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Semiblind Iterative Data Detection for OFDM
Systems with CFO and Doubly Selective Channels

Lanlan He, Shaodan Ma, Yik-Chung Wu, and Tung-Sang Ng

Abstract—Data detection for OFDM systems over unknown
doubly selective channels (DSCs) and carrier frequency offset
(CFO) is investigated. A semiblind iterative detection algorithm
is developed based on the expectation-maximization (EM) algo-
rithm. It iteratively estimates the CFO, channel and recovers the
unknown data using only limited number of pilot subcarriers in
one OFDM symbol. In addition, efficient initial CFO and channel
estimates are also derived based on approximated maximum
likelihood (ML) and minimum mean square error (MMSE)
criteria respectively. Simulation results show that the proposed
data detection algorithm converges in a few iterations and
moreover, its performance is close to the ideal case with perfect
CFO and channel state information.

Index Terms—Carrier frequency offset (CFO), orthogonal fre-
quency division multiplexing (OFDM), doubly selective channel
(DSC), data detection, expectation-maximization (EM).

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has been widely recognized as an efficient

transmission technique for wireless communications. In
OFDM systems, each subcarrier has a bandwidth narrow
enough to experience flat fading, which makes the signal
robust against a frequency selective fading channel. However,
OFDM systems are known to be sensitive to carrier frequency
offset (CFO), and frequency synchronization becomes a
critical part in the design of OFDM receivers. In time-
invariant frequency-selective channels (at least for one
OFDM symbol), the problem of CFO, channel estimation
and data detection has been addressed in [1]–[3].

Recently, there is an increasing demand for OFDM sys-
tems operating in high mobility environment, such as Digi-
tal Multimedia Broadcasting (DMB), DVB-H (Digital Video
Broadcast-Handheld), Media Forward Link Only (MediaFLO)
and Wireless Metropolitan Area Networks (WiMAX) [4]–
[6]. For broadband OFDM systems, high speed movement of
mobile terminals causes Doppler spread and results in multi-
path time-varying channels, i.e., doubly selective channels
(DSCs). Due to DSCs, channel responses vary sample by
sample, and the number of channel parameters in one OFDM
symbol increases significantly, which makes the channel esti-
mation not trivial. In this case, both the CFO and the doubly-
selectivity in the channel destroy the orthogonal property
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among subcarriers and induce intercarrier interference (ICI),
which also complicates the data detection. Therefore, data
detection for OFDM systems over unknown DSC and CFO
is very challenging.

Over DSCs, data detection for systems without CFO has
been discussed in [7]–[12]. In [7], [8], data detection is carried
out by assuming perfectly known channel state information
(CSI). However, in practice, the CSI becomes outdated very
quickly and perfect CSI is generally not available. In [9]–[12],
data detection is considered with unknown channel. In [9],
data detection with channel estimation is developed for known
symbol padding transmission systems where short sequences
of known symbols acting as guard bands are inserted between
successive blocks of data symbols. In [10], superimposed
training is adopted for the joint channel estimation and data
detection for single carrier transmission systems. However,
the extension of [9], [10] to OFDM systems is by no
means straightforward. For OFDM systems, data detection
with channel estimation is studied through inserting training
symbols periodically [11], [12]. In a slowly time-varying
channel, the time correlation of the channel coefficients among
OFDM symbols does not decay rapidly, and accurate channel
estimates on those data symbols can be obtained. However,
when the channel is varying very fast, the time correlation
of the channel coefficients among OFDM symbols becomes
weak, which would result in poor channel estimation on those
data symbols and subsequently degrade the data detection
performance severely.

In this paper, data detection for OFDM systems over un-
known DSCs and CFO is addressed. Based on the expectation-
maximization (EM) algorithm [13], a semiblind iterative data
detection algorithm is proposed. With only limited number
of pilot subcarriers in one OFDM symbol, the proposed
algorithm iteratively estimates the CFO, channel and recovers
the unknown data. The tentatively recovered data could then
be exploited to refine the CFO and channel estimations in the
next iteration. In addition, efficient initial CFO, channel and
data estimators are also derived. Simulation results show that,
with the efficient initialization developed in this paper, the
proposed data detection algorithm is robust to Doppler spread
and its performance is close to the ideal case with perfect CFO
and channel state information.

