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On holomorphic isometric embeddings of the unit n-ball
into products of two unit m-balls

Sui-Chung, Ng∗

Abstract

We study holomorphic isometric embeddings of the complex unit n-ball into products of
two complex unit m-balls with respect to their Bergman metrics up to normalization constants
(the isometric constant). There are two trivial holomorphic isometric embeddings for m ≥ n,
given by F1(z) = (0, In;m(z)) with the isometric constant equal to (m + 1)/(n + 1) and F2(z) =
(In;m(z), In;m(z)) with the isometric constant equal to 2(m+1)/(n+1). Here In;m : Cn −→ Cm

is the canonical embedding. We prove that when m < 2n, these are the only holomorphic
isometric embeddings up to unitary transformations.

Mathematics Subject Classification (2000): 53C35, 53C55
Keywords: Holomorphic isometric embeddings, complex unit balls, Bergman metrics, total
geodesy

1 Introduction

Let Ω be an irreducible bounded symmetric domain equipped with its Bergman metric ds2
Ω.

In relation to a problem in number theory, Clozel and Ullmo [1] studied the holomorphic
isometric embeddings of Ω into its Cartesian products Ωp up to normalizing constants, in
which Ωp is equipped with the product metric. By using the arguments in Hermitian metric
rigidity (see Mok [2, 3]), they argued in their article that when rank(Ω) ≥ 2, any such
embedding must be totally geodesic. When rank(Ω) = 1, i.e. when Ω = Bn, the complex unit
balls, Mok [4] showed that for n ≥ 2, the embeddings must also be totally geodesic. While
for dimension 1, he has constructed a non-totally geodesic holomorphic isometric embedding
of the unit disk ∆ into ∆p for every p ≥ 2. (see [5])

Let m,n ≥ 2 be two integers. In this article, we consider holomorphic isometric embed-
dings of Bn into Bm×Bm up to normalization constants with respect to their Bergman metrics
ds2

Bn and ds2
Bm×Bm . More precisely, for a positive real number λ, F : Bn −→ Bm × Bm is said

to be a holomorphic isometric embedding with the isometric constant λ if F : (Bn, λds2
Bn) −→

(Bm × Bm, ds2
Bm×Bm) is a holomorphic isometric embedding. If m ≥ n and In;m : Cn −→ Cm

is the canonical embedding, then F1(z) = (0, In;m(z)) and F2(z) = (In;m(z), In;m(z)) are two
holomorphic isometric embeddings with the isometric constant equal to (m+ 1)/(n+ 1) and
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2(m + 1)/(n + 1) respectively. The main purpose of this paper is to prove that for m < 2n,
they are the only holomorphic isometric embeddings up to unitary transformations.

Main theorem Let m,n be positive integers with m,n ≥ 2 and m < 2n. Let F : Bn −→
Bm × Bm be a holomorphic isometric embedding with the isometric constant λ. Then m ≥ n
and up to unitary transformations, either F (z) = (0, In;m(z)) with λ = (m + 1)/(n + 1), or
F (z) = (In;m(z), In;m(z)) with λ = 2(m+ 1)/(n+ 1), where In;m : Cn −→ Cm is the canonical
embedding.

2 Functional equation

Let m,n ≥ 2 be two integers and F : Bn −→ Bm×Bm, F (z) = (A(z), B(z)) be a holomorphic
isometric embedding with the isometric constant λ. Without loss of generality, we may assume
that F (0) = (0,0). The Bergman metric on Bn is given by ds2

Bn = 2Re
∑
gij̄dz

i⊗ dz̄j, where

gij̄ = −(n+ 1)
∂2

∂zi∂z̄j
log(1−‖z‖2). We write (z1, z2) for a point in Bm×Bm. We can take as

Kähler potentials for ds2
Bn and ds2

Bm×Bm the real analytic functions −(n+ 1) log(1−‖z‖2) and
−(m+ 1) log(1−‖z1‖2)(1−‖z2‖2) respectively. By the assumption that F ∗ds2

Bm×Bm = λds2
Bn

it follows that

−(m+ 1)
√
−1∂∂ log(1− ‖A‖2)(1− ‖B‖2) = −λ(n+ 1)

√
−1∂∂ log(1− ‖z‖2),

hence,
(m+ 1) log(1− ‖A‖2)(1− ‖B‖2) = λ(n+ 1) log(1− ‖z‖2) + Reh

for some holomorphic function h on Bn. Since F (0) = (0,0), by comparing Taylor expansions
we conclude that h ≡ 0. Therefore we obtain

