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Robustness Analysis of Genetic Regulatory

Networks Affected by Model Uncertainty

Graziano Chesi
∗

Abstract

A fundamental problem in systems biology consists of investigat-
ing robustness properties of genetic regulatory networks (GRNs) with
respect to model uncertainty. This paper addresses this problem for
GRNs where the coefficients are rationally affected by polytopic un-
certainty, and where the saturation functions are not exactly known.
First, it is shown that a condition for ensuring that the GRN has a
globally asymptotically stable equilibrium point for all admissible un-
certainties can be obtained in terms of a convex optimization problem
with linear matrix inequalities (LMIs), hence generalizing existing re-
sults that mainly consider only the case of GRNs where the coefficients
are linearly affected by the uncertainty and the regulatory functions
are in SUM form. Second, the problem of estimating the worst-case
convergence rate of the trajectories to the equilibrium point over all
admissible uncertainties is considered, and it is shown that a lower
bound of this rate can be computed by solving a quasi-convex opti-
mization problem with LMIs. Third, the paper considers the problem
of estimating the set of uncertainties for which the GRN has a globally
asymptotically stable equilibrium point. This problem is addressed,
firstly, by showing how one can compute estimates with fixed shape
by solving a a quasi-convex optimization problem with LMIs, and sec-
ondly, by deriving a procedure for computing estimates with variable
shape. Numerical examples illustrate the use of the proposed tech-
niques.

Keywords: Genetic regulatory network; Model uncertainty; Stability;
Robustness.
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1 Introduction

It is well-known that genetic regulatory networks (GRNs) play a key role
in systems biology as they explain the interactions between genes and pro-
teins. Analyzing these interactions is fundamental in order to understand
and possibly control the complex mechanisms that regulate biological func-
tions in living organisms. GRNs can be described either by Boolean models
or by differential equation models. In the latter case, the time derivative of
each concentration is expressed through a function that typically consists
of two parts: a linear part defining the natural decay of the concentration,
and a nonlinear part describing the interaction among the concentrations.
The nonlinear part contains saturation functions, such as the Hill functions,
which are combined via sums (in this case the GRN is said to have SUM reg-
ulatory functions) or products (in this case the GRN is said to have PROD
regulatory functions). See e.g. [14, 2, 4, 19, 1, 5, 16, 17, 18, 6, 21] and
references therein.

GRN models are unavoidably affected by uncertainty. A simple reason
is that the coefficients and the saturation functions of a GRN cannot be
measured exactly. Another reason is that one has often to consider a family
of GRNs in order to study the behavior of a class of organisms and not of
a specific one only. This means that GRN models contain uncertain pa-
rameters, which are generally constrained in a bounded set of interest. The
reader is referred to [10] and references therein for models and techniques
typically used to deal with uncertainty in the case of linear systems.

This paper investigates robustness properties of GRNs described by dif-
ferential equation models and affected by model uncertainty. Specifically, it
is assumed that the coefficients of the GRN depend rationally on an uncer-
tain vector constrained in a polytope, and that the saturation functions are
not exactly known. First, a condition for ensuring that the GRN has a glob-
ally asymptotically stable equilibrium point for all admissible uncertainties
is provided in terms of a convex optimization problem with linear matrix
inequalities (LMIs), hence generalizing existing results that mainly consider
only the case of GRNs where the coefficients are linearly affected by the
uncertainty and the regulatory functions are in SUM form, see e.g. our pre-
vious work [11]. This condition is built by introducing a variable Lyapunov
function candidate polynomially parametrized by the uncertainty and by
exploiting the square matrix representation (SMR). Second, the problem of
estimating the worst-case convergence rate of the trajectories to the equilib-
rium point over all admissible uncertainties is considered. It is shown that
a lower bound of this rate can be computed by solving a generalized eigen-
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value problem (GEVP), which is a quasi-convex optimization problem with
LMIs. Third, the paper considers the problem of estimating the set of uncer-
tainties for which the GRN has a globally asymptotically stable equilibrium
point. It is shown that inner estimates with fixed shape of this set can be
computed via a GEVP, moreover a procedure for obtaining estimates with
variable shape is derived. Some examples with real GRNs illustrate the use
of the proposed techniques. A preliminary version of this paper is reported
in [7].

The organization of the paper is as follows. Section 2 introduces some
preliminaries. Section 3 derives the proposed results. Section 4 presents two
illustrative examples. Lastly, Section 5 concludes the paper with some final
remarks.

