤ C‖Zt−1‖I(r0 < yt−d ≤ r) and |g(Zt−1)| ≤ ρ < 1 by the
compactness of Θ. Then

2|f(Zt−1)I(‖Zt−1 − Z∗‖ ≤ β)g(Zt−1)[εt−1(λ0, r)− εt−1]|

≤ CI(r0 < yt−d ≤ r)
∞∑

j=0

ρj‖Zt−2−j‖I(r0 < yt−1−d−j ≤ r) = CAt(0, u)

and there exists a positive constant c0 such that

[f(Zt−1)]2I(‖Zt−1 − Z∗‖ ≤ β) ≥ c0I(r0 < yt−d ≤ r, ‖Zt−1 − Z∗‖ ≤ β)
= c0I

∗(r0 < yt−d ≤ r),

Hence,

L
(2)
n (r)

nG(u)
≥ c0G

∗(u)
G(u)

∑n
t=1 I∗(r0 < yt−d ≤ r0 + u)

nG∗(u)
− C

∑n
t=1 At(0, u)
nG(u)

+ 2
∑n

t=1 εt[εt(λ0, r0 + u)− εt]
nG(u)

.
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Note that

lim
u↓0

G∗(u)
G(u)

= P (‖Zt−1 − Z∗‖ ≤ β
∣∣yt−d = r+

0 ) > 0

by a conditional argument for the inequality above. Write the limit as a0.
Then there exists a δ > 0 small enough such that c0G

∗(u)/G(u) ≥ c0a0/2
on [0, δ]. By Lemma B.1, it follows that

P

(
inf

B/n<u≤δ

L
(2)
n (r)

nG(u)
>

c0a0

4

)
> 1− 3ε.

Next, we consider L
(1)
n (λ, r). Clearly,

1
n

L(1)
n (λ, r) =

1
n

n∑

t=1

∫ 1

0

[
∂ε2

t (λv, r)
∂λ′

− ∂ε2
t (λv, r0)
∂λ′

]
(λ− λ0)dv,

where λv = λ0 + v(λ− λ0). Similarly, we can prove that

sup
B/n<u≤δ

θ∈Uδ

|L(1)
n (λ, r)|
nG(u)

= Op

(
sup
θ∈Uδ

‖λ− λ0‖
)

= Op(δ).

Clearly,

inf
B/n<u≤δ

θ∈Uδ

Ln(λ, r)− Ln(λ, r0)
nG(u)

≥ inf
B/n<u≤δ

L
(2)
n (r)

nG(u)
− sup

B/n<u≤δ
θ∈Uδ

|L(1)
n (λ, r)|
nG(u)

.

Let γ = c0a0/8 > 0. Then, for sufficiently small δ > 0, (B.8) holds. The
proof of (i) is complete.

For the proof of Theorem 3.2(ii), it is similar to that of Theorem 2.2 (ii)
in Li, Ling and Li (2010). Hence it is omitted. ¤

APPENDIX C: PROOFS OF THEOREMS 3.3 AND 4.1

Proof of Theorem 3.3. Here, we give an outline of the proof, which
is similar to that of Theorem 2.3 in Li, Ling and Li (2010). First of all,
we prove that ℘n(z) converges weakly to a two-sided compound Poisson
process ℘(z) in D(R). The tightness of {℘n(z)} can be verified by Theorem
5 in Kushner (1984, pp.32). For a > 0 large enough we study the truncated
process {℘(a)

n (z)}, defined similarly to {℘n(z)} with the jumps being replaced
by ζ

(a)
1t ≡ ζ1tI(|ζ1t| ≤ a). Now we consider the weak convergence of {℘(a)

n (z)}
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as n →∞ for each a > 0. This takes two steps. (i). Proving the tightness of
{℘(a)

n (z)}. This can be done by Theorem 5 in Kushner (1984, pp.32) again;
(ii). Characterizing the convergence of finite dimensional distributions of
{℘(a)

n (z)}, which can be completed by verifying Assumptions A.1-A.4 in the
Appendix in Li, Ling and Li (2010). Thus we have shown that {℘(a)

n (z)}
converges weakly to a two-sided compound Poisson process ℘(a)(z), having
the jump rate κ