Notice that EM algorithms are widely used for iterative
receivers, such as [1]–[3]. However, they are all considering
channels which are assumed to be constant within one OFDM
symbol. In this situation, the number of unknown channel
parameters is equal to the channel length, and is much smaller
than that over DSCs. Together with the fact that only CFO
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causes ICI, derivation of EM algorithms is relatively routine.
Furthermore, initialization to the EM algorithm is straightfor-
ward, as CFO and channel estimates obtained in the previous
symbol can be utilized. Due to significant differences between
time-invariant frequency-selective channels and DSCs, the
design of the EM-based iterative receiver over DSCs is much
more difficult.

The rest of the paper is organized as follows. The system
model for OFDM systems over DSCs with CFO is introduced
in Section II. The data detection problem is addressed in
Section III. The initialization of the proposed algorithm is
discussed in Section IV. Simulation results are provided in
Section V to demonstrate the effectiveness of the proposed
algorithm. Conclusions are drawn in Section VI.

Notation: Boldface uppercase and lowercase letters are used
for matrices and vectors respectively. Superscripts 𝐻 and 𝑇
denote Hermitian and transpose respectively. The symbol I𝑁
denotes an 𝑁 × 𝑁 identity matrix, with e𝑙 being the 𝑙𝑡ℎ

column of I𝑁 . The symbol 1𝑁 denotes an all one column
vector with length 𝑁 , while diag{x} stands for the diagonal
matrix with vector x on its diagonal. The (𝑚,𝑛)𝑡ℎ entry of
a matrix X is denoted by [X]𝑚,𝑛. The symbol ⊗ denotes
the Kronecker product and ⊙ denotes the Hadamard product.
𝔼{⋅} denotes the expectation. Tr{X} and ∣X∣ are the trace
and the determinant of a square matrix X respectively. ℜ{⋅}
and ℑ{⋅} are the real and imaginary parts of the element in
the brackets respectively. The matrix F is the FFT matrix with
[F]𝑚,𝑛 = 1√

𝑁
𝑒−𝑗2𝜋𝑚𝑛/𝑁 . ⌈𝑎⌉ rounds 𝑎 to the nearest integer

greater than or equal to 𝑎.

II. SYSTEM MODEL

In an OFDM system, the source data in frequency domain
x = [𝑥(0), ⋅ ⋅ ⋅ , 𝑥(𝑁 − 1)]𝑇 is modulated onto 𝑁 parallel
subcarriers to obtain the time domain signal s = F𝐻x. In
general, the elements of x can be categorized into

𝑥(𝑘) =

⎧⎨
⎩

𝑥𝑝(𝑘) ∀ 𝑘 ∈ 𝐼𝑝
𝑥𝑑(𝑘) ∀ 𝑘 ∈ 𝐼𝑑

0 ∀ 𝑘 ∈ 𝐼𝑣

(1)

where 𝐼𝑝 is the index set of subcarriers allocated for pilot
symbols with 𝑁𝑝 elements, 𝐼𝑑 is the index set of data subcar-
riers with 𝑁𝑑 elements and 𝐼𝑣 is the index set of subcarriers
reserved for virtual subcarriers with 𝑁𝑣 elements. Notice that
𝑁𝑝 +𝑁𝑑 +𝑁𝑣 = 𝑁 . The data 𝑥𝑑(𝑘) is independently drawn
from a complex symmetrical signal constellation. Using (1),
the time domain signal s can be written as

s = F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x𝑑 (2)

where F𝑝 collects those rows of F corresponding to pilot
subcarriers, while F𝑑 collects those rows of F corresponding
to data subcarriers, and x𝑝 and x𝑑 denote pilots and data
vectors respectively.

A cyclic prefix (CP) with length longer than the delay
spread of the channel is inserted at the beginning of each
OFDM symbol to prevent intersymbol interference (ISI). The
signal is then transmitted through a multi-path time-varying
channel which has 𝐿 independent taps with average power
of the 𝑙𝑡ℎ tap denoted by 𝜎2

𝑙 . In the case both transmit-
ter and receiver are moving, accurate mathematical model

to describe this non-stationary channel is not available yet
[14], [15]. The scenario with moving scattering is believed
to be more complicated. Here, we only consider a moving
receiver [10]–[12], where the channel follows Rayleigh fading
and the auto-correlation of the 𝑙𝑡ℎ channel tap is given by
𝔼{ℎ𝑙(𝑚𝑇𝑠)ℎ𝑙(𝑛𝑇𝑠)} = 𝜎2

