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Abstract 

 

This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing 

problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging 

behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also 

proposed to improve the solution quality of the original version. The performance of the enhanced 

heuristic is evaluated on two sets of standard benchmark instances, and compared with the original 

artificial bee colony heuristic. The computational results show that the enhanced heuristic 

outperforms the original one, and can produce good solutions when compared with the existing 

heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the 

capacitated vehicle routing problem. 
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1. Introduction 
 

The Capacitated Vehicle Routing Problem (CVRP) (i.e., the classical vehicle routing problem) is 

defined on a complete undirected graph ( , )G V E= , where {0,1, , }V n= …  is the vertex set and 

( ){ , : , , }E i j i j V i j= ∈ <  is the edge set. Vertices 1, ,n…  represent customers; each customer i  is 

associated with a nonnegative demand  id  and a nonnegative service time is . Vertex 0 represents 

the depot at which a fleet of m  homogeneous vehicles of capacity Q  is based. The fleet size is 

treated as a decision variable. Each edge ( , )i j  is associated a nonnegative traveling cost or travel 

time ijc . The CVRP is to determine  m  vehicle routes such that (a) every route starts and ends at the 

depot; (b) every customer is visited exactly once; (c) the total demand of any vehicle route does not 

exceed Q ; and (d) the total cost of all vehicle routes is minimized. In some cases, the CVRP also 

imposes duration constraints where the duration of any vehicle route must not exceed a given bound 

L . Mathematical formulations of the CVRP can be found in Toth and Vigo (2002). 

As the CVRP is a NP-hard problem, only instances of small sizes can be solved to optimality using 

exact solution methods (e.g., Toth and Vigo, 2002; Baldacci et al., 2010), and this might not even be 

possible if it is required to use limited amount of computing time. As a result of this, heuristic 

methods are used to find good, but not necessarily guaranteed optimal solutions using reasonable 

amount of computing time. During the past two decades, an increasing number of publications on 

heuristic approaches have been developed to tackle the CVRP. The work can be categorized into 

evolutionary algorithms (Baker and Ayechew, 2003; Berger and Barkaoui, 2003; Prins, 2004; 

Mester and Bräysy, 2007; Prins, 2009; Nagata and Bräysy, 2009), ant colony optimization 

(Bullnheimer et al., 1999; Reimann et al., 2004; Yu et al., 2009), simulated annealing (Osman, 1993; 

Lin et al., 2009), tabu search (Taillard, 1993; Gendreau et al., 1994; Rego and Roucairol, 1996; 

Rego, 1998; Cordeau et al., 2001; Toth and Vigo, 2003; Derigs and Kaiser, 2007), path-relinking 

(Ho and Gendreau, 2006), adaptive memory procedures (Rochat and Taillard, 1995; Tarantilis and 

Kiranoudis, 2002; Tarantilis, 2005), large neighborhood search (Ergun et al., 2006; Pisinger and 

Ropke, 2007), variable neighborhood search (Kytöjoki et al., 2007; Chen et al., 2010), deterministic 

annealing (Golden et al., 1998; Li et al., 2005), honey-bees mating optimization (Marinakis et al., 

2010), particle swarm optimization (Ai and Kachitvichyanukul, 2009) and hybrid Clarke and 

Wright’s savings heuristic (Juan et al., 2010). 

Some of the above CVRP heuristics are based on previously developed heuristics. In the following 

we will mention some of the relationships. Rochat and Taillard’s (1995) adaptive memory 
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procedure used the idea of genetic algorithms of combining solutions to construct new solutions and 

employed the tabu search of Taillard (1993) as an improvement procedure. Tarantilis (2005) had a 

similar framework as Tarantilis and Kiranoudis (2002) (which is a variant of the idea proposed by 

Rochat and Taillard), but is different in that it does not rely on probability as in Tarantilis and 

Kiranoudis (2002) and also uses a more sophisticated improvement procedure. The Unified tabu 

search (Cordeau et al., 2001) and the tabu search used by Ho and Gendreau (2006) contain some of 

the features found in Taburoute (Gendreau et al., 1994); infeasible solutions are considered by 

extending the objective function with a penalty function and the use of continuous diversification. 

Granular tabu search (Toth and Vigo, 2003) restricts the neighborhood size by removing edges 

from the graph that are unlikely to appear in an optimal solution. Later, other researchers have also 

applied this idea on their CVRP heuristics (e.g., Li et al., 2005; Mester and Bräysy, 2007; Chen et 

al., 2010). For extensive surveys on VRP metaheuristics, the reader is referred to Gendreau et al. 

(2002), Cordeau et al. (2005) and Gendreau et al. (2008). 

While the above heuristics have been widely used and successfully applied to solve the CVRP for 

several years, Artificial Bee Colony (ABC) is a fairly new approach introduced just a few years ago 

by Karaboga (2005), but has not yet been applied to solve the CVRP. However, ABC has been 

applied to solve other problems with great success (Baykasoğly et al., 2007; Kang et al., 2009; 

Karaboga, 2009; Karaboga and Basturk, 2007, 2008; Karaboga and Ozturk, 2009; Singh, 2009). It 

is worthwhile to evaluate the performance of the ABC algorithm for solving the CVRP.  

In this paper, we evaluate the performance of the ABC heuristic using classical benchmark instances. 

An enhanced version of ABC heuristic is also proposed to improve the performance of the basic 

ABC heuristic for solving the CVRP. Computational results show that the enhanced ABC heuristic 

can produce much better solutions than the basic one, and the computation time of the enhanced 

ABC has slightly increased. The results obtained by the enhanced ABC heuristic are also 

competitive to those obtained from other metaheuristics. The paper is organized as follows. In 

Section 2, we give a review of the basic ABC algorithm. Refinements of the basic ABC algorithm 

and how they are applied to the CVRP are presented in Section 3. Experimental results showing the 

improvements in the performance of the enhanced ABC algorithm are presented in Section 4. 