(m+ 1) log(1− ‖A‖2)(1− ‖B‖2) = λ(n+ 1) log(1− ‖z‖2). (2.1)

i.e.
(1− ‖A‖2)(1− ‖B‖2) = (1− ‖z‖2)λ(n+1)/(m+1). (2.2)

Eq.(2.2) is a real-analytic equation and we can consider an associated polarized functional
equation. In general, given two power series

∑
aij̄z

iz̄j and
∑
bij̄z

iz̄j, they are equal if and only
if aij̄ = bij̄, ∀i, j. Therefore their equality will also imply the polarized equation

∑
aij̄z

iw̄j =∑
bij̄z

iw̄j. Since we can polarize each variable separately, the polarized equation of Eq.(2.1)
is

(m+ 1) log(1− 〈A(z), A(w)〉)(1− 〈B(z), B(w)〉) = λ(n+ 1) log(1− 〈z,w〉)

for ‖z‖, ‖w‖ < 1. Here log denotes the principal branch of the logarithm and 〈 , 〉 is the
complex Euclidean inner product. We can rewrite it as

(1− 〈A(z), A(w)〉)(1− 〈B(z), B(w)〉) = (1− 〈z,w〉)λ(n+1)/(m+1), (2.3)

where
(1− 〈z,w〉)λ(n+1)/(m+1) ≡ e[λ(n+1)/(m+1)] log(1−〈z,w〉).
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3 Algebraic extension

In [5], Mok has established the following extension result.

Theorem 3.1 (Mok). Let Ω b Cn and Ω′ b CN be bounded symmetric domains in their
Harish-Chandra realizations. Let λ be any positive real number and f : (Ω, λds2

Ω) −→
(Ω′, ds2

Ω′) be a germ of holomorphic isometry at 0 ∈ Ω with f(0) = 0. Then, the germ of the
graph of f extends to an affine algebraic variety S# ⊂ Cn ×CN such that S = S# ∩ (Ω×Ω′)
is the graph of a holomorphic isometric embedding F : Ω −→ Ω′ extending the germ of the
holomorphic map f .

From the existence of algebraic extension, we can prove

Proposition 3.2. Let (Bn, λds2
∆) −→ (Bm × Bm, ds2

Bm×Bm) be a holomorphic isometric em-

bedding. Then
λ(n+ 1)

(m+ 1)
is a positive integer.

Proof. By Theorem 3.1, we know that the embedding can be extended across a general point
on the unit sphere ∂Bn. Let z0 be a point on ∂Bn at which the embedding can be extended
across in a neighborhood. By unitary transformations, we may assume that z0 = (z0, 0, . . . , 0).
Consider the restriction of F on the disk ∆ = {(z, 0, . . . , 0), |z| < 1} ⊂ Bn, denote by
f(z) = (a(z), b(z)), where a(z), b(z) ∈ Bm. Then by Eq.(2.3), f(z) satisfies

(1− 〈a(z), a(w)〉) (1− 〈b(z), b(w)〉) = (1− zw)λ(n+1)/(m+1). (3.1)

If we consider Eq.(3.1) and substitute w = z0, then because each factor on the L.H.S. can

only vanish with an integral order at z = z0 and therefore
λ(n+ 1)

(m+ 1)
on the R.H.S. must be a

positive integer.

Write k =
λ(n+ 1)

(m+ 1)
. By Eq.(2.2) and Schwarz’s lemma on holomorphic maps, we have

k ≤ 2 and hence k = 1, 2. When k = 2, by Schwarz’s lemma again, we must have ‖z‖ =
‖A‖ = ‖B‖ and therefore m ≥ n and up to unitary transformations, A(z) = B(z) = In;m(z),
where In;m : Cn −→ Cm is the canonical embedding. Thus, it remains to consider the case
when k = 1, i.e. λ = (m+ 1)/(n+ 1).

We first state a well known lemma of holomorphic maps.

Lemma 3.3. Let f : U ⊂ Cn −→ Cm, f = (f1, . . . , fn) be a holomorphic map defined on
some open set U and write ‖f‖2 =

∑n
i=1 |fi|2. If g : U −→ Cm is another holomorphic map

with ‖f‖2 = ‖g‖2, then there exists a unitary transformation U in Cm such that U ◦ f = g.