2 Preliminaries

The notation adopted in this paper is as follows:

- R: real number space;

- R+: non-negative real number space;

- 0: null matrix of size specified by the context;

- In: identity matrix n× n;

- A′: transpose of matrix A;

- A > 0 (resp., A ≥ 0): symmetric positive definite (resp., semidefinite)
matrix A;

- diag(a) (resp., diag(a1, a2, . . .)): diagonal matrix with the entries of
vector a (resp., scalars a1, a2, . . .) on the diagonal;

- conv(a, b, . . .): convex hull of vectors a, b, . . .;

- ‖a‖: Euclidean norm of vector a, i.e. ‖a‖ =
√
a′a;

- he(A): A+A′;

- A⊗B: Kronecker’s product of matrices A and B;

- s.t.: subject to.
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2.1 Uncertain GRNs

GRNs described by differential equation models have typically the form
{

ṁ(t) = Am(t) + b(p(t))
ṗ(t) = Cp(t) +Dm(t)

(1)

where m = (m1, . . . ,mn)
′ ∈ R

n
+ and p = (p1, . . . , pn)

′ ∈ R
n
+ are vectors con-

taining the concentrations of mRNA and protein, A,C ∈ R
n×n are negative

definite diagonal matrices, D ∈ R
n×n is a positive definite diagonal matrix,

and b : Rn
+ → R

n
+ is a nonlinear function.

For instance, in GRNs with SUM regulatory functions the j-th entry of
b(p) is given by

bi(p) =

n
∑

j=1

αi,jbi,j(pj) (2)

where the functions bi,j : R+ → R+ can be expressed as

bi,j(pj) =























fj(pj) if TF j is an activator
of gene i

1− fj(pj) if TF j is a repressor
of gene i

0 otherwise

(3)

for some saturation functions fj : R+ → R+, which typically are chosen of
Hill form according to

fj(pj) =
p
hj

j

β
hj

j + p
hj

j

(4)

for some positive scalars βj and hj . In GRNs with PROD regulatory func-
tions, bi(p) is a product of functions like bi,j(pj). In general, hence, b(p) can
be expressed as

b(p) = Bg(p) + θ (5)

for some B ∈ R
n×l and θ ∈ R

n
+, where the entries of the function g : Rn

+ →
R
l
+ are a subset of the functions f1(p1), . . . , fn(pn) and their products. For

instance, one can have

g(p) = (f1(p1), f3(p3), f1(p1)f2(p2))
′. (6)

In this paper we consider GRNs as in (1) affected by parametric model
uncertainty, in particular

{

ṁ(t) = A(u)m(t) +B(u)φ(p(t)) + θ(u)
ṗ(t) = C(u)p(t) +D(u)m(t)

(7)
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where u ∈ R
q is a time-invariant uncertain vector, and the function φ :

R
n
+ → R

l
+ account for uncertainty on the function g(p) in (5). We consider

that u is constrained in a polytope according to

u ∈ U
U = conv

{

u(1), . . . , u(r)
} (8)

for some u(i) ∈ R
q. The functions of u in (7) are assumed rational, and we

express them as

A(u) =
Â(u)

τ(u)
, . . . , θ(u) =

θ̂(u)

τ(u)
(9)

where Â(u), . . . , θ̂(u) are matrix polynomials, and τ(u) is a polynomial pos-
itive on U , i.e.

τ(u) > 0 ∀u ∈ U . (10)

Moreover, we consider that φ(p) is constrained as

(φi(y + p)− φi(p))





n
∑

j=1

λi,jyj − φi(y + p) + φi(p)



≥ 0

∀p, y ∈ R
n : pi ≥ 0, yi ≥ −pi ∀i = 1, . . . , l

(11)

for some scalars λi,j. We denote with Φ the set of functions φ(p) satisfying
(11), i.e.

Φ = {φ(·) : (11) holds} . (12)

The problems addressed in this paper are as follows:

1. to establish whether the uncertain GRN (7) has a globally asymptot-
ically stable equilibrium point in R

n
+ × R

n
+ for all u ∈ U and for all

φ(·) ∈ Φ, which is denoted by (m∗, p∗);

2. to estimate the worst-case convergence rate of the concentrations, i.e.

γ∗ = inf
u∈U ,φ(·)∈Φ

sup

{

γ ∈ R : ‖z(t)‖2 ≤ ξe−γt

∀t ≥ 0 for some ξ ∈ R

} (13)

and

z =

(

x
y

)

, x = m−m∗, y = p− p∗; (14)

5



3. to estimate the set of vectors u for which (7) has a globally asymptot-
ically stable equilibrium point in R

n
+ ×R

n
+, i.e.