Finally, Section 5 concludes the paper. 
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2. Artificial bee colony algorithm 

 

The ABC algorithm belongs to a class of evolutionary algorithms that are inspired by the intelligent 

behavior of the honey bees in finding nectar sources around their hives. This class of metaheuristics 

has only started to receive attention recently. Different variations of bee algorithms under various 

names have been proposed to solve combinatorial problems. But in all of them, some common 

search strategies are applied; that is, complete or partial solutions are considered as food sources 

and the groups of bees try to exploit the food sources in the hope of finding good quality nectar (i.e., 

high quality solutions) for the hive. In addition, bees communicate between themselves about the 

search space and the food sources by performing a waggle dance. 

In the ABC algorithm, the bees are divided into three types; employed bees, onlookers and scouts. 

Employed bees are responsible for exploiting available food sources and gathering required 

information. They also share the information with the onlookers, and the onlookers select existing 

food sources to be further explored. When the food source is abandoned by its employed bee, the 

employed bee becomes a scout and starts to search for a new food source in the vicinity of the hive. 

The abandonment happens when the quality of the food source is not improved after performing a 

maximum allowable number of iterations. 

The ABC algorithm is an iterative algorithm, and it starts by generating random solutions as the 

food sources and assigning each employed bee to a food source. Then during each iteration, each 

employed bee finds a new food source near its originally assigned (or old) food source (using a 

neighborhood operator). The nectar amount (fitness) of the new food source is then evaluated. If the 

new food source has more nectar than the old one, then the old one is replaced by the new one. 

After all employed bees have finished with the above exploitation process, they share the nectar 

information of the food sources with the onlookers. Then, each onlooker selects a food source 

according to the traditional roulette wheel selection method. After that, each onlooker finds a food 

source near its selected food source (using a neighborhood operator) and calculates the nectar 

amount of the neighbor food source. Then, for each old food source, the best food source among all 

the food sources near the old food source is determined. The employed bee associated with the old 

food source is assigned to the best food source and abandons the old one if the best food source is 

better than the old food source. A food source is also abandoned by an employed bee if the quality 

of the food source has not been improved for limit  (a predetermined number) successive iterations. 

That employed bee then becomes a scout, and searches for new food source randomly. After the 

scout finds a new food source, the scout becomes an employed bee again. After each employed bee 



5 
 

is assigned to a food source, another iteration of the ABC algorithm begins. The whole process is 

repeated until a stopping condition is met. 

The steps of the ABC algorithm are summarized as follows: 

1. Randomly generate a set of solutions as initial food sources ix , 1, ,i τ= … . Assign each 

employed bee to a food source. 

2. Evaluate the fitness ( )if x  of each of the food sources ix , 1, ,i τ= … . 

3. Set 0v =  and 1 2 0l l lτ= = … = = . 

4. Repeat 

a. For each food source ix  

i. Apply a neighborhood operator on ix x→ ɶ . 

ii.  If ( ) ( )if fx x>ɶ , then replace ix  with xɶ  and  0il = , else 1i il l= + . 

b. Set ,  1, ,iG i τ= ∅ = … , where   iG  is the set of neighbor solutions of food source i . 

c. For each onlooker 

i. Select a food source ix  using the fitness-based roulette wheel selection 

method. 

ii.  Apply a neighborhood operator on ix x→ ɶ . 

iii.  { }i i xG G ∪= ɶ  

d. For each food source ix  and iG ≠ ∅  

i. Set  arg max  )ˆ (
iGx fσ σ∈∈ . 

ii.  If ( ) ( )ˆif x xf< , then replace ix  with x̂  and 0il = , else 1i il l= + . 

e. For each food source ix  

i. If il limit= , then replace ix  with a randomly generated solution. 

f. 1v v= +  

5. Until ( )v MaxIterations=  

 

3. Application to the CVRP 

 

In this section, different components of the algorithm are first explained, and then how they are 

woven together and applied to the CVRP is described. 
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3.1 Solution representation 

In order to maintain the simplicity of the ABC algorithm, a rather straightforward solution 

representation scheme is adopted. Suppose n  customers are visited by m  vehicle routes. The 

representation has the form of a vector of length ( )n m+ . In the vector, there are n  integers 

between 1 and n  inclusively representing customers’ identity. There are also m  0s in the vector 

representing the start of each vehicle route from the depot. The sequence between two 0s is the 

sequence of customers to be visited by a vehicle. Figure 1 illustrates a representation of a CVRP 

instance with 7n =  and 3m = . As shown in Figure 1, customers 4 and 1 are assigned to the same 

vehicle route and the vehicle visits customer 4 before customer 1. 

 

 

Figure 1. Solution representation 

 

3.2 Search space and cost functions 

The search may become restrictive if only the feasible part of the solution space is explored. Hence, 

we also allow the search to be conducted in the infeasible part of the solution space, so that the 

search can oscillate between feasible and infeasible parts of the solution space X . Each solution 

x X∈  consists of m  vehicle routes where each one of them starts and ends at the depot, and every 

customer is visited exactly once. Thus, x  may be infeasible with regard to the capacity and/or 

duration constraints. For a solution x , let ( )c x  denote its travel cost, and let ( )q x  and ( )t x  denote 

the total violation of the capacity and duration constraints respectively. The routing cost of a vehicle 

k  corresponds to the sum of the costs ijc  associated with the edges ( , )i j  traversed by this vehicle. 