Let F : Bn −→ Bm × Bm, F (z) = (A(z), B(z)) be an isometric embedding with the
isometric constant λ = (m + 1)/(n + 1). Then the functional equation Eq.(2.2) satisfied by
F reduces to

(1− ‖A(z)‖2)(1− ‖B(z)‖2) = 1− ‖z‖2. (3.2)

Proposition 3.4. Let V be the irreducible n-dimensional algebraic subvariety in Cn× (Cm)2

extending the graph of F and π be the projection map from V to the first factor. There exists
a proper algebraic subvariety W ⊂ Cn such that the restriction π : V \ π−1(W ) −→ Cn \W is
a finite unbranched covering map.
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Proof. From Eq.(3.2),
‖A‖2 + ‖B‖2 = ‖A‖2‖B‖2 + ‖z‖2.

⇐⇒
m∑
i=1

|ai|2 +
m∑
i=1

|bi|2 =
m∑
i=1

m∑
j=1

|aibj|2 +
n∑
i=1

|zi|2.

By Lemma 3.3, (because m2 + n > 2m) there exists an (m2 + n)× (m2 + n) unitary matrix
U such that 

a1
...
am
b1
...
bm
0
...
0


= U



a1b1
...

a1bm
...

amb1
...

ambm
z1
...
zn



. (3.3)

Consider the first 2m equations above, they are

a1 = La1(a1b1, . . . , ambm, z1, . . . , zn);
...

...

am = Lam(a1b1, . . . , ambm, z1, . . . , zn);

b1 = Lb1(a1b1, . . . , ambm, z1, . . . , zn);
...

...

bm = Lbm(a1b1, . . . , ambm, z1, . . . , zn),

where Lai , L
b
j are some linear functions.

By applying the Implicit Function Theorem, we see that the algebraic subvariety defined
by these 2m equations is smooth at the origin. Therefore V is the irreducible component of
this algebraic subvariety containing the origin. Let V be the closure of V in Pn× (Pm)2. V is
obtained by replacing the inhomogeneous coordinates of the algebraic equations defining V
by homogeneous coordinates and V is a proper analytic subvariety of Pn × (Pm)2.

The singular part of V is a proper analytic subvariety S of V . By Proper Mapping Theo-
rem, π(S) is a proper analytic subvariety of Pn. Thus, when restricting on V

′
= V \π−1(π(S)),

π is a proper holomorphic map between complex manifolds and let us denote by R the ram-
ification locus of π. Let R be the closure of R in V . We are going to show that R is a
proper analytic subvariety of V . Take a point v ∈ R and let U be a small coordinate open
ball in Pn × (Pm)2 containing v such that V is defined by h1 = · · · = h2m = 0 for some
holomorphic functions hj, 1 ≤ j ≤ 2m, in U . Let (u1, . . . , un+2m) be a coordinate system of
U . Write π = (p1, . . . , pn), where pi are holomorphic in U . Then R is defined by the equation

dp1 ∧ · · · ∧ dpn|V ′ = 0. Take y be a point in V
′ \R. By doing a linear change of coordinates,

we may assume that
∂

∂uj
, 1 ≤ j ≤ n are tangent to V at the point y, and hence

(
∂pi
∂uj

)
1≤i,j≤n

is non-singular at y.
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Claim: There exist holomorphic functions f1, . . . , f2m in U such that for 1 ≤ k ≤ 2m,
fk|V = 0 and dfk(y) = dun+k(y).

Let us assume the claim for the moment. Denote by R the analytic subvariety of U de-
fined by dp1 ∧ · · · ∧ dpn ∧ df1 ∧ · · · ∧ df2m = 0. R is a proper subvariety because it does not
contain y by our construction. Let R̃ = R∩V . R̃ is then a subvariety in V ∩U of codimension
1 and R ∩ U ⊂ R̃ by our construction. R̃ has only a finite number of irreducible components
and let R̃l, 1 ≤ l ≤ q be those having non-empty intersections with R ∩U . Since both R ∩U
and R̃ are divisors in U and (R ∩ U) ⊂ R̃, we must have R ∩ U =

⋃q
l=1 R̃l. Thus, R is an

analytic subvariety of V .

Now Proper Mapping Theorem says that π(R) is an analytic subvariety of Pn. If we let
W = π(S) ∪ π(R), then π : V \ π−1(W ) −→ Pn \W is a proper holomorphic covering map.
It is finite because π is proper and discrete on V \ π−1(W ). We can obtain the conclusion of
the proposition by just restricting π to the finite part of Pn × (Pm)2.