S =

{

u ∈ R
q : (m∗, p∗) ∈ R

n
+ × R

n
+ is globally

asymptotically stable for all φ(·) ∈ Φ

}

.
(15)

Remark 1. Let us observe that the function φ(p) in (7) can be either
known or unknown, and can contain Hill and non-Hill saturation functions,
provided that condition (11) holds. Also, let us observe that (7) includes
GRN models typically adopted in the literature, such as GRNs in SUM form
or in PROD form, for instance GRNs in SUM form can be considered by
choosing

φ(p) = (f1(p1), . . . , fn(pn))
′. (16)

Remark 2. Whenever the generic i-th entry of φ(p) is a Hill function
fj(pj) as in (4) with βj > 0 and hj > 1, condition (11) can be satisfied for
such an index i by simply choosing λi,k = 0 for k 6= j, and

λi,j =
h2j − 1

4βjhj

(

hj + 1

hj − 1

)1/hj

. (17)

Moreover, if the constants βj and hj are unknown in the ranges [β−
j , β

+
j ]

and [h−j , h
+
j ] with β−

j > 0 and h−j > 1, then condition (11) can be satisfied

for the considered index i as just mentioned by replacing βj and hj with β−
j

and h+j , respectively.

2.2 Forms and SMR

The techniques proposed in this paper exploit forms, i.e. polynomials with
all monomials of the same degree (also known as homogeneous polynomials).
Forms can be represented through the square matrix representation (SMR)
introduced in [12]. Specifically, let s(x) be a form of degree 2d in x ∈ R

n,
and let bs(x) be a vector containing all monomials of degree equal to d in x.
Then, s(x) can be written as

s(x) = bs(x)
′ (S + L(α)) bs(x) (18)

where S = S′ is such that

s(x) = bs(x)
′Sbs(x), (19)
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L(α) is a linear parametrization of the subspace

L(bs) =
{

L = L′ : bs(x)
′Lbs(x) = 0 ∀x

}

(20)

and α is a free vector of length equal to the dimension of L(bs). The ma-
trices S and S + L(α) are called SMR matrices of s(x) (also known as
Gram matrices). The SMR allows one to establish whether a form s(x) is
a sum of squares of forms (SOS), i.e. s(x) =

∑k
i=1 si(x)

2 for some forms
s1(x), . . . , sk(x). Indeed, s(x) is SOS if and only if there exists α satisfying
the LMI

S + L(α) ≥ 0. (21)

Similarly, the SMR can be employed to represent also matrix forms. In
particular, a matrix form S(x) = S(x)′ ∈ R

r×r of degree 2d in x ∈ R
n can

be written as
S(x) = ∆(MS + L(α), bs(x), Ir) (22)

where ∆ denotes the notation

∆(MS + L(α), bs(x), Ir) = (bs(x)⊗ Ir)
′ (MS + L(α))

· (bs(x)⊗ Ir) ,
(23)

MS = M ′
S is such that

S(x) = ∆(MS , bs(x), Ir), (24)

L(α) is a linear parametrization of the subspace

L(bs, Ir) =
{

L = L′ : ∆(L, bs(x), Ir) = 0 ∀x
}

(25)

and α is a free vector of length equal to the dimension of L(bs, Ir). By
using the SMR one can establish whether a matrix form S(x) is SOS, i.e.
S(x) =

∑k
i=1 Si(x)

′Si(x) for some matrix forms S1(x), . . . , Sk(x). Indeed,
S(x) is SOS if and only if there exists α satisfying the LMI

MS + L(α) ≥ 0. (26)

The reader is referred to [10, 8] for details and algorithms about the SMR
and SOS polynomials.

3 Robustness Analysis

Here we describe the proposed results for robustness analysis. Specifically,
we provide a condition for the existence of a globally asymptotically stable
equilibrium point for all u ∈ U and for all φ(·) ∈ Φ in Section 3.1. Then,
we address the estimation of γ∗ in Section 3.2. Lastly, we consider the
estimation of S in Section 3.3.
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3.1 Robust Stability

Let d be the maximum degree of the matrix polynomials Â(u), . . . , θ̂(u), and
let us express Â(u) as

Â(u) =
d

∑

i=0

Â(i)(u) (27)

where Â(i)(u) is a matrix form of degree i in u. Any vector u ∈ U can be
written as

u =
r

∑

i=1

wiu
(i) (28)

for some w ∈ W where W is the simplex:

W =

{

w ∈ R
r
+ :

r
∑

i=1

wi = 1

}

. (29)

Let us define

Ā(w) =

d
∑

i=0





r
∑

j=1

wj





d−i

Â(i)





r
∑

j=1

wju
(j)



 . (30)

We have that Ā(w) is a matrix form of degree d in w. Moreover,

∀u ∈ U ∃w ∈ W : Â(u) = Ā(w)

∀w ∈ W ∃u ∈ U : Â(u) = Ā(w).
(31)

Similarly, we obtain the matrix forms B̄(w), C̄(w), D̄(w), θ̄(w) and τ̄(w),
and hence (7) can be equivalently rewritten as















ṁ(t) =
Ā(w)m(t) + B̄(w)φ(p(t)) + θ̄(w)

τ̄(w)

ṗ(t) =
C̄(w)p(t) + D̄(w)m(t)

τ̄(w)
.