The total violation of the capacity and duration constraints is computed on a route basis with respect 

to Q  and L . Each solution x  found in the search is evaluated by a cost function 

( ) ( ) ( ) ( )z x c x q x t xα β= + +  that includes the considerations mentioned above. The coefficients α  

and β  are self-adjusting positive parameters that are modified at every iteration. The parameter α  

is adjusted as follows: If the number of solutions with no violation of the capacity constraints is 

greater than / 2τ , the value of α  is divided by 1 δ+ , otherwise it is multiplied by 1δ+ . The same 

rule also applies to β  with respect to the duration constraints. 

 

0 4 1 0 2 7 5 0 
 

3 6 
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3.3 Initial solution 

An initial solution is constructed by assigning one customer at a time to one of the m  vehicle routes. 

The selection of the customer is randomly made. The customer is then assigned to the location that 

minimizes the cost of assigning this customer over the current set of vehicle routes. The above 

procedure is repeated until all customers are routed. 

A total of τ  initial solutions are generated by the above procedure. 

 

3.4 Neighborhood operators 

A neighborhood operator is used to obtain a new solution xɶ  from the current solution x  in Step 4 

of the ABC heuristic. A number of neighborhood operators (among those listed below) are chosen in 

advance. Any combinations of the listed operators are possible, even one. Then, whenever a new 

solution xɶ  is needed, a neighborhood operator is randomly chosen from the set of pre-selected 

neighborhood operators and applied once (i.e., no local search is performed) to the solution x . The 

set of pre-selected operators is determined by experimental testing discussed in Section 4.1. The 

possible operators include: 

1. Random swaps 

This operator randomly selects positions (in the solution vector) i  and j  with i j≠  and 

swaps the customers located in positions i  and j . See Figure 2, where 3i =  and 7j = . 

 

 

 

 

 

 

Figure 2.  Random swaps 
 

2. Random swaps of subsequences 

This operator is an extension of the previous one, where two subsequences of customers and 

depot of random lengths are selected and swapped. An example is shown in Figure 3. 

 

 

 

0 4 1 0 2 7 5 0 3 6 

0 4 5 0 2 7 1 0 3 6 

Before:  

After:   

Swap point Swap point 
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Figure 3.  Random swaps of subsequences 

 
3. Random insertions 

This operator consists of randomly selecting positions i  and j  with i j≠  and relocating the 

customer from position i  to position j . See Figure 4, where customer 5 is relocated from 

position 7 to position 3. 

 

 

 

 

 

 

Figure 4.  Random insertions 

 

 
4. Random insertions of subsequences 

This operator is an extension of the operator of random insertions where a subsequence of 

customers and depot of random length starting from position i  is relocated to position j . 

Positions i  and j  are randomly selected. Figure 5 gives an example of this operator. 

 

 

 

 

 

 

Figure 5.  Random insertions of subsequences 

 
5. Reversing a subsequence 

A subsequence of consecutive customers and depot of random length is selected and then the 

order of the corresponding customers and depot is reversed, as shown in Figure 6. 

0 4 1 0 2 7 5 0 3 6 

0 4 5 0 3 2 7 1 0 6 

Before:   

After:   

Swap section Swap section 

0 4 1 0 2 7 5 0 3 6 

0 4 5 0 3 1 0 2 7 6 

Before:   

After:  

Insert position 
 

Insert section 

0 4 1 0 2 7 5 0 3 6 

0 4 5 1 0 2 7 0 3 6 

Before:   

After:   

Insert position Insert point 
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Figure 6.  Reversing a subsequence 
 

6. Random swaps of reversed subsequences 

This operator is a combination of two previously mentioned operators. Two subsequences of 

customers and depot of random lengths are chosen and swapped. Then each of the swapped 

subsequences may be reversed with a probability of 50%. An example of this operator is 

displayed in Figure 7. 

 

 

 

 

 

 

Figure 7.  Random swaps of reversed subsequences 
 

7. Random insertions of reversed subsequences 

A subsequence of customers and depot of random length starting from position i  is 

relocated to position j . Then the relocated subsequence has a 50% chance of being reversed. 

Figure 8 shows an example of this operator where 7i =  and 3j = , and the subsequence is 

reversed.  

 

 

 

 

 

Figure 8.  Random insertions of reversed subsequences 

 

 

Before:   

After:  

Reverse section 

0 4 1 0 2 7 5 0 3 6 

0 4 1 0 2 7 3 0 5 6 

Before:   

After:  

0 4 1 0 2 7 5 0 3 6 

0 4 3 0 5 1 0 2 7 6 

Insert position 
 

Insert-reverse section 

Before:  

After:  

0 4 1 0 2 7 5 0 3 6 

0 4 3 0 5 2 7 0 1 6 

Swap-reverse section Swap-reverse section 
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3.5 Selection of food sources 

At each iteration of the algorithm, each onlooker selects a food source randomly. In order to drive 

the selection process towards better food sources, we have implemented a roulette-wheel selection 

method for randomly selecting a food source. The probability of choosing the food source ix  is then 

defined as  ( )
1

( )

( )
i

i

ii

f x
p x

f x
τ

=

=
∑

, 1, ,i τ= …  where ( ) 1

( )i
i

f x
z x

= . 

 

3.6 An enhanced artificial bee colony algorithm 

It is shown in the literature that the basic ABC algorithm is capable of solving certain problems with 

great success. However, according to our computational experiments (see Section 4) this does not 

apply to the CVRP. Therefore, in this section, we will propose an enhanced version of the ABC 

algorithm to improve the performance of the basic ABC algorithm for solving the CVRP. 