Proof of the claim: It is an extension problem with a prescribed first order derivative at y.
We will use Cartan’s Theorem B. Assume that the coordinates of y are u1 = · · · = un+2m = 0.
Let O = OU be the sheaf of holomorphic functions on U and I the ideal sheaf in O gen-
erated by hjui, 1 ≤ j ≤ 2m, 1 ≤ i ≤ (n + 2m). I defines a coherent sheaf on the Stein
manifold U and H1(U, I) = 0 by Cartan’s Theorem B. Thus, for the short exact sequence
0 → I → O → O/I → 0, we have surjectivity for H0(U,O) −→ H0(U,O/I) in the induced
long exact sequence. Since hjui vanishes to the second order at the point y, an element on
the stalk O/I at y corresponds to an equivalence class of germs of holomorphic functions in
U , where g1, g2 ∈ OU ;y are equivalent if and only if g1|V = g2|V and dg1(y) = dg2(y). In any
sufficiently small open neighborhoodWy of y we can always construct for 1 ≤ k ≤ 2m, a holo-
morphic function fWy ;k inWy vanishing on V ∩Wy and dfWy ;k(y) = dun+k(y). fWy ;k induces a
section of O/I overWy which is 0 except at y, thus defining a global section sk ∈ H0(U,O/I),
where sk is taken to be 0 outside Wy. Hence, the surjectivity above provides us the function
fk on U satisfying the desired properties in the claim.

4 Total geodesy

Recall the notation in Proposition 3.4. Let V be the irreducible algebraic subvariety extending
the graph of F and W ⊂ Cn be a proper algebraic subvariety such that if we let Z = Cn \W
and X = V \ π−1(W ), then π : X −→ Z is a finite unbranched covering map. We start with
a lemma.

Lemma 4.1. If a component function is degenerate everywhere in Bn, i.e. the tangent map
is not injective anywhere, then it is constant.

Proof. Let A be the component function degenerate everywhere. Consider A as a multi-valued
map on Z and let Y be the set of points z ∈ Z such that ‖A(z)‖ = 1 on some branch. Since
the functional equation Eq.(3.2) is satisfied on the whole algebraic subvariety V , we see that
Y ⊂ Z ∩ ∂Bn.

Define Z ′ = Z \ Y . We first argue that by the degeneracy of A, Z ′ is connected. Suppose
on the contrary Z ′ is not connected. Because Y ⊂ Z ∩ ∂Bn and Y is closed in Z, Z ′ is not
connected only if Y = Z ∩ ∂Bn. Hence for every point z0 ∈ Z ∩ ∂Bn, there is some branch of
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A on which we have A(z0) = a0 with ‖a0‖ = 1. Because A is degenerate everywhere, for a
generic choice of z0, the set defined by A(z) = a0 contains a non-constant complex analytic
curve Γ : ∆ −→ Cn with Γ(0) = z0. Note that for all open set U ⊂ ∆, Γ(U) cannot be
completely contained in ∂Bn and from the functional equation we see that Γ(U) \ ∂Bn must
be contained in W . This is true for arbitrary U and this implies that z0 = Γ(0) ∈ W . So W
contains almost every point of ∂Bn and hence the whole ∂Bn which is not possible.

We now show that the connectedness of Z ′ implies that A is constant. It is clear that
π−1(Z ′) ⊂ X can only have a finite number of connected components, therefore each connected
component is open in X and when π is restricted to any one connected component it is still
a covering map over Z ′. Since Z ′ is connected, on each connected component we have either
‖A‖ < 1 or ‖A‖ > 1 on the whole component. We choose one with ‖A‖ < 1, of which the
existence is guaranteed because we started with an isometric embedding germ F of Bn into a
product of unit balls. We can then form elementary symmetric functions of A with respect to
this covering map and they are bounded holomorphic functions on Z ′. Since W is a proper
subvariety, we can extend them separately throughout the two domains Bn and Cn \ Bn. As
n ≥ 2, the symmetric functions in Cn \ Bn can be extended to the whole Cn by Hartog’s
extension and the extension must agree with the symmetric functions originally defined on
Bn as Z ′ is connected. Hence, the symmetric functions are bounded holomorphic functions
on Cn and therefore constant. This implies that A is constant.

We can now prove the main theorem of this article.

Proof. (of the Main Theorem)

As explained after Proposition 3.2, it remains to prove the total geodesy of a holomorphic
isometric embedding F : Bn −→ Bm × Bm, F (z) = (A(z), B(z)) with the isometric constant
λ = (m+ 1)/(n+ 1).

If m < n, we certainly have degeneracy for both component functions and by Lemma 4.1
they are constant which is impossible. Therefore m ≥ n.