(32)

Now, let P (w) = P (w)′ ∈ R
2n×2n be a matrix form of degree δ in w, and

let us define Q(w) = Q(w)′ ∈ R
2n+l×2n+l as

Q(w) = he





P (w)

(

Ā(w) 0 B̄(w)
D̄(w) C̄(w) 0

)

0



 (33)
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where the “0”-blocks are null matrices of suitable size. Also, let s(w) ∈ R
l

be a vector form of degree δ + d in w, and let us define R(w) = R(w)′ ∈
R
2n+l×2n+l as

R(w) = he





0 0
0 Λ′diag(s(w))
0 −2diag(s(w))



 (34)

where the “0”-blocks are null matrices of suitable size, and Λ ∈ R
l×n is the

matrix having on its (i, j)-th entry the scalar λi,j introduced in condition
(11).

Let bP (w) and bQ(w) be vectors containing all monomials in w of degrees
δ and δ + d, respectively, and let us parametrize P (w) and s(w) as

P (w) = CP (bP (w) ⊗ I2n)
s(w) = c′sbQ(w)

(35)

where the matrix CP and the vector cs are variables to be determined. Let
us introduce the notation

sq(w) =
(

w2
1, . . . , w

2
q

)′
(36)

and let us express P (sq(w), Q(sq(w)) and R(sq(w)) as

P (sq(w)) = ∆(MP , bP (w), I2n)
Q(sq(w)) = ∆(MQ, bQ(w), I2n+l)
R(sq(w)) = ∆(MR, bQ(w), I2n+l)

(37)

for some matrices MP = M ′
P , MQ = M ′

Q and MR = M ′
R.

Theorem 1 The uncertain GRN (7) has a globally asymptotically stable

equilibrium point in R
n
+×R

n
+ for all u ∈ U and for all φ(·) ∈ Φ if there exist

CP , cs, α and β satisfying the LMIs

{

0 < MP + LP (α)
0 > MQ +MR + LQ(β)

(38)

where LP (α) and LQ(β) are linear parametrizations of L(bP , I2n) and L(bQ, I2n+l).

Proof. Let us pre- and post- multiply the first LMI in (38) by (bP (w)⊗ I2n)
′

and bP (w)⊗ I2n, respectively. We obtain:

0 < (bP (w)⊗ I2n)
′ (MP + LP (α)) (bP (w)⊗ I2n)

= ∆(MP , bP (w), I2n)
= P (sq(w))

(39)
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i.e. P (sq(w)) > 0 for all w 6= 0. From Theorem 1.17 in [10] this holds if and
only if

P (w) > 0 ∀w ∈ W. (40)

Let us pre- and post- multiply the second LMI in (38) by (bQ(w) ⊗ I2n+l)
′

and bQ(w)⊗ I2n+l, respectively. We analogously obtain that

Q(w) +R(w) < 0 ∀w ∈ W. (41)

Let us define x, y and z as in (14) where (m∗, p∗) is an unknown equilibrium
point of (32) in R

n
+ × R

n
+. Let us also define the function

v(z, w) = z′P (w)z. (42)

One has that the time derivative of v(z, w) along the trajectories of (32) is
given by

v̇(ζ, w) =
ζ ′Q(w)ζ

τ̄(w)
(43)

where

ζ =
(

z′, z′φ

)′

zφ = φ(y + p∗)− φ(p∗).
(44)

Let us observe that the condition Q(w) + R(w) < 0 for all w ∈ W implies
that the entries of s(w) are positive for all w ∈ W. This fact and the
definition of zφ imply that

ζ ′R(w)ζ ≥ 0 ∀w ∈ W ∀φ(·) ∈ Φ. (45)

Consequently, one has that

0 > ζ ′ (Q(w) +R(w)) ζ ≥ ζ ′Qζ (46)

hence implying that v(x, y, w) > 0 and v̇(ζ, w) < 0 for all (x, y) 6= 0 for all
w ∈ W and for all φ(·) ∈ Φ since (10) holds. Therefore, (m∗, p∗) is a globally
asymptotically stable equilibrium point in R

n
+ × R

n
+. �

Theorem 1 provides a condition for establishing the existence of a glob-
ally asymptotically stable equilibrium point in the GRN (7) for all admissi-
ble uncertainties. This condition consists of an LMI feasibility test, which
amounts to solving a convex optimization problem, see e.g. [3]. Also, this
condition depends on the chosen integer δ. It can be shown that the conser-
vatism of the condition does not increase as δ increases, moreover there can
be cases where the condition is satisfied for δ+1 but it is not for δ. On the
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other hand, the computational burden increases as δ increases, and hence a
trade-off is necessary when choosing δ.