Step 4d of the basic ABC algorithm states that a food source ix  will only be replaced by a neighbor 

solution x̂  if x̂  is of a better quality than ix , where ̂x  is the best neighbor solution found by the 

onlookers in Step 4b. In the refined version, this condition is altered so that if the best neighbor 

solution x̂  found by all the onlookers associated with food source i  is better than the food source 

ix , then x̂  will replace the food source jx  that possesses the following two properties: 1)  jx has 

not been improved for the largest number of iterations among all the existing food sources and 2) 

jx  is worse than ̂x . In this way, potential food sources (i.e., the food sources which can produce 

better neighbor solutions) will be given opportunities to be further explored whereas non-potential 

food sources (i.e., the food sources which have not been improved for a relatively large number of 

iterations and are worse than new neighbor solutions) are excluded. 

Step 4e of the basic ABC algorithm states that if no improving neighbor solutions of the food source 

ix  have been identified during the last limit  successive iterations, then ix  is replaced by a 

randomly generated solution (using the procedure described in Section 3.3). In the refined version, 

this is modified so that ix  is replaced by a new neighbor solution x̂  of ix . The quality of ̂x  can be 

worse or better than ix . This modification may be beneficial as it prevents the search from 

searching in bad regions of the solution space with no control of the quality of the food sources. 

The steps of the refined ABC algorithm are summarized below: 
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1. Randomly generate a set of solutions as initial food sources ix , 1, ,i τ= … .  

Set 1{ }i iF xτ
== ∪ , where F  is the set of food sources. Assign each employed bee to a food 

source. 

2. Evaluate the fitness ( )if x  of each of the food sources ix , 1, ,i τ= … . 

3. Set 0v =  and 1 2 0l l lτ= = … = = . 

4. Repeat 

a. For each food source ix  

i. Apply a neighborhood operator on ix x→ ɶ . 

ii.  If ( ) ( )if x f x>ɶ , then replace ix  with xɶ  and 0il = , else 1i il l= + . 

b. Set ,  1, ,iG i τ= ∅ = … . 

c. For each onlooker 

i. Select a food source ix  using the fitness-based roulette wheel selection 

method. 

ii.  Apply a neighborhood operator on ix x→ ɶ . 

d.  { }i iG G x∪= ɶ  

e. For each food source ix  and iG ≠ ∅  

i. Set ˆ arg max  ( )
iGx fσ σ∈∈ . 

ii.  If ( ) ˆ( )if x f x< , then select j Fx ∈ɶ  with  

( )1, ,
ˆarg max { | ( )  and  }i i ii Fj l f x f x x F= …∈ > ∈ , replace jxɶ  with x̂ , and 

0il = , else 1i il l= + . 

f. For each food source ix  

i. If il limit= , then apply a neighborhood operator on ix x→ ɶ  and replace ix  

with xɶ . 

g.  1v v= +  

5. Until ( )v MaxIterations=  

 

4. Computational experiments 

 

We have tested both the original and the refined ABC heuristics on two standard benchmark 
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instance sets. These include the fourteen classical Euclidean VRP and distance-constrained VRP 

instances described in Christofides and Eilon (1969) and Christofides et al. (1979) and the twenty 

large scale instances described in Golden et al. (1998). All experiments were performed on a 1.73 

GHz computer, and the heuristics were coded in Visual C++ 2003. 

The number of employed bees and the number of onlookers are set to be equal to the number of 

food sources (τ ), which is 25. This is based on Karaboga and Basturk (2008), which set the number 

of employed bees to be equal to the number of onlookers to reduce the number of parameters, and 

find that the colony size (i.e., the total number of employed bees and onlookers) of 50 can provide 

an acceptable convergence speed for search.   

To reduce the number of parameters tuned, we let  α  = β . We then evaluated the performance of 

the heuristics using different values of α  in the interval [0.0001, 1] and  δ  = 0.001. It is found that 

the performance of the heuristics is insensitive over this range for many test instances, and for a 

majority of the test instances setting α  = β  to 0.1 seems to be the best choice. Based on these 

values of  α  and β , we tested the best value of δ  over the range [0.0001, 1]. The results show that 

the performance of the heuristics varies significantly in this interval for many test instances, and 

good solutions are obtained with δ =  0.001. Therefore, we set α  = 0.1β =  and δ  = 0.001 for all 

further experiments. 

 

4.1 Comparison of neighborhood operators 

In order to evaluate the effectiveness of each neighborhood operator, we have first tested the 

original ABC heuristic on instance vrpnc1 by considering each neighborhood operator at a time, 

including: 1. random swaps (swap); 2. random swaps of subsequences (section_swap); 3. random 

insertions (insert); 4. random insertions of subsequences (section_insert); 5. reversing a 

subsequence (reverse); 6. random swaps of reversed subsequences (swap_reverse); and 7. random 

insertions of reversed subsequences (insert_reverse). The results are reported in Table 1. The best 

known solution reported in the literature for this instance is 524.61. Each of the seven variants was 

run 20 times, and each time the algorithm was run for 100,000 iterations. From the table, one can 

observe that the different neighborhood operators contribute differently. It can be seen that the ABC 

heuristic with the operator of randomly swapping reversed subsequences achieves the best average 

objective value, while random insertions and random insertions of subsequences did not yield 

promising results. Even though the variant of incorporating the operator of randomly swapping 
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reversed subsequences did not lead to the best known solution, the average deviation from the best 

known solution is less than 1.5%. Reversing a subsequence is another operator which also yields 

good performance, and uses less computation time than the operator of randomly swapping reversed 

subsequences. 

