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On joint synchronization of clock offset and skew
for Wireless Sensor Networks under exponential

delay
Mei Leng and Yik-Chung Wu

Abstract—In this paper, the problem of clock synchronization
for Wireless Sensor Network (WSN) under exponential delay is
analyzed based on two-way message exchange mechanism. The
Maximum Likelihood Estimator (MLE) for joint estimation of
the clock offset and clock skew is derived, and an approximate
Cramer-Rao Lower Bound (CRLB) is also developed. Simula-
tion results verify that the proposed estimator gives improved
performance compared to an existing algorithm.

I. INTRODUCTION

Wireless Sensor Network (WSN), emerged as an impor-
tant research area in recent years, consists of many small-
scale miniature devices (or sensor nodes) capable of onboard
sensing, computing and communications. WSNs are used in
industrial and commercial applications to monitor data that
would be difficult or inconvenient to monitor using wired
equipment, such as monitoring the health status of environ-
ment, controlling industrial machines and home appliances,
fire detection and object tracking, etc. [1] [2]. Most of these
applications require collaborative execution of a distributed
task amongst a large set of synchronized sensor nodes. Fur-
thermore, data fusion, power management and transmission
scheduling require all the nodes running on a common time
frame. However, every individual sensor in a WSN has its own
clock. Different clocks will drift from each other with time due
to many factors, such as imperfection of the oscillators and
environmental changes. This makes clock synchronization be-
tween different nodes an indispensable piece of infrastructure.

Clock synchronization is not an easy task in practice due
to several unique properties of WSN. The first and most
important one is the limited power supply in low-end sensor
nodes. Due to harsh operating conditions, nodes in WSNs
are mostly left unattended for their lifetimes without any
maintenance or battery replacement. To save power, each
synchronization procedure should be simple and the frequency
of re-synchronization should be low. This makes simplicity
and accuracy the primary concerns of clock synchronization
algorithms for WSNs.

The second challenge of clock synchronization in WSN is
the unknown message delays in physical and MAC layers.
Kopetz and Ochsenreiter [4] for the first time analyzed the
process of message delay and decompose the unknown delay
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into several components: send time, access time, transmission
time, propagation time, reception time and receive time. These
delay components can be grouped into two portions: the
fixed delay and the random delay. The fixed delay is usually
unknown, and if it is not modeled explicitly, it will be treated
as a part of time offset, thus lowering the accuracy of timing
parameter estimation. On the other hand, the random delay has
been modeled as random variables following different distribu-
tions (such as Gaussian distribution, exponential distribution,
Gamma and Weibull distribution) in the literature based on
different justifications and applications, and the difficulty of
designing an optimal algorithm for joint estimation of clock
offset and clock skew largely depends on the modeling of this
random delay.

When the random delay follows Gaussian distribution, the
optimal estimator has been given in [7]. However, as pointed
out in [3], in many cases, (e.g., when the point-to-point HRX
(Hypothetical Reference Connection) topology is of interest),
the link delay between two nodes is appropriately represented
as a regular M/M/1 queue, and the random delay should be
modeled as exponential random variables. In this case, it is
much more difficult to design the optimal clock synchronizer.
Jeske [5] derived the Maximum Likelihood Estimator (MLE)
of clock offset with an unknown fixed delay. But unfortunately
the clock skew is not considered, which may result in frequent
re-synchronization. Therefore, Noh et al. [6] proposed an
algorithm for joint estimation of clock offset and clock skew
by treating the fixed delay as a nuisance paramter (denoted as
EMLLE in this paper). Unfortunately, in EMLLE, not all the
available data are used, thus the performance of the EMLLE
is limited.

In this paper, the MLE for joint estimation of the clock
offset and clock skew is derived when the fixed delay is un-
known and the random delay follows exponential distribution.
In general, the Cramer-Rao Lower Bound (CRLB) does not
exist for exponential delay, but by using a mild approximation,
an approximate CRLB is derived. Simulation results confirm
that the proposed estimator provides improved performance
over the EMLLE.

II. SYSTEM MODEL

We consider the synchronization between a parent node P
and its child node S based on a two-way timing message
exchange mechanism as shown in Fig. 1. In the ith round of
message exchange, node S sends a synchronization message to
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Fig. 1. Two-way time-stamps exchange between two nodes S and P .

node P at T1,i. Node P records its time T2,i at the reception of
that message, and replies node S at T3,i. The replied message
contains both time-stamps T2,i and T3,i. Then node S records
the reception time of node P ’s reply as T4,i. Note that T1,i

and T4,i are the time stamps recorded by the clock of node
S, while T2,i and T3,i are recorded by that of node P . After
N rounds of message exchange, node S obtains a set of time
stamps {T1,i, T2,i, T3,i, T4,i}Ni=1. The above procedure can be
modeled as [6]

T2,i = β1 × T1,i + β0 + β1 × (d+Xi), (1)
T3,i = β1 × T4,i + β0 − β1 × (d+ Yi), (2)

where β0 and β1 represents the clock offset and clock skew of
node S with respect to node P , respectively; d stands for the
fixed portion of message delay from one node to another; and
Xi and Yi are variable portions of the message delay. Based
on the reasons explained in Section I and the fact that the
down/up links between two nodes are usually symmetric, Xi

and Yi are assumed to be independent and identical distributed
(i.i.d.) and follow exponential distribution with common rate
parameter. The goal is to estimate clock offset β0 and clock
skew β1 based on the observation of a set of time-stamps
{T1,i, T2,i, T3,i, T4,i}Ni=1.

III. MAXIMUM LIKELIHOOD ESTIMATOR (MLE) FOR
CLOCK OFFSET AND SKEW

First notice that the fixed delay d is unknown and it is
a nuisance parameter in the case of clock synchronization.
By observing that the uplink and downlink undergo the same
amount of fixed delay, we can rewrite the original model by
adding (1) to (2), and we have

T2,i+T3,i = β1× (T1,i+T4,i)+2β0 +β1× (Xi−Yi) . (3)

Dividing the above equation by β1, defining θ1 = 1/β1 and
θ0 = β0/β1, and stacking all the time-stamps in matrix form,
the model becomes T1,1 + T4,1

...
T1,N + T4,N

=

 T2,1 + T3,1 −2
...

...
T2,N + T3,N −2

[θ1
θ0

]
+

 Y1 −X1

...
YN −XN

 .

(4)
When Xi and Yi are i.i.d. and follow the exponential

distribution with rate parameter λ, it is easy to see that

Zi , Yi − Xi follows Lapacian distribution with location
parameter 0 and scale parameter 1/λ, which can be repre-
sented as Zi ∼ Laplace(0, 1/λ). Denote TS,i = T1,i + T4,i

and TP,i = T2,i + T3,i, the likelihood function can be written
as

ln f({TS,i, TP,i}Ni=1; θ1, θ0)

= N ln
λ

2
− λ ·

N∑
i=1

∣∣∣TS,i − θ1TP,i + 2θ0
∣∣∣. (5)

Therefore, the MLE becomes minimizing the second term
on the RHS of (5)

[θ∗1 , θ
∗
0 ] = arg min

θ1,θ0

N∑
i=1

∣∣∣TS,i − θ1TP,i + 2θ0
∣∣∣, (6)

which is an unconstrained L1-norm minimization problem.
Denote the objective function as F (θ1, θ0), we observe that
if θ1 is given, F (θ0) = 2

∑N
i=1

∣∣∣θ0 − 0.5(θ1TP,i − TS,i)
∣∣∣,

and the MLE of θ0 is the median value of the sequence
{0.5(θ1TP,i−TS,i)}Ni=1 [8]. On the other hand, if θ0 is given,
the MLE of θ1 is the optimal solution of the following problem

arg min
θ1

N∑
i=1

TP,i

∣∣∣θ1 − TS,i + 2θ0
TP,i

∣∣∣. (7)

Treating (TS,i + 2θ0)/TP,i as the location of the ith particle
with weight TP,i on a horizontal line, it can be proved that
the MLE of θ1 is the so-called weighted median value of the
data set {[TP,i, (TS,i + 2θ0)/TP,i]}Ni=1 [9]. The procedure for
finding the weighted median value is given as follow.

1) Sort the location sequence ρi , (TS,i + 2θ0)/TP,i in
ascending order, such that ρ[1] < · · · < ρ[i] < · · · < ρ[N ],
where {ρ[i]}Ni=1 is the order statistics of {ρi}Ni=1 (that
is, [i] is the index of the ith smallest element among
{ρi}Ni=1);

2) Find the smallest value of K such that
∑[K]
i=[1] TP,i ≥

0.5
∑N
i=1 TP,i, and denote the solution as K∗;

3) The weighted median of the data set {[TP,i, (TS,i +
2θ0)/TP,i]}Ni=1 is ρ[K∗] = (TS,[K∗] + 2θ0)/TP,[K∗].

Based on the above observations, an iterative algorithm is
proposed to find the optimal solution. First, the Least Squares
(LS) solution is calculated as

[θ01, θ
0
0] =

TP,1 −2
...

...
TP,N −2


†

·

TS,1...
TS,N

 , (8)

where [A]† indicates the pseudo-inverse operation of matrix
A. Using the LS solution as the initial estimates of θ1 and
θ0, the proposed iterative algorithm repeats the following
operation until convergence.

1) Estimate θk1 as the weighted median value of the sequence
{[TP,i, (TS,i + 2θk−1

0 )/TP,i]}Ni=1;
2) Estimate θk0 as the median value of the sequence

0.5{θk1TP,i − TS,i}Ni=1.
After obtaining the MLE of θ1 and θ0, we have β∗1 = 1/θ∗1
and β∗0 = θ∗0/θ

∗
1 .
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Since both the weighted median and the median operations
find the MLE of the corresponding parameter, we have

F (θk−1
1 , θk−1

0 ) ≥ F (θk1 , θ
k−1
0 ) ≥ F (θk1 , θ

k
0 ). (9)

Moreover, the objective function F (θ1, θ0) in (5) is convex,
and there exists no local minimums. Therefore, the proposed
algorithm will finally converge to the global optimal solution.
And simulation results show that the algorithm usually con-
verges within 10 iterations.

IV. APPROXIMATE CRAMER-RAO LOWER BOUND (CRLB)

To find CRLB, we need to take derivative of the likelihood
function in (5) with respect to the unknown parameters. But
the likelihood function (5) is non-differentiable at TS,i −
θ1TP,i+2θ0 = 0. Nevertheless, (5) can be approximated with
a function that is differentiable. Here we use the following
approximation

|t| ≈ 1
r
ln [cosh(rt)] , (10)

where r is a user-defined parameter and can be used to control
the accuracy of the approximation. For example, when r =
200, the function (10) gives nearly perfect approximation to
the absolute value function, as shown in Fig 2.

Since Zi = TS,i − 1
β1
TP,i + 2β0

β1
and follows Laplacian

distribution, i.e., Zi ∼ Laplace(0, 1/λ), the approximated
likelihood function of (5) is given by

ln f({TP,i, TS,i}Ni=1;β1, β0)

≈ N ln
λ

2
− λ

N∑
i=1

1
r

ln
{

cosh
[
r

(
TS,i −

1
β1
TP,i +

2β0

β1

)]}
.

(11)

Taking second derivative of the log-likelihood function (11)
with respect to β1 and β0, we have

∂2 ln f
∂2β1

= −λ
∑

(TP,i − 2β0)
[
−2β−3

1 tanh(rZi)

+ rβ−4
1 (TP,i − β0)sech2(rZi)

]
, (12)

∂2 ln f
∂2β0

= −λ
∑[

4rβ−2
1 sech2(rZi)

]
, (13)

∂2 ln f
∂β1∂β0

= −λ
∑[

−2β−2
1 tanh(rZi)

+ 2rβ−3
1 (TP,i − 2β0)sech2(rZi)

]
. (14)

To calculate CRLB, we further need to take expectation
of (12) – (14) with respect to Zi. Based on the fact that∫ +∞
0

tanh(x)e−µxdx = −
∫ 0

−∞ tanh(x)eµxdx, we have∫ +∞

−∞
tanh(rZi)

λ

2
e−λZidZi = 0. (15)

Furthermore, we also have∫ +∞

−∞
sech2(rZi)

λ

2
e−λZidZi

=
λ

r

{
λ

2r

[
ψ

(
λ+ 2r

4r

)
− ψ

(
λ

4r

)]
− 1
}

︸ ︷︷ ︸
,V

, (16)

Fig. 2. Approximation of the Laplacian random variable.

because
∫ +∞
0

sech2(x)e−µxdx =
∫ 0

−∞ sech2(x)eµxdx =
µ
2

[
ψ
(
µ+2

4

)
− ψ

(
µ
4

)]
− 1, where ψ(x) is a special function

named Euler psi function and its precise definition can be
found in [10, pp.892-896].

Using (15) and (16), it is easy to calculate the expectation
of (12) – (14) with respect to Zi, and the Fisher information
matrix is

FIM(β1, β0) =

[
−E∂2 ln f

∂β2
1

−E ∂2 ln f
∂β1∂β0

−E ∂2 ln f
∂β0∂β1

−E∂2 ln f
∂β2

0

]

=
λ2

β4
1

[
A B
B C

]
, (17)

where A 4=
∑N
i=1 V (TP,i − 2β0)2, B 4= 2β1

∑N
i=1 V (TP,i −

2β0) and C 4= 4β2
1NV . By inverting the matrix (17), it can be

shown that the CRLB for each parameter is

CRLB(β1) =
β4

1C
λ2(AC − B2)

, (18)

CRLB(β0) =
β4

1A
λ2(AC − B2)

. (19)

V. SIMULATION RESULTS AND DISCUSSIONS

As mentioned in Section I, Noh et al. [6] proposed an
algorithm EMLLE for joint estimation of the clock offset and
clock skew. Here, simulation results are presented to compare
the performances of the EMLLE and the proposed estimator.
The parameters used in the simulation are λ = 1, d = 2,
β1 = 1.003 and β0 = −10. Each point in the figures is an
average of 10000 simulation runs.

Fig. 3 shows the mean squared error (MSE) for estimation
of the clock skew β1 as a function of the number of round of
message exchange N . As shown in the figure, the proposed es-
timator performs much better than EMLLE. The performance
of the proposed estimator deviates slightly from the CRLB,
which is due to the approximation, and similar behavior is
also found in [11]. However, the approximate CRLB can still
predict the trend of the performance of the proposed estimator
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Fig. 3. MSE of estimated clock skew β̂1 with respect to the number of
rounds of message exchange N .

Fig. 4. MSE of estimated clock offset β̂0 with respect to the number of
rounds of message exchange N .

and serve as the lowest limit. Fig. 4 shows the corresponding
results for the clock offset β0. It can be seen from the figure,
the same conclusions as in Fig. 3 can be drawn.

VI. CONCLUSIONS

Clock synchronization for WSN in the presence of expo-
nential delay was discussed based on the two-way message
exchange mechanism. The MLE for joint estimation of clock
skew and clock offset was derived by treating the unknown
fixed delay as a nuisance parameter. The CRLB was also
derived by approximating the original non-differentiable prob-
ability density function with a highly accurate differentiable
function. Although the performance of the proposed estimator
deviates slightly from CRLB, which seems to be a common
result due to the mild approximations [11], the CRLB pre-
dicts the trend of the performance very well and gives the
lowest limit. The proposed estimator was also compared to
an existing algorithm, and simulation results indicate that the

proposed estimator gives improved performance compared to
the EMLLE.
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