One way to select δ consists of starting with the smallest allowed value,
i.e. δ = 0, and then increasing δ till either the condition of Theorem 1 is
satisfied or the computational burden becomes too large: this is motivated
by the fact that the computational burden for δ + 1 is always much larger
than that for δ. Another way consists of choosing the largest δ for which
the maximum number of scalar variables in the LMI feasibility test (38)
(and, hence, the computational burden) is smaller than a specified limit:
this allows one obtain the least conservative condition for a selected price
without trying different values of δ.

From the biological viewpoint the condition of Theorem 1 allows one to
ensure that the concentrations of mRNA and protein converge to some con-
stant values for all admissible uncertainties. This also means that, whenever
the condition holds, the GRN has no multiple equilibria and no limit cycles,
which may represent an undesired condition for the organism under study
such as a disease. See e.g. [15] regarding undesired multiple equilibria.

3.2 Worst-Case Convergence Rate

Here we consider the problem of estimating the worst-case convergence rate
γ∗ defined in (13). It is known that the convergence rate of the trajectories
can be estimated by means of Lyapunov functions, in particular by imposing
that the time derivative of the Lyapunov function is smaller than the Lya-
punov function scaled by the convergence rate. In our case this translates
into the condition

v̇(ζ, w) ≤ −γv(z, w) ∀x, y ∀w ∈ W ∀φ(·) ∈ Φ (47)

where v(z, w) and v̇(ζ, w) are defined as in (42)–(43), and γ is the guaranteed
convergence rate. In fact, (47) ensures that

v(z(t), w) ≤ v(z(0), w)e−γt ∀z(0) ∀t ≥ 0. (48)

However, a difficulty arises: in fact, the condition (47) cannot be expressed
via LMIs since both γ and v(z, w) are variables. This means that estimating
the worst-case convergence rate γ∗ would require the use of bilinear matrix
inequalities (BMIs), which unfortunately lead to nonconvex optimization.

In order to cope with this problem, we proceed as follows. Let us
redefine the integer d as the maximum degree of the matrix polynomials
Â(u), . . . , θ̂(u) and τ(u) (i.e., considering also τ(u)), and for such a new d

11



let us redefine all the quantities introduced in Section 3.1. Moreover, let us
define S(w) = S(w)′ ∈ R

2n+l×2n+l as

S(w) =

(

τ̄(w)P (w) 0
0 0

)

(49)

where the “0”-blocks are null matrices of suitable size, and let us express
S(sq(w)) as

S(sq(w)) = ∆(MS , bQ(w), I2n+l) (50)

for some matrix MS = M ′
S .

Theorem 2 Let us define the quantity

γ̂δ =
1

µ̂
(51)

where
µ̂ = inf

CP ,c
(i)
s ,α,β(i),µ

µ

s.t.



























0 < MP + LP (α)

0 > µ(MQ +M
(1)
R + LQ(β

(1))) +MS

+M
(2)
R + LQ(β

(2))

0 < MQ +M
(1)
R + LQ(β

(1))
0 < µ

(52)

where LP (α) and LQ(·) are linear parametrizations of L(bP , I2n) and L(bQ, I2n+l),

and M
(i)
R is built as MR by replacing cs with c

(i)
s . Then,

γ̂δ ≤ γ∗. (53)

Proof. Let us suppose that the inequalities in (52) hold. From the first
inequality, by proceeding as in the proof of Theorem 1, one obtains that
P (w) > 0 for all w ∈ W. Let us pre- and post- multiply the second inequality
in (38) by (bQ(w)⊗ I2n+l)

′ and bQ(w)⊗ I2n+l, respectively. We obtain that

0 > ∆(µ(MQ +M
(1)
R + LQ(β

(1))) +MS +M
(2)
R

+LQ(β
(2)), bQ(w), I2n+l)

= µ(Q(sq(w)) +R(1)(sq(w))) + P (sq(w))

+R(2)(sq(w))

(54)
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for all w 6= 0, and hence that

Q(w) +R(1)(w) +
1

µ

(

τ̄(w)P (w) +R(2)(w)
)

< 0 (55)

for all w ∈ W. Let us observe that

ζ ′R(i)ζ ≥ 0 ∀w ∈ W ∀i = 1, 2 ∀φ(·) ∈ Φ, (56)

and hence

τ̄(w)

(

v̇(ζ, w) +
1

µ
v(z, w)

)

< 0 ∀w ∈ W ∀φ(·) ∈ Φ. (57)