 

Table 1.  Experimental results by different operators for instance vrpnc1 

Operator swap 
section_ 
swap 

insert 
section_ 
insert 

reverse 
swap_ 
reverse 

insert_ 
reverse 

combined 

min.a 576.47 550.94 758.12 623.79 528.56 527.82 534.41 526.97 
max b 627.52 597.14 810.71 655.81 543.83 536.64 556.91 535.43 
avg c 610.81 567.34 784.09 640.69 535.57 532.44 542.58 531.74 
std.dev.d 15.98 10.89 14.01 8.60 4.62 4.43 6.01 3.58 
gap e 16.43% 8.15% 49.46% 22.13% 2.09% 1.49% 3.43% 1.36% 
run time f 0.24 0.37 0.30 0.40 0.32 0.62 0.48 0.42 
a Minimum objective value obtained in 20 runs 
b Maximum objective value obtained in 20 runs 
c Average objective value of 20 runs 
d Standard deviation of objective values of 20 runs 
e Average percentage deviation from the best known solution 
f Average CPU time in minutes for each run 

 

The search using only the operator of randomly swapping reversed subsequences may be too 

diversified, and may not lead to promising regions of the solution space. Thus, instead of using only 

one operator we will use a combination of several operators. A number of different combinations of 

operators have been tried and experimented with. The combination of the following operators seems 

to yield the most promising results: random swaps (swap), reversing a subsequence (reverse) and 

random swaps of reversed subsequences (swap_reverse). This seems reasonable as two of the 

operators were identified to yield the best results from Table 1, while the search using the third 

operator (i.e., random swapping) is not as diversified as the searches using the two other operators. 

Equal probabilities are associated with the operators being selected. Using this combination of 

operators, the heuristic was run and obtained an average deviation of 1.36% from the best known 

solution, as shown in the last column (combined) of Table 1. In addition, it is also faster than the 

variant using randomly swapping of reversed subsequences (swap_reverse) as the neighborhood 

operator. 

Figure 9 shows the plot of the best objective solution values found by the heuristics using the 

operator of reversing a subsequence (reverse), the operator of randomly swapping of reversed 
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subsequences (swap_reverse) and the combination of the operators for randomly swapping two 

positions, reversing a subsequence, and randomly swapping reversed subsequences (combined) 

during one run on instance vrpnc1. It can be observed from the figure that the variant using the 

operator of reversing a subsequence converges faster than the other two. However, the solution 

quality is not good as reflected by the objective value, which is the highest among the three 

operators. The operator of randomly swapping reversed subsequences converges at a later stage but 

achieves a better solution. The combined approach leads to the best solution quality than the other 

two, and the convergence rate is somewhere between the other two. This phenomenon was also 

observed when the different variants of the heuristic were experimented on the rest of the test 

instances. For this reason, the combination of the three different operators will be adopted in the 

heuristic to generate neighbor solutions. 

 

4.2 Calibrating limit 

As mentioned earlier, a food source ix  will be abandoned if no improving neighbor solutions x̂  can 

be found in the neighborhood of ix  for consecutive limit  iterations. Karaboga (2009) has shown 

that this parameter is important regarding the performance of the ABC algorithm on solving 

function optimization problems. Hence, we will also study the effect of this parameter on the 

performance of the ABC algorithm for solving the CVRP. 

The value of the parameter limit  was determined by running every benchmark instance 20 times for 

each of the predetermined values of limit . This calibrating process is important because if too few 

iterations are spent on exploring the neighborhood of a food source, the neighborhood may not be 

fully explored and the search will be too diversified. On the contrary, if too many iterations are 

spent on exploring the neighborhood, then the search will tend to focus on a few portions of the 

search space and will miss out other potential regions of the search space. Experiments on all the 

test instances show that the most appropriate value for the parameter limit  is proportional to the 

number of customers (n ), and this value is approximately equal to 50n . Due to space limitation, 

we only show the average objective function values of instance vrpnc1 with 50 customers for the 

different values of limit  in Figure 10. From this figure, we can easily see that 2,500limit =  yields 

the best results. Thus 50limit n=  was used in all the experiments reported in the remainder of this 

section. 
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Figure 9.  Converging processes for reverse, swap_reverse, and combined  
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Figure 10.  Effect of the parameter limit 
 

4.3 Original ABC vs. enhanced ABC 

According to some preliminary tests (not shown here) and the results shown in Table 1, the results 

of the CVRP obtained from the basic ABC algorithm are not very close to the best known result on 

average, even if we used many different combinations of operators. Therefore, we aim to improve 

the performance of the algorithm and propose an enhanced version. This version has been depicted 

in Section 3.6. The performance of this enhanced version was compared with that of the basic 

version. Both versions were implemented by using the combination of the three previously 
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described operators as well as setting limit  equal to 50n , and assessed by the set of 14 classical 

instances. Each test instance was run 20 times using each of the ABC heuristics. It was found that 

the speed of convergence of the two heuristics depends on n . Moreover, it was found that setting 

the termination condition (MaxIterations ) to 2000n  iterations is sufficient for the two heuristics to 

converge. The best results, the average results, the average CPU times obtained by the two versions 

for each test instance are also reported in Table 2, where the solution values recorded for both the 

best and average results are rounded to the nearest integer. According to this table, the enhanced 

version obtained better solutions than the original version in all test instances in terms of both the 

average and the best results in 20 runs. The mean percentage improvement of the average (best) 

results of all test instances is 4.16% (3.53%). The largest percentage improvement of the average 

(best) result is 12.29% (11.32%), indicating that the enhanced version can produce much better 

solutions than the basic version. From the table, we can observe that the enhanced ABC heuristic 

requires more computational effort than the original version. This is due to the modification of step 

4d of the enhanced heuristic. 