𝑙 𝐽0(2𝜋𝑓𝑑(𝑚 − 𝑛)𝑇𝑠) [16], with
𝐽0(⋅) representing the zero-order Bessel function of the first
kind, 𝑓𝑑 representing the maximum Doppler shift, and 𝑇𝑠

being the sample interval.
At the receiver side, assuming perfect timing synchroniza-

tion is achieved, the 𝑛𝑡ℎ sample of the received signal is given
by

𝑦(𝑛) = 𝑒𝑗2𝜋𝜀𝑛/𝑁
𝐿−1∑
𝑙=0

ℎ𝑙(𝑛)𝑠(𝑛− 𝑙) + 𝑤(𝑛) (3)

where 𝜀 represents CFO normalized by subcarrier spacing,
𝑤(𝑛) is the zero mean additive white Gaussian noise (AWGN)
with power 𝜎2

𝑤. For notational simplicity, ℎ𝑙(𝑛) is used to
denote ℎ𝑙(𝑛𝑇𝑠). After discarding the CP, the received signal
y = [𝑦(0), 𝑦(1), ⋅ ⋅ ⋅ , 𝑦(𝑁 − 1)]𝑇 for a whole OFDM symbol
can be expressed in a vector form as

y = Φ(𝜀)H[h]s+w (4)

where Φ(𝜀) = diag{1, 𝑒𝑗2𝜋𝜀/𝑁 , ⋅ ⋅ ⋅ , 𝑒𝑗2𝜋(𝑁−1)𝜀/𝑁}, w =
[𝑤(0), 𝑤(1), ⋅ ⋅ ⋅ , 𝑤(𝑁 − 1)]𝑇 and

H[h] =

⎡
⎢⎢⎣
ℎ0(0) 0 ℎ𝐿−1(0) ⋅ ⋅ ⋅ℎ1(0)
ℎ1(1) ℎ0(1) 0 ℎ𝐿−1(1) ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ℎ𝐿−1(𝑁 − 1) ⋅ ⋅ ⋅ ℎ0(𝑁 − 1)

⎤
⎥⎥⎦ . (5)

The channel vector h is defined as

h = [h𝑇
0 , ⋅ ⋅ ⋅ ,h𝑇

𝐿−1]
𝑇 (6)

with h𝑙 = [ℎ𝑙(0), ⋅ ⋅ ⋅ , ℎ𝑙(𝑁 − 1)]𝑇 being the channel coeffi-
cients of the 𝑙𝑡ℎ tap for the whole OFDM symbol. Notice that,
over DSCs, the channel varies sample by sample, and therefore
the number of unknown channel parameter is 𝑁 × 𝐿.

Before the detection algorithm is presented, we note the fol-
lowing property, which can be proved by direct computation.

Property 1: If H[a] is in the structure of (5), for any vector
b with compatible dimension with H[a], we have

H[a]b ≡ D[b]a (7)

where D[b] = [diag{Ξ0b}, ..., diag{Ξ𝐿−1b}] with Ξ𝑙 =
[e𝑙+1, ⋅ ⋅ ⋅ , e𝑁 , e1, ⋅ ⋅ ⋅ , e𝑙].

With Property 1, an equivalent model for y is given by

y = Φ(𝜀)D[s]h+w. (8)

Since each channel tap is independent Gaussian distributed,
the probability density function (pdf) of h follows

𝑝(h) =
1

(𝜋)𝑁𝐿∣Rℎ∣ exp(−h𝐻R−1
ℎ h) (9)

where the correlation matrix Rℎ is given by Rℎ = R𝐿 ⊗ J
with R𝐿 = diag{𝜎2

0 , ⋅ ⋅ ⋅ , 𝜎2
𝐿−1} and [J]𝑘,𝑚 = 𝐽0(2𝜋𝑓𝑑(𝑚−

𝑘)𝑇𝑠).
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III. DATA DETECTION WITH DSCS AND CFO

In this section, data detection for OFDM systems with
unknown channel and CFO is addressed. Since (𝜀,h,x𝑑) are
all unknown parameters, strictly speaking, they should be
estimated together. With the noise being Gaussian distributed,
based on (2) and (4), the likelihood function for (𝜀,h,x𝑑) is
given by

𝑝(y∣𝜀,h,x𝑑) =
1

(𝜋𝜎2
𝑤)

𝑁

× exp(− 1

𝜎2
𝑤

∥y −Φ(𝜀)H[h](F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x𝑑)∥2).
(10)

However, since the number of unknown channel parameters
is 𝑁 × 𝐿, the joint maximum likelihood (ML) CFO, channel
estimation and data detection problem over DSC based on
(10) is an ill-posed one. Though the unknown channel can be
directly integrated out to obtain 𝑝(y∣𝜀,x𝑑), multidimensional
search is still required, since 𝑝(y∣𝜀,x𝑑) depends on data
in a highly non-linear way. To overcome these problems,
expectation-maximization (EM) algorithm [13] is adopted to
solve the data detection problem iteratively.