From (10) this implies that µ−1 < γ∗, and therefore (53) holds. �

Theorem 2 provides a lower bound of the worst-case convergence rate
of the concentrations γ∗ in (13). This lower bound is obtained by solving
(52), which is a GEVP and belongs to the class of quasi-convex optimiza-
tion problems, see e.g. [3]. It is worth observing that the fourth inequality
in (52), which ensures that the obtained lower bound is positive, is not
conservative since γ∗ is clearly positive if the GRN (7) is globally asymp-
totically stable. Moreover, the third inequality in (52) guarantees that the
optimization problem is a GEVP, and the variable β(1) has the role of ex-
ploiting additional degrees of freedom through the matrix LQ(β

(1)) in this
inequality.

The lower bound provided by Theorem 2 is a function of the chosen δ.
It can be shown that the conservatism of this lower bound does not increase
as δ increases, i.e.

γ̂δ+1 ≥ γ̂δ. (58)

As in the case of Theorem 1, a trade-off between non-conservatism of the
condition and computational burden of the optimization problem is neces-
sary when choosing δ, which can be done following the guidelines at the end
of Section 3.1.

The biological implication of Theorem 2 is to provide a guaranteed min-
imum speed of the convergence of the concentrations of mRNA and protein
to their equilibrium values. This allows one to establish how fast the GRN
can recover for all admissible uncertainties from an abnormal state.

3.3 Stable Uncertainty Sets

The third problem we consider consists of estimating S in (15). Let us start
by noticing that this problem could be addressed by letting the vertices
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u(1), . . . , u(r) in (8) vary in R
q, and by maximizing the volume of the convex

polytope U under the condition provided by Theorem 1. Unfortunately,
this would result in a nonconvex optimization problem since the second
inequality in (38) would become a polynomial matrix inequality.

Hence, we consider a slightly different problem, which consists of de-
termining the largest set of fixed shape contained in S. Specifically, let us
express the vertex u(i) as

u(i) = u
(i)
0 + ςu

(i)
1 (59)

where u
(i)
0 ∈ R

q denotes a starting value for the i-th vertex, and u
(i)
1 ∈ R

q

denotes its direction of extension. The problem is hence to determine the
maximum value of ς for which U is a subset of S, i.e.

ς∗ = sup
U⊆S

ς. (60)

Clearly, in order for the above problem to be well-posed, it is necessary to

assume that the convex polytope U built with the vertices u
(1)
0 , . . . , u

(r)
0 is a

subset of S, i.e.
U|ς=0 ⊆ S. (61)

The above condition can be guaranteed by using Theorem 1.
Estimating ς∗ can be done in the general case by a one-parameter se-

quence of stability tests: in particular, for each fixed value ς1 of ς, one can
establish whether ς̄ ≤ ς∗ by using the condition provided by Theorem 1.
This one-parameter search can be performed via a bisection search in order
to speed up the convergence since

ς1 ≤ ς2 ⇒ U|ς1 ⊆ U|ς2 . (62)

In the case of affine linear dependence of the uncertain GRN (7) on
the uncertainty, the sought estimate of ς∗ can be obtained via a GEVP.
Specifically, let us define all the quantities introduced in Section 3.1, and
let us observe that if the functions of u in (7) are affine linear, then the
functions of w in (32) are linear. Taking into account that (28) boils down
to

u =

r
∑

i=1

wiu
(i)
0 + ς

r
∑

i=1

wiu
(i)
1 (63)

one has that Ā(w), . . . , θ̄(w) can be written as

Ā(w) = Ā0(w) + ςĀ1(w), . . . , θ̄(w) = θ̄0(w) + ςθ̄1(w) (64)
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where Ā0(w), . . . , θ̄0(w) depend on the vertices u
(1)
0 , . . ., u

(r)
0 , and Ā1(w), . . . , θ̄1(w)

depend on the directions u
(1)
1 , . . . , u

(r)
1 . For i = 0, 1 let us define Ti(w) =

Ti(w)
′ ∈ R

2n+l×2n+l as

Ti(w) = he





P (w)

(

Āi(w) 0 Φ̄(w)
D̄i(w) C̄i(w) 0

)

0



 (65)

where the “0”-blocks are null matrices of suitable size, and let us express
Ti(sq(w)) as

Ti(sq(w)) = ∆(MTi
, bQ(w), I2n+l) (66)

where MTi
= M ′

Ti
is built with respect to the vector bQ(w) used in (37).

Theorem 3 Let us define the quantity

ς̂δ =
1

µ̂
(67)

where
µ̂ = inf

CP ,c
(i)
s ,α,β(i),µ

µ

s.t.



