Table 2.  Comparison of experimental results between the original and enhanced ABC heuristics 

Instance Original ABC Enhanced ABC Improvementd 
 Besta Avg.b CPUc Besta Avg.b CPUc  
vrp_nc1 526.97 531.74 0.42 524.61 526.23 0.65 1.04% 
vrp_nc2 865.23 885.78 0.85 836.74 842.97 1.33 4.83% 
vrp_nc3 842.47 850.20 0.94 831.16 834.61 1.68 1.83% 
vrp_nc4 1065.71 1087.29 5.17 1031.69 1061.80 8.17 2.34% 
vrp_nc5 1382.85 1398.04 5.84 1320.24 1331.24 9.72 4.78% 
vrp_nc6 560.33 570.48 0.44 555.43 558.09 0.70 2.17% 
vrp_nc7 945.56 958.87 1.86 909.68 916.58 2.35 4.41% 
vrp_nc8 887.71 897.44 1.94 865.94 876.12 2.54 2.38% 
vrp_nc9 1235.37 1265.80 4.88 1170.25 1192.64 6.93 5.78% 
vrp_nc10 1497.92 1517.24 8.59 1415.23 1434.05 12.83 5.48% 
vrp_nc11 1183.92 1203.29 2.20 1049.91 1055.41 3.47 12.29% 
vrp_nc12 843.17 854.32 2.07 819.56 821.37 2.90 3.86% 
vrp_nc13 1592.88 1623.29 3.53 1545.98 1558.28 4.97 4.00% 
vrp_nc14 881.41 895.27 2.62 866.37 868.60 3.35 2.98% 

a Best result obtained in 20 runs 

b Average result obtained in 20 runs 

c Average CPU run time in minutes in 20 runs 

d Percentage improvement of the average result obtained by the enhanced ABC over the original ABC 

 

To clearly illustrate the effect of the modifications in steps 4d and 4e on the improvement of 
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solution quality, we plot figures 11a and 11b. Figure 11a shows the plot of the best objective values 

found by the original ABC heuristic, the semi-enhanced ABC heuristic (where only step 4e is 

enhanced) and the enhanced ABC heuristic (both the steps 4d and 4e are enhanced) during one run 

on instance vrpnc1. It can be observed from the figure that the original and semi-enhanced ABC 

heuristics converge at the same rate, while the semi-enhanced version obtains a better solution. The 

enhanced variant converges at an earlier stage with a better solution than the other two variants. 

Figure 11b shows the plot of the average objective values of the τ  food sources obtained by the 

original, semi-enhanced and enhanced ABC heuristics at the different iterations during one run. The 

behaviors of the semi-enhanced and enhanced ABC heuristics are similar where the values are 

gradually lowered. On the opposite, the average objective values of the original ABC heuristic do 

not show this pattern and some fluctuations can be observed. Around 10,000 iterations, the original 

ABC heuristic has identified a minimum average objective value. However, the algorithm has not 

been able to improve this further but has given some fluctuation results. This is due to step 4e where 

a food source ix  will be replaced by a randomly generated solution if no improving neighbor 

solutions ̂x  have been encountered for consecutive limit  iterations. The effect is that after most 

food sources have not been improved for limit  iterations, the original ABC heuristic randomly 

generates new solutions in which most of the new solutions have large objective values compared 

with the minimum average objective value. The outcome is that the average objective value 

increases after reaching the minimum average. The average objective value decreases slightly 

afterwards because the heuristics finds most of the food sources near local minima. However, the 

average value increases again later due to creating many new food sources to avoid trapping in local 

minima. This process is repeated and this is why the fluctuation can be observed.  On the contrary, 

the average objective values of the enhanced ABC heuristic are gradually lowered due to the fact 

that a food source is replaced by a neighbor solution and not by a randomly generated solution, 

where the neighbor solutions have higher chances to have closer objective values to the minimum 

average objective value especially if the local objective surface is not too mountainous.   
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Figure 11.  Converging processes of the basic ABC heuristic and its variants 
 

In order to evaluate the effect of the modification made in step 4d on the average performance, we 

compared the average objective values of the semi-enhanced ABC heuristic with those of the 

enhanced one in figure 11b. It can be observed that the average objective values of the semi-

enhanced variant are much worse than those of the enhanced variant, which indicates that the 

modification made in step 4d significantly improves the quality of the search. 

 

4.4 Computational results 

Table 3 lists the characteristics of the 14 classical instances. For each test instance, the table 

indicates the number of customers (n ), the vehicle capacity (Q ), the service time (s ) for each 

customer, the route maximum length (L ) and the number of vehicle routes (m). The table also gives 

for each instance the best known solution so far. In addition, the table provides information about 

the average and best solutions obtained with the enhanced ABC heuristic. It can be seen from the 

table that the enhanced ABC heuristic has matched six of the 14 best known solutions, and the 

average deviation from the best solutions is 0.46%. 
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Table 3.  Enhanced ABC results for the classical instances 
Instance n  Q  s  L  m  Best known 

solution 
ABC 

  average d 
ABC 
best e 

DFB f 
(%)  