(a)
1 π(r0) and the jump distribution Q

(a)
1 on the left side

(i.e., z < 0) and the jump rate κ
(a)
2 π(r0) and the jump distribution Q

(a)
2

on the right side (i.e., z > 0), where κ
(a)
j = P (|ζjt| ≤ a|yt−d = r0) and

Q
(a)
j (A) = P (ζjt ∈ A|yt−d = r0, |ζjt| ≤ a) for any Borel set A and j = 1, 2.

Note that κ
(a)
j → 1 and Q

(a)
j → Fj(·|r0) as a → ∞, we have that ℘(a)(z)

converges weakly to ℘(z) in (3.5) by Theorem 16 in Pollard (1984, pp. 134).
In addition, lim

a→∞ lim sup
n→∞

P (d(℘(a)
n (z), ℘(a)

n (z)) > ε) = 0 for any ε > 0, where

d(·, ·) is the Skorokhod metric in D(R). Hence, ℘n(z) converges weakly to
℘(z) by Theorem 3.2 in Billingsley (1999, pp. 28). The remainder is the same
as Theorem 2 in Chan (1993). ¤

Proof of Theorem 4.1. Here, we give an outline of the proof. By
Theorem 16 in Pollard (1984, pp. 134) and Lemma A.3 (on the continuity of
the smallest argmax functional) in Seijo and Sen (2010), it suffices to prove

PX(ζ̃(m)
k,d+1 ≤ x|y1 = r̂n,Z0 = ẑi) ≈ P (ζ(m)

k,d+1 ≤ x|y1 = r0,Z0 = zi)(C.1)

in probability for each m. First of all, we have

PX(ỹ2 ≤ x|y1 = r̂n,Z0 = ẑi) = PX(ε̃2 + h(v̂i, θ̂n) ≤ x|y1 = r̂n,Z0 = ẑi)

= F̂ε(x− h(v̂i, θ̂n))

= F̂ε(x− h(v̂i, θ̂n))− Fε(x− h(v̂i, θ̂n))

+ Fε(x− h(v̂i, θ̂n))− Fε(x− h(vi,θ0))
+ Fε(x− h(vi,θ0))

≈ P (ε2 + h(vi,θ0) ≤ x)
= P (ε2 + h(vi,θ0) ≤ x|y1 = r0,Z0 = zi)
= P (y2 ≤ x|y1 = r0,Z0 = zi),

where v̂i = (r̂n, yi, ..., yi−p∨d+2, r̂n−h(ẑi, θ̂n), ε̂i, ..., ε̂i−q+2)′ and vi = (r0, yi,

..., yi−p∨d+2, r0−h(zi,θ0), εi, ..., εi−q+2)′. Let H̃[k](·) be the conditional distri-
bution of (ỹk, ..., ỹ2)′ given y1 = r̂n, Z0 = ẑi and X, and H[k](·) be the condi-
tional distribution of (yk, ..., y2)′ given y1 = r0 and Z0 = zi. By the induction
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over k (≤ m + d + 1), we have H̃[k] ≈ H[k] as n → ∞. On the other hand,

There exists a measurable function g(·) such that ζ̃
(m)
k,d+1 = g(ỹ2, ..., ỹm+d+1)

and ζ
(m)
k,d+1 = g(y2, ..., ym+d+1). Note that H[m+d+1](·) is continuous and

H[m+d+1](Dg) = 0, where Dg = {x : g is discontinous at x}. Hence, (C.1)
holds by Theorem 2.7 (continuous mapping theorem) in Billingsley (1999,
pp.21). The proof is completed. ¤
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