0 < MP + LP (α)

0 > µ(MT0 +M
(1)
R + LQ(β

(1))) +MT1

+M
(2)
R + LQ(β

(2))

0 < MT0 +M
(1)
R + LQ(β

(1))
0 < µ

(68)

LP (α) and LQ(·) are linear parametrizations of L(bP , I2n) and L(bQ, I2n+l),

and M
(i)
R is built as MR by replacing cs with c

(i)
s . Then,

ς̂δ ≤ ς∗. (69)

Proof. Let us suppose that the inequalities in (68) hold. From the first
inequality one obtains that P (w) > 0 for all w ∈ W. From the second
inequality we obtain that

0 > ∆(µ(MT0 +M
(1)
R + LQ(β

(1))) +MT1 +M
(2)
R

+LQ(β
(2)), bQ(w), I2n+l)

= µ(T0(sq(w)) +R(1)(sq(w))) + T1(sq(w))

+R(2)(sq(w))

(70)
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for all w 6= 0, and hence that

µ

(

T0(w) +
1

µ
MT1

)

+ µM
(1)
R +M

(2)
R < 0 ∀w ∈ W. (71)

Since ζ ′R(i)ζ ≥ 0 for all w ∈ W and for all φ(·) ∈ Φ, one has that v̇(ζ, w) < 0
at all the vertices

u(i) = u
(i)
0 +

1

µ
u
(i)
1 . (72)

Hence, µ−1 < ς∗, and therefore (69) holds. �

Hereafter we describe a procedure that can be used in order to estimate
S via a sequence of problems in the form (59)–(60). Specifically, the idea is
to use in each of these problems an elementary set of the uncertainty with
variable size in one direction and with fixed size in all the other ones. These
elementary sets are chosen in order to cover all the possible directions from
a common point. Problem (59)–(60) is hence solved for each of these sets in
order to determine the maximum extension of S along the considered vari-
able directions. A guaranteed estimate of S is therefore obtained by taking
the union of the computed estimates in the sequence. Figure 1 illustrates
this process in the planar case (i.e., u ∈ R

2) by using triangles as elementary
sets. These triangles have constant base and variable height, and are chosen
with different orientations.

From the biological viewpoint, the obtained estimate represents a set
of the uncertainties for which the concentrations of mRNA and protein are
guaranteed to converge to some constant values. This can help biologists in
analyzing and synthesizing GRNs with stable behaviors.

4 Examples

Here we present some illustrative examples with GRNs in SUM form, see
also [7] for examples with other kinds of GRNs. The computations are done
in Matlab with the toolbox SeDuMi. The SMR matrices involved in the
LMI problems are built with the algorithms reported in [10].
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(a) (b)

Figure 1: Procedure for estimating S. (a) Three elementary sets with dif-
ferent orientations are used to estimate the extension of S in three different
directions via Theorem 3. (b) Final estimate of S obtained as union of the
found elementary estimates.

4.1 Example 1

Let us consider the repressilator investigated in Escherichia coli [13] and
described by the model















ṁi(t) = −arepi mi(t) + brepi (1− fj(pj(t)))
ṗi(t) = −crepi (pi(t)−mi(t))
i = lacl, tetR, cl
j = cl, lacl, tetR

where fj(pj) is the Hill function in (4) with βj = 1 and hj = 2. Here
we consider a plausible family of such repressilator models parametrized by
three unknown parameters u1, u2 and u3:

arep1 = 2, arep2 = 3, arep3 = 1
brep1 = u1, brep2 = u2, brep3 = u3
crep1 = 1, crep2 = 1, crep3 = 1
ui ≥ 0, u1 + u2 + u3 = 6.

In this family, the coefficients arepi and crepi expressing the decay rate of
mRNA and protein are chosen, whereas the interaction coefficients brepi are
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let free under a normalization constraint. The motivation for considering
such a family is to investigate the effect of different interaction coefficients.

Let us define u = (u1, u2, u3)
′ and w = u/6. This system can be rewritten

as in (32) by choosing

Ā(w) = (w1 + w2 + w3)diag(−2,−3,−1)
B̄(w) = −6diag(w1, w2, w3)
C̄(w) = (w1 + w2 + w3)diag(−1,−1,−1)
D̄(w) = (w1 + w2 + w3)diag(1, 1, 1)
φ(p) = (f3(p3), f1(p1), f2(p2))

′

θ̄(w) = 6w
τ̄(w) = 1.

The conditions in (11) are simply satisfied by selecting the entries λi,j of Λ
according to Remark 2, i.e.

Λ =





0 0 0.650
0.650 0 0
0 0.650 0



 .

First, we consider the problem of establishing whether this family of
repressilator models has a globally asymptotically stable equilibrium point
in R

3
+×R

3
+. Hence, we use Theorem 1, and find that (38) does not hold for

δ = 0, but it holds for δ = 1 (the number of scalar variables in the LMIs is
138 for δ = 0 and 936 for δ = 1). This implies that, for all models of the
family, the concentrations of mRNA and protein converge to some constant
values, and hence that there are no multiple equilibria or limit cycles.

Second, in order to investigate more deeply this family, we consider the
problem of estimating the worst-case convergence rate of the concentrations,
i.e. γ∗ in (13). Hence, we use Theorem 2, and we find the lower bound
γ̂1 = 0.570 for δ = 1. Figure 2 shows the normalized magnitude of the
trajectories for some random admissible values of u, m(0) and p(0) and the
function e−γ̂1t.

From the biological viewpoint, γ̂ provides a guaranteed minimum speed
of convergence of the concentrations of mRNA and protein to their equilib-
rium values. In fact, each model of the family under study has a different
dynamical behavior, and this guaranteed minimum speed allows one to es-
tablish how fast the repressilator can recover (for all admissible interaction
coefficients) from an abnormal state, which in living organisms can be caused
for instance by diseases.
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Figure 2: (Example 1) Functions e−γ̂1t (dashed line) and ‖z(t)‖2/‖z(0)‖2
for some random admissible values of u, m(0) and p(0) (solid line).

4.2 Example 2

Let us consider the motif of genes Gal3 and Gal80 in Saccharomyces cere-

visiae galactose regulation (see e.g. [20] and references therein) which can
be expressed in the form of system (1)–(5) as































ṁ1(t) = −a1m1(t) + e12f2(p2(t)) + θ1
ṁ2(t) = −a2m2(t) + e21f1(p1(t)) + θ2
ṗ1(t) = −c1p1(t) + d1m1(t)
ṗ2(t) = −c2p2(t) + d2m2(t)

θ1 = −min{0, e12}
θ2 = −min{0, e21}
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where fi(pi) is the Hill function in (4) with

βi ∈ [0.5, 2]
hi ∈ {2, 3}.

The problem is to estimate the set of interaction coefficients e12 and e21 for
which the GRN has a globally asymptotically stable equilibrium point in
R
2
+ × R

2
+.

We express e12 and e21 as e12 = e120+u1 and e21 = e210+u2, where e120
and e210 represent the nominal value for the interaction coefficients, and u1
and u2 are uncertainties. The problem, hence, is to estimate S in (15). We
consider the following plausible case:

a1 = 1.1, a2 = 0.8, c1 = 1.3, c2 = 0.6
d1 = 0.9, d2 = 0.5, e120 = −0.5, e210 = −0.5.

We proceed as described in Section 3.3 by using as elementary sets 144
triangles centered in the origin with orientations equally distributed in the
interval [0, 360] deg. For each triangle we solve the GEVP (68), which has
113 scalar variables. We hence obtain the inner estimates of the set S shown
in Figure 3. The conditions in (11) are simply satisfied by selecting, e.g.,
φ(p) = (f1(p1), f2(p2))

′ and Λ = 1.680I2.
From the biological viewpoint, the area obtained in Figure 3 represents

a set of the interaction coefficients of the two genes for which the concen-
trations of mRNA and protein are guaranteed to converge to some constant
values. This means that, whenever the interaction coefficients lie inside such
a set, the motif has no multiple equilibria (i.e., the equilibrium values of the
concentrations are unique) and no limit cycles (i.e., the concentrations do
not present periodic oscillations).

5 Conclusion

Robustness analysis of GRNs with respect to model uncertainty is a key
problem in systems biology. This paper has addressed this problem for
GRNs where the coefficients are rationally affected by polytopic uncertainty,
and where the saturation functions are not exactly known. The proposed
techniques are based on the construction of a variable Lyapunov function
candidate parametrized by the uncertainty, and amount to solving convex
and quasi-convex optimization problems obtained by using the SMR.

From the biological viewpoint, these techniques allow one to ensure that
the concentrations of mRNA and protein converge to some constant values
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Figure 3: (Example 2) Set of interaction coefficients for which the GRN
has a globally asymptotically stable equilibrium point in R

2
+×R

2
+: estimate

obtained for δ = 0 (solid line) and δ = 1 (dashed line).

for all admissible uncertainties, provide a guaranteed minimum speed of this
convergence, and allow one to estimate the set of the uncertainties for which
this convergence can be achieved. Therefore, these techniques can help
biologists in understanding and classifying the GRN models that present
typical behaviors of healthy organisms.

Future work will be devoted to investigate the conservatism of the pro-
posed methodology and possibly reduce it, e.g. by following the ideas pro-
posed in [9] for the case of certain GRNs.
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