vrpnc1 50 160 0 ∞ 5 524.61a 526.23 524.61 0.00  
vrpnc2 75 140 0 ∞ 10 835.26a 842.97 836.74 0.18  
vrpnc3 100 200 0 ∞ 8 826.14a 834.61 831.16 0.61  
vrpnc4 150 200 0 ∞ 12 1028.42a 1061.80 1031.69 0.32  
vrpnc5 199 200 0 ∞ 17 1291.29b 1331.24 1320.24 2.24  
vrpnc6 50 160 10 200 6 555.43a 558.09 555.43 0.00  
vrpnc7 75 140 10 160 11 909.68a 916.58 909.68 0.00  
vrpnc8 100 200 10 230 9 865.94a 876.12 865.94 0.00  
vrpnc9 150 200 10 200 14 1162.55a 1192.64 1170.25 0.66  
vrpnc10 199 200 10 200 18 1395.85c 1434.05 1415.23 1.39  
vrpnc11 120 200 0 ∞ 7 1042.11a 1055.41 1049.91 0.75  
vrpnc12 100 200 0 ∞ 10 819.56a 821.37 819.56 0.00  
vrpnc13 120 200 50 720 11 1541.14a 1558.28 1545.98 0.31  
vrpnc14 100 200 90 1040 11 866.37a 868.60 866.37 0.00  
      Average   0.46  
a Obtained from Taillard (1993) 
b Obtained from Mester and Bräysy (2007) 
c Obtained from Rochat and Taillard (1995) 
dAverage solution obtained by enhanced ABC in 20 runs 
e Best solution obtained by enhanced ABC in 20 runs 
f Deviation of ABC best from the best known solution 

 

Table 4 provides a comparison on the results obtained on the 14 classical instances by some of the 

metaheuristics for the CVRP. It is clear that the enhanced ABC heuristic performs better than some 

of the well-known tabu search heuristics such as Taburoute (Gendreau et al., 1994), the ejection 

chain method (Rego and Roucairol, 1996), the subpath ejection chain method (Rego, 1998), the 

granular tabu search (Toth and Vigo, 2003) and the Unified Tabu Search (Cordeau et al., 2001). In 

addition, the enhanced ABC heuristic outperforms the simulated annealing heuristic by Osman 

(1993), the saving-based ant system of Bullnheimer et al. (1999) and Reimann et al. (2004), and the 

hybrid genetic algorithm of Berger and Barkaoui (2003). Finally, the enhanced ABC heuristic also 

surpasses the path relinking approach of Ho and Gendreau (2006), the particle swarm optimization 

method by Ai and Kachitvichyanukul (2009) and the hybrid eletromagnetism-like algorithm of 

Yurtkuran and Emel (2010). Outstanding results were obtained by the adaptive memory procedure 

of Rochat and Taillard (1995) and by the memetic heuristic by Nagata and Bräysy (2009). The 

performances of the honey bees mating optimization algorithm (Marinakis et al., 2010) and the 
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AGES algorithm (Mester and Bräysy, 2007) are also excellent. 

Table 4.  Comparison of computational results of different methods for the classical instances 

Reference ADFB a CPU time b Computer 
Rochat and Taillard (1995) 0.00 N/A Silicon Graphics 100 MHz 
Nagata and Bräysy (2009) 0.00 13.80 Opteron 2.4 GHz 
Mester and Bräysy (2007) 0.03 2.80 Pentium IV 2.8 GHz 
Marinakis et al. (2010) 0.03 0.80 Pentium M750 1.86 GHz 
Taillard (1993) 0.05 N/A Silicon Graphics 100 MHz 
Prins (2009) 0.07 0.27 Pentium IV 2.8 GHz 
Pisenger and Ropke (2007) 0.11 17.50 Pentium IV 3 GHz 
Chen et al. (2010) 0.13 10.90 Pentium IV 2.93 GHz 
Yu et al. (2009) 0.14 2.91 Pentium 1000 MHz 
Tarantilis (2005) 0.20 5.63 Pentium 400 MHz 
Derigs and Kaiser (2007) 0.21 5.84 Celeron 2.4 GHz 
Tarantilis and Kiranoudis (2002) 0.23 5.22 Pentium 2 400 MHz 
Ergun et al. (2006) 0.23 28.91 Pentium 733 MHz 
Prins (2004) 0.24 5.19 Pentium 1 GHz 
Lin et al. (2009) 0.35 8.21 Pentium IV 2.8 GHz 
Szeto et al. 0.46 4.40 Pentium 1.73 GHz 
Reimann et al. (2004) 0.48 3.63 Pentium 900 MHz 
Berger and Barkaoui (2003) 0.49 21.25 Pentium 400 MHz 
Ho and Gendreau (2006) 0.54 4.13 Pentium 2.53 GHz 
Rego and Roucairol (1996) 0.55 24.65 4 Sun Sparc IPC 
Cordeau et al. (2001) 0.56 c 24.62 Pentium IV 2 GHz 
Baker and Ayechew (2003) 0.56 29.11 Pentium 266 MHz 
Toth and Vigo (2003) 0.64 3.84 Pentium 200 MHz 
Gendreau et al. (1994) 0.86 46.80 Silicon Graphics 36 MHz 
Ai and Kachitvichyanukul (2009) 0.88 2.72 Intel P4 3.4 GHz 
Yurtkuran and Emel (2010) 1.04 2.20 Intel Core2 Duo, 2 GHz 
Bullnheimer et al. (1999) 1.51 18.44 Pentium 100 MHz 
Rego (1998) 1.54 2.32 HP 9000/712 
Osman (1993) 2.11 151.35 VAX 8600 

a Average deviation from best known results 
b Average computing time in minutes 
c Computational results obtained from Cordeau et al. (2005) 

 

Many of the heuristics within the 0.1% average deviation from best known solutions are population-

based methods combined with local search, and many of the methods that yielded an average 

deviation of less than 0.4% are hybrids of various techniques. The implemented version of the 

heuristic is a pure artificial bee colony algorithm, and is also one of the effective algorithms for the 

CVRP. It is not easy to compare running times for the various metaheuristics due to different 
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computing environments. We believe that the reported CPU time for the enhanced ABC heuristic is 

reasonable and acceptable. 