By reducing the dimension of the target, we can always assume that the image of one
of the component functions, say B, does not lie in any proper linear subspace of Bm. If the
other component A is degenerate everywhere, then A is constant by Lemma 4.1 and hence
A(z) ≡ 0. Therefore, up to unitary transformations, we have F (z) = (0, In;m(z)), where
In;m : Cn −→ Cm is the canonical embedding.

Now suppose F is a holomorphic isometric embedding of Bn into Bm×Bm with 2n > m ≥
n, such that A is non-degenerate at a generic point and the image of B does not lie in any
proper linear subspace of Cm. We are going to show that it will lead to a contradiction.

Since the image B do not lie in any proper linear subspace, in particular, it is non-constant
and is non-degenerate at a generic point by Lemma 4.1. Therefore we may assume that both
A and B are non-degenerate at the origin.

Denote the elements of the unitary matrix U in Eq.(3.3) by urs, 1 ≤ r, s ≤ (m2 +n). Since
ai(0) = bj(0) = 0, ∀i, j by assumption, if we consider the power series expansions of the last
(m2 + n − 2m) equations in Eq.(3.3), we see that urs = 0 for (2m + 1) ≤ r ≤ (m2 + n) and
(m2 + 1) ≤ s ≤ (m2 + n). Hence, if we let

X = (a1b1, . . . , a1bm, . . . , amb1, . . . , ambm) = (a1B, . . . , amB) (4.1)
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be a Cm2
-valued vector function, then the last (m2 + n− 2m) equations in Eq.(3.3) amounts

to saying that there exist (m2 + n− 2m) constant orthonormal vectors {Uj ∈ Cm2
: 1 ≤ j ≤

(m2 + n− 2m)} such that
X ⊥ Span{Uj}.

If we let X = Span{Uj}⊥, then Dim(X) = m2 − (m2 + n − 2m) = (2m − n) and ∀z ∈ Bn,
X (z) ∈ X.

Let u be a vector in Cn. If u = (u1, . . . , un), define the first directional derivative of a

function g along u as
∂g

∂u
:=

n∑
i=1

ui
∂g

∂zi
and second directional derivative along u as

∂2g

∂u2
:=

∂

∂u

∂g

∂u
.

Now, the second directional derivative of X along u at 0 is

∂2X
∂u2

(0) =

(
2
∂a1

∂u

∂B

∂u
, . . . , 2

∂am
∂u

∂B

∂u

)∣∣∣∣
z=0

.

By doing unitary transformations in the target, we can assume that the tangent space of
the image of A at the origin of Cm is the linear subspace defined by zn+1 = zn+2 = · · · =
zm = 0. Therefore we can find n tangent vectors u1, . . . ,un such that(

∂a1

∂ui
, . . . ,

∂am
∂ui

)∣∣∣∣
z=0

= Ei, 1 ≤ i ≤ n,

where Ei are the standard unit vectors in Cm. Then

∂2X
∂u1

2
(0) = ( 2

∂B

∂u1

(0), 0, 0, · · · 0, 0, · · · 0, )

∂2X
∂u2

2
(0) = ( 0, 2

∂B

∂u2

(0), 0, · · · 0, 0, · · · 0, )

...
...

∂2X
∂un

2
(0) = ( 0, 0, 0, · · · 2

∂B

∂un

(0), 0, · · · 0, )

(4.2)

Note that for all i,
∂2X
∂u2

i

(0) ∈ X. They are linearly independent because ∀i ∂B
∂ui
6= 0 for B is

non-degenerate at the origin. SinceDim(X) = (2m−n), we can complete {∂
2X
∂u2

1

(0), . . . ,
∂2X
∂u2

n

(0)}

to a basis of X by adding certain (2m − 2n) vectors in Cm2
, denoted by {P1, . . . ,P2m−2n}.

For each j, write Pj = (P 1
j , . . . , P

m
j ), where P i

j ∈ Cm.

Since X (z) ∈ X = Span{∂
2X
∂u2

1

(0), . . . ,
∂2X
∂u2

n

(0),P1, . . . ,P2m−2n}, by Eq.(4.1) and Eq.(4.2),

we see from considering the last m coordinates that for m = n, B(z) ∈ Span{ ∂B
∂un

(0)} and

for m > n, B(z) ∈ Span{Pm
1 , . . . , P

m
2m−2n}. In the first case (m = n), the image of B lies

in a subspace of dimension 1 while in the second case (m > n) in a subspace of dimension
2m− 2n which is less than m because m < 2n and therefore in both cases the image of B lies
in a proper linear subspace of Cm and this contradicts our initial assumption and the proof
is complete.
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