In the following, an iterative data detection method is de-
rived based on EM algorithm. For the derivation, the received
signal y is referred as incomplete data and we take (y,h)
as the complete data. The proposed algorithm consists of two
steps: an expectation step (E-step) and a maximization step
(M-step). In the E-step, h is treated as a random variable,
and integrated out by taking expectation with respect to its
conditional pdf given y and the previous estimates of 𝜀 and x𝑑.
After integration, a new objective function depending only on
𝜀 and x𝑑 is obtained, and in the M-step, 𝜀 and x𝑑 are estimated
by maximizing this objective function. The two steps at the
𝑖𝑡ℎ iteration are [13]:
E-step: Compute 𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1

𝑑 ) = 𝔼{log 𝑝(y,h∣𝜀,x𝑑)∣
y, 𝜀𝑖−1, x̂𝑖−1

𝑑 };
M-step: Solve (𝜀𝑖, x̂𝑖

𝑑) = argmax𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ).

The expectation in the E-step is taken with respect to the
conditional pdf 𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1

𝑑 ), while the symbols 𝜀𝑖−1

and x̂𝑖−1
𝑑 are the (𝑖 − 1)𝑡ℎ estimate of the CFO and data

respectively. The derivations of the E-step and M-step are
detailed as follows.

E-step:
Using Bayes’ rule, we have

𝑝(y,h∣𝜀,x𝑑) = 𝑝(y∣𝜀,h,x𝑑)𝑝(h) (11)

where the pdfs 𝑝(h) and 𝑝(y∣𝜀,h,x𝑑) are specified in (9) and
(10) respectively. Notice that 𝑝(h) is independent of 𝜀 and
x𝑑. Putting (9) and (10) into (11), and dropping those terms
irrelevant to 𝜀 and x𝑑, we have

log 𝑝(y,h∣𝜀,x𝑑) ∝ 2ℜ{y𝐻Φ(𝜀)H[h](F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x𝑑)}
− (F𝐻

𝑝 x𝑝 + F𝐻
𝑑 x𝑑)

𝐻H𝐻 [h]H[h](F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x𝑑).
(12)

According to Property 1 and with s = F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x𝑑, (12)
is equivalent to

log 𝑝(y,h∣𝜀,x𝑑) ∝ 2ℜ{y𝐻Φ(𝜀)D[s]h} − h𝐻D𝐻 [s]D[s]h.
(13)

The function 𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) to be maximized is then

computed as

𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) = 2ℜ{y𝐻Φ(𝜀)D[s]𝔼{h∣y, 𝜀𝑖−1, x̂𝑖−1

𝑑 }︸ ︷︷ ︸
≜ĥ𝑖

}

− Tr
{
D𝐻 [s]D[s]

(
𝔼{(h− ĥ𝑖)(h− ĥ𝑖)𝐻 ∣y, 𝜀𝑖−1, x̂𝑖−1

𝑑 }︸ ︷︷ ︸
≜C𝑖

ℎ

+ 𝔼{h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 }︸ ︷︷ ︸

=ĥ𝑖

𝔼{h𝐻 ∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 }︸ ︷︷ ︸

=(ĥ𝑖)𝐻

)}
.

(14)
Here, 𝔼{h∣y, 𝜀𝑖−1, x̂𝑖−1

𝑑 } is the conditional mean of h,
which will be denoted by ĥ𝑖. Furthermore, 𝔼{(h − ĥ𝑖)(h −
ĥ𝑖)𝐻 ∣y, 𝜀𝑖−1, x̂𝑖−1

𝑑 } is the conditional covariance matrix of h,
which will be denoted by C𝑖

ℎ.
It is shown in Appendix A that the conditional mean and

covariance matrix are given by

ĥ𝑖 = RℎD
𝐻 [ŝ𝑖−1](𝜎2

𝑤I𝑁 +D[ŝ𝑖−1]RℎD
𝐻 [ŝ𝑖−1])−1

×Φ𝐻(𝜀𝑖−1)y.
(15)

and

C𝑖
ℎ = Rℎ −RℎD

𝐻 [ŝ𝑖−1]

× (𝜎2
𝑤I𝑁 +D[ŝ𝑖−1]RℎD

𝐻 [ŝ𝑖−1])−1D[ŝ𝑖−1]Rℎ

(16)

with ŝ𝑖−1 = F𝐻
𝑑 x̂𝑖−1

𝑑 + F𝐻
𝑝 x𝑝. Moreover, ĥ𝑖 is in fact

the MAP channel estimator as a byproduct of the E-
step [13]. Putting (15) and (16) into (14), the function
𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1

𝑑 ) becomes

𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) = 2ℜ{y𝐻Φ(𝜀)D[s]ĥ𝑖}

− Tr{D𝐻 [s]D[s](C𝑖
ℎ + ĥ𝑖(ĥ𝑖)𝐻)}. (17)

M-step:
In the M-step, we need to maximize 𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1

𝑑 ) in
(17) with respect to 𝜀 and x𝑑. However, noticing that D[s]
depends on x𝑑 in an implicit way, direct maximization of (17)
with respect to x𝑑 is difficult. In the following, we derive an
alternative expression for 𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1

𝑑 ) from which a
closed-form solution for x𝑑 can be obtained.

Since C𝑖
ℎ is a 𝑁𝐿×𝑁𝐿 Hermitian matrix, based on eigen-

decomposition, we have C𝑖
ℎ =

∑𝑟
𝑚=1 𝛽𝑚,𝑖u𝑚,𝑖u

𝐻
𝑚,𝑖 where 𝑟

is the rank of C𝑖
ℎ and 𝛽𝑚,𝑖 is the 𝑚𝑡ℎ eigenvalue of C𝑖

ℎ

with u𝑚,𝑖 being the corresponding eigenvector. On the other
hand, according to Property 1, we have D[s]ĥ𝑖 = H[ĥ𝑖]s and
D[s]u𝑚,𝑖 = H[u𝑚,𝑖]s. Therefore, 𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1

𝑑 ) in (17)
is equivalent to

𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) = 2ℜ{y𝐻Φ(𝜀)H[ĥ𝑖]s}

−
𝑟∑

𝑚=1

𝛽𝑚,𝑖s
𝐻H𝐻 [u𝑚,𝑖]H[u𝑚,𝑖]s − s𝐻H𝐻 [ĥ𝑖]H[ĥ𝑖]s.

(18)
Putting (2) into (18) and dropping those terms irrelevant to

𝜀 and x𝑑, we have (19), as shown at the top of the next page.
Although (19) is in quadratic form of x𝑑, strictly speaking, its
maximization is still a multidimensional search problem due
to the existence of discrete data. To overcome this problem, we
first relax x𝑑 to be continuous. By setting the first derivative
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𝑄(𝜀,x𝑑∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) = 2ℜ{y𝐻Φ(𝜀)H[ĥ𝑖](F𝐻

𝑝 x𝑝 + F𝐻
𝑑 x𝑑)} − 2ℜ{x𝐻

𝑝 F𝑝(

𝑟∑
𝑚=1

𝛽𝑚,𝑖H
𝐻 [u𝑚,𝑖]H[u𝑚,𝑖] +H𝐻 [ĥ𝑖]H[ĥ𝑖])

︸ ︷︷ ︸
≜P𝑖

F𝐻
𝑑 x𝑑}

− x𝐻
𝑑 F𝑑(

𝑟∑
𝑚=1

𝛽𝑚,𝑖H
𝐻 [u𝑚,𝑖]H[u𝑚,𝑖] +H𝐻 [ĥ𝑖]H[ĥ𝑖])

︸ ︷︷ ︸
=P𝑖

F𝐻
𝑑 x𝑑.

(19)

of (19) with respect to x𝑑 to zero, the 𝑖𝑡ℎ relaxed data estimate
which depends on 𝜀 is then given by

x𝑖
𝑑(𝜀) = (F𝑑P𝑖F

𝐻
𝑑 )−1F𝑑(H

𝐻 [ĥ𝑖]Φ𝐻(𝜀)y −P𝑖F
𝐻
𝑝 x𝑝).

(20)
This corresponds to linear data detector similar to those in
[7][11][12]. Then constellation mapping is carried out to
obtain the discrete data estimate as x̂𝑖

𝑑(𝜀) = Qant(x𝑖
𝑑(𝜀)),

where Qant(⋅) denotes quantization on the element in the
brackets. Putting x̂𝑖

𝑑(𝜀) back to (19), the CFO estimate follows

𝜀𝑖 = argmax
𝜀

2ℜ{y𝐻Φ(𝜀)H[ĥ𝑖](F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x̂𝑖
𝑑(𝜀))}

− 2ℜ{x𝐻
𝑝 F𝑝P𝑖F

𝐻
𝑑 x̂𝑖

𝑑(𝜀)} − (x̂𝑖
𝑑(𝜀))

𝐻F𝑑P𝑖F
𝐻
𝑑 x̂𝑖

𝑑(𝜀),
(21)

and only one dimension search is required to get the 𝑖𝑡ℎ

estimate of 𝜀.
In summary, the proposed algorithm iterates between the

E-step and M-step as follows:
E-step (update of h):

ĥ𝑖 = RℎD
𝐻 [ŝ𝑖−1](𝜎2

𝑤I𝑁 +D[ŝ𝑖−1]RℎD
𝐻 [ŝ𝑖−1])−1

×Φ𝐻(𝜀𝑖−1)y
(22)

with ŝ𝑖−1 = F𝐻
𝑑 x̂𝑖−1

𝑑 + F𝐻
𝑝 x𝑝.

M-step (update of 𝜀 and x𝑑):

𝜀𝑖 = argmax
𝜀

2ℜ{y𝐻Φ(𝜀)H[ĥ𝑖](F𝐻
𝑝 x𝑝 + F𝐻

𝑑 x̂𝑖
𝑑(𝜀))}

− 2ℜ{x𝐻
𝑝 F𝑝P𝑖F

𝐻
𝑑 x̂𝑖

𝑑(𝜀)} − (x̂𝑖
𝑑(𝜀))

𝐻F𝑑P𝑖F
𝐻
𝑑 x̂𝑖

𝑑(𝜀).
(23)

and

x̂𝑖
𝑑 = Qant{(F𝑑P𝑖F

𝐻
𝑑 )−1F𝑑(H

𝐻 [ĥ𝑖]Φ𝐻(𝜀𝑖)y −P𝑖F
𝐻
𝑝 x𝑝)}

(24)
where P𝑖 =

∑𝑟
𝑚=1 𝛽𝑚,𝑖H

𝐻 [u𝑚,𝑖]H[u𝑚,𝑖] + H𝐻 [ĥ𝑖]H[ĥ𝑖]
with 𝛽𝑚,𝑖 being the 𝑚𝑡ℎ eigenvalue of C𝑖

ℎ given in (16) and
u𝑚,𝑖 being the corresponding eigenvector.

Remark 1: In the M-step, the rank of C𝑖
ℎ should be spec-

ified for the eigen-decomposition. According to (16), another
equivalent form of C𝑖

ℎ is given by

C𝑖
ℎ = Rℎ

(
I𝑁𝐿 −D𝐻 [ŝ𝑖−1]

× (𝜎2
𝑤I𝑁 +D[ŝ𝑖−1]RℎD

𝐻 [ŝ𝑖−1])−1D[ŝ𝑖−1]Rℎ

)
.

(25)

It follows that 𝑟 = rank(C𝑖
ℎ) ≤ rank(Rℎ). Since the mag-

nitude of the eigenvalues of Rℎ is known to drop rapidly
after 𝐿(2⌈𝑁𝑓𝑑𝑇𝑠⌉+ 1) largest values [16], the magnitude of
the eigenvalues of C𝑖

ℎ should also follow this trend and we
choose 𝑟 = 𝐿(2⌈𝑁𝑓𝑑𝑇𝑠⌉+ 1) for the implementation.

Remark 2: The complexity of the proposed algorithm
is dominated by one 𝑁 × 𝑁 matrix inversion on
𝜎2
𝑤I𝑁 +D[ŝ𝑖−1]RℎD

𝐻 [ŝ𝑖−1] shown in (22), a partial eigen-
decomposition on 𝑁𝐿 × 𝑁𝐿 matrix C𝑖

ℎ to obtain P𝑖, and
one 𝑁𝑑 × 𝑁𝑑 matrix inversion on F𝑑P𝑖F

𝐻
𝑑 shown in (24).

For a 𝑀 ×𝑀 matrix, the complexity of inversion is 𝑂(𝑀3),
and the complexity of partial eigen-decomposition is 𝑂(𝑀2)
[17]. Therefore, the complexity of our proposed algorithm is
𝑂(𝑁3 +𝑁3

𝑑 + (𝑁𝐿)2).

IV. INITIALIZATION

A good initialization is essential to EM algorithm, and
therefore, the problem now becomes how to obtain the initial
estimates of CFO and data. Strictly speaking, if the channel
and data can be integrated out, the CFO estimator is given by

𝜀 = argmax 𝑝(y∣𝜀)
= argmax

∫
𝑝(y∣𝜀,h,x𝑑)𝑝(h)𝑝(x𝑑)dhdx𝑑. (26)

However, the integration is difficult to compute due to the
discrete nature of the data x𝑑. Notice that the received signal
is given by 𝑦(𝑛) = 𝑒𝑗2𝜋𝜀𝑛/𝑁

∑𝐿−1
𝑙=0 ℎ𝑙(𝑛)𝑠(𝑛 − 𝑙) + 𝑤(𝑛).

Since each tap of the channel is i.i.d., when the channel
length 𝐿 is large enough, according to the central limit theory,∑𝐿−1

𝑙=0 ℎ𝑙(𝑛)𝑠(𝑛−𝑙) is approximately Gaussian. Together with
𝑤(𝑛) being additive white Gaussian noise and independent of
the channel and data, 𝑝(y∣𝜀) is approximately Gaussian and
thus can be properly characterized by its mean 𝔼{y∣𝜀} and
correlation matrix 𝔼{yy𝐻 ∣𝜀}.

From (2) and (4), the mean can be computed as

𝔼{y∣𝜀} = 𝔼h,x𝑑,w{Φ(𝜀)H[h]s+w∣𝜀}
= 𝔼h{Φ(𝜀)D[F𝐻

𝑝 x𝑝]h∣𝜀} = 0 (27)

where the second equality comes from Property 1 after ex-
pectation with respect to x𝑑 and w, and the third equality is
based on expectation with respect to h.

On the other hand, after lengthy but straightforward com-
putation (shown in Appendix B), the covariance matrix, i.e.,
the correlation matrix in this case, is given by

𝔼{yy𝐻 ∣𝜀} = Φ(𝜀)(D[F𝐻
𝑝 x𝑝]RℎD

𝐻 [F𝐻
𝑝 x𝑝]

+ J⊙ (F𝐻
𝑑 Λ𝑑F𝑑) + 𝜎2

𝑤I𝑁 )Φ𝐻(𝜀)
(28)

where Λ𝑑 = 𝔼{x𝑑x
𝐻
𝑑 } is a diagonal matrix. Therefore, based

on the approximated Gaussian distribution 𝑝(y∣𝜀) with zero
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mean and covariance matrix given by (28), the initial CFO
estimator can be derived as

𝜀0 = argmin
𝜀

y𝐻Φ(𝜀)(D[F𝐻
𝑝 x𝑝]RℎD

𝐻 [F𝐻
𝑝 x𝑝]

+ J⊙ (F𝐻
𝑑 Λ𝑑F𝑑) + 𝜎2

𝑤I𝑁 )−1Φ𝐻(𝜀)y.
(29)

After CFO estimation, initial channel estimation is now
considered. The system model in (4) can be rewritten as

y = Φ(𝜀)D[F𝐻
𝑝 x𝑝]h+Φ(𝜀)H[h]F𝐻

𝑑 x𝑑 +w. (30)

By treating the term containing x𝑑 as interference, the MMSE
channel estimate is then given by

ĥ0 = RℎD
𝐻 [F𝐻

𝑝 x𝑝](D[F𝐻
𝑝 x𝑝]RℎD

𝐻 [F𝐻
𝑝 x𝑝]

+ J⊙ (F𝐻
𝑑 Λ𝑑F𝑑) + 𝜎2

𝑤I𝑁 )−1Φ𝐻(𝜀0)y.
(31)

Based on MMSE criterion and with the initial CFO and
channel estimates given in (29) and (31) respectively, the data
detection directly follows from (30) as

x̂0
𝑑 = Qant{(F𝑑H

𝐻 [ĥ0]H[ĥ0]F𝐻
𝑑 + 𝜎2

𝑤Λ
−1
𝑑 )−1

× F𝑑H
𝐻 [ĥ0](Φ𝐻(𝜀0)y −D[F𝐻

𝑝 x𝑝]ĥ
0)}. (32)

Remark 3: In the extreme case that all data are training, x𝑑

becomes known and 𝑝(y∣𝜀) is definitely Gaussian. The initial
CFO and channel estimator in (29) and (31) reduce to the
optimal estimators proposed in [18].

Remark 4: In time-invariant case, channel is constant dur-
ing each OFDM symbol, i.e., 𝑓𝑑 = 0 and then J is an all-one
matrix. Accordingly, (28) reduces to

𝔼{yy𝐻 ∣𝜀} = Φ(𝜀)(D[F𝐻
𝑝 x𝑝]RℎD

𝐻 [F𝐻
𝑝 x𝑝]

+ F𝐻
𝑑 Λ𝑑F𝑑 + 𝜎2

𝑤I𝑁 )Φ𝐻(𝜀).
(33)

Moreover, it can be easily verified that h = (I𝐿⊗1𝑁)h𝑠 with
h𝑠 = [ℎ0, ⋅ ⋅ ⋅ , ℎ𝐿−1]

𝑇 being the channel impulse response
(CIR) in time-invariant case. It follows that

Rℎ = (I𝐿 ⊗ 1𝑁 )R𝐿(I𝐿 ⊗ 1𝑁 )𝐻 . (34)

Putting (34) into (33), and together with the fact that

D[F𝐻
𝑝 x𝑝](I𝐿 ⊗ 1𝑁 ) =

[
Ξ0F

𝐻
𝑝 x𝑝, ⋅ ⋅ ⋅ ,Ξ𝐿−1F

𝐻
𝑝 x𝑝

]
= F𝐻

𝑝 diag{x𝑝}F𝐿 (35)

where F𝐿 contains the first 𝐿 columns of the FFT matrix, we
have the covariance matrix

𝔼{yy𝐻 ∣𝜀} = Φ(𝜀)
(
F𝐻

𝑝 diag{x𝑝}F𝐿R𝐿(F
𝐻
𝑝 diag{x𝑝}F𝐿)

𝐻

+ F𝐻
𝑑 Λ𝑑F𝑑 + 𝜎2

𝑤I𝑁
)
Φ𝐻(𝜀)

(36)
and the CFO estimator in (29) becomes

𝜀 = argmin
𝜀

y𝐻Φ(𝜀)
(
F𝐻

𝑝 diag{x𝑝}F𝐿R𝐿(F
𝐻
𝑝 diag{x𝑝}F𝐿)

𝐻

+ F𝐻
𝑑 Λ𝑑F𝑑 + 𝜎2

𝑤I𝑁
)−1

Φ𝐻(𝜀)y.
(37)

This estimator is equivalent to the MLE1 in [19] which
has been derived for OFDM systems over time-invariant
frequency-selective channels.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithm
for data detection is demonstrated by Monte Carlo simulations,
where each point is obtained by averaging the results over
𝑀 = 104 runs. Each OFDM symbol has 128 subcarriers
(𝑁=128) and the length of CP is 8. Carrier frequency is
𝑓𝑐 = 2 GHz and the sample interval is 𝑇𝑠 = 2𝜇𝑠. Nor-
malized maximal Doppler shift is set as 𝑁𝑓𝑑𝑇𝑠 = 0.05
(corresponding to the speed of the mobile terminal at 105.5
km/hr) and 𝑁𝑓𝑑𝑇𝑠 = 0.15 (corresponding to the speed
at 316.4 km/hr) for illustration. The channel has five taps
(𝐿 = 5) with an exponential power delay profile (PDP)
𝜎2
𝑙 = exp(−𝛽𝑙) 1−exp(−𝛽)

1−exp(−𝛽𝐿) , 𝑙 = 0, ⋅ ⋅ ⋅ , 𝐿 − 1 and 𝛽 = 0.2.
Each tap is independent, assumed to experience the same 𝑓𝑑
and generated according to the Jakes’ model. The CFO is
uniformly distributed within the range [−0.5, 0.5].

The pilot structure in [20] is adopted. More specifically,
fourteen pilot clusters are used and each cluster occupies three
pilots, with only one non-zero pilot in the middle of the
cluster. This means that roughly 32.81% of the subcarriers
are occupied by pilots. The non-zero pilots are generated as
standard complex Gaussian random variables and the data are
modulated by 16 QAM.

Over DSCs, the impacts of CFO and channel are similar,
i.e., both the CFO and the channel induce ICI. From data
detection point of view, according to (24), it can be seen
that, only the estimate of the combined CFO and channel
matrix Φ(𝜀𝑖)H[ĥ𝑖] is required. Ignoring those zero entries
in Φ(𝜀𝑖)H[ĥ𝑖], the combined CFO and