Table 5.  Enhanced ABC results for the large-scale instances 
Instance n  Q  s  L  m  Best known 

solution 
ABC 

solution 
DFB d 

(%) 
kelly01 240 550 0 650 10 5626.81a 5861.14 4.16  
kelly02 320 700 0 900 11 8431.66 a 8720.37 3.42  
kelly03 400 900 0 1200 10 11036.22 b 11572.69 4.86  
kelly04 480 1000 0 1600 10 13592.88 a 13829.02 1.74  
kelly05 200 900 0 1800 5 6460.98 b 6593.17 2.05  
kelly06 280 900 0 1500 7 8404.26 a 8729.70 3.87  
kelly07 360 900 0 1300 9 10156.58 a 10533.43 3.71  
kelly08 440 900 0 1200 11 11643.90 c 12054.77 3.53  
kelly09 255 1000 0 ∞ 14 580.42 a 593.35 2.23  
kelly10 323 1000 0 ∞ 16 738.49 a 750.77 1.66  
kelly11 399 1000 0 ∞ 18 914.72 a 932.81 1.98  
kelly12 483 1000 0 ∞ 19 1106.76 a 1138.32 2.85  
kelly13 252 1000 0 ∞ 26 857.19 a 872.45 1.78  
kelly14 320 1000 0 ∞ 30 1080.55 a 1109.48 2.68  
kelly15 396 1000 0 ∞ 33 1342.53 a 1367.37 1.85  
kelly16 480 1000 0 ∞ 37 1620.85 a 1651.31 1.88  
kelly17 240 200 0 ∞ 22 707.76 a 710.42 0.36  
kelly18 300 200 0 ∞ 27 995.13a 1019.64 2.46  
kelly19 360 200 0 ∞ 33 1365.97 a 1377.54 0.85  
kelly20 420 200 0 ∞ 38 1820.02 a 1850.59 1.68  
      Average  2.48 

a Obtained from Nagata and Bräysy (2009) 
b Obtained from Prins (2004) 
c Obtained from Prins (2009) 
d Deviation from the best known solution 

 

The enhanced ABC heuristic was also tested on the 20 large-scale instances by Golden et al. (1998). 

Table 5 lists the characteristics of these instances together with the average solutions and best 

solutions obtained by the enhanced ABC heuristic. The average deviation from best known 

solutions is 2.31%. Table 6 provides a comparison on the results with some of the metaheuristics 

published in the literature. The enhanced ABC heuristic outperforms the deterministic annealing 

algorithm described in Golden et al. (1998), the granular tabu search by Toth and Vigo (2003), the 

very large neighborhood search by Ergun et al. (2006), the path relinking approach by Ho and 

Gendreau (2006) and the variable neighborhood search procedure by Kytöjoki et al. (2007). As with 
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the classical instances, population-based heuristics combined with local search also generated the 

best results for the large-scale instances. From the table we notice that the memetic algorithm by 

Nagata and Bräysy (2009) and the AGES algorithm by Mester and Bräysy (2007) obtained much 

better solutions than the rest of the methods.  

Table 6.  Comparison of computational results of different methods for the large-

scale instances 

Reference ADFB a CPU time b Computer 
Nagata and Bräysy (2009) 0.02 355.90 Opteron 2.4 GHz 
Mester and Bräysy (2007) 0.18 24.40 Pentium IV 2.8 GHz 
Prins (2009) 0.48 7.27 Pentium IV 2.8 GHz 
Marinakis et al. (2010) 0.58 4.06 Pentium M750 1.86 GHz 
Pisinger and Ropke (2007) 0.67 107.67 Pentium IV 3 GHz 
Chen et al. (2010) 0.74 284.40 Pentium IV 2.93 GHz 
Reimann et al. (2004) 0.78 49.33 Pentium 900 MHz 
Tarantilis (2005) 0.78 45.58 Pentium 400 MHz 
Derigs and Kaiser (2007) 0.86 113.34 Celeron 2.4 GHz 
Prins (2004) 1.09 66.90 Pentium 1 GHz 
Li et al. (2005) 1.24 N/A N/A 
Cordeau et al. (2001) 1.64 c 56.11 Pentium 2 GHz 
Lin et al. (2009) 1.79 118.98 Pentium IV 2.8 GHz 
Szeto et al. 2.48 32.38 Pentium 1.73 GHz 
Ho and Gendreau (2006) 2.74 39.96 Pentium 2.53 GHz 
Toth and Vigo (2003) 3.06 17.55 Pentium 200 MHz 
Ergun et al. (2006) 3.95 137.95 Pentium 733 MHz 
Golden et al. (1998) 4.10 37.20 Pentium 100 MHz 
Kytöjoki et al. (2007) 4.67 0.02 AMD Athlon64 3000+ 

a Average deviation from best known results 
b Average computing time in minutes 
c Computational results obtained from Cordeau et al. (2005) 
 

5. Conclusions 

 

In this paper, we presented an artificial bee colony (ABC) heuristic for the capacitated vehicle 

routing problem (CVRP). The ABC heuristic is a fairly new approach, and it is based on the 

foraging behavior of honey bees. An enhanced version of the ABC heuristic has been developed to 

improve the original heuristic for solving the CVRP. Computational results show that the enhanced 

ABC heuristic is able to produce much better solutions than the original one and uses slightly little 

more computation time. The results also show that the enhanced ABC can produce good solutions 

when compared with existing heuristics for solving the CVRP. These results seem to indicate that 

the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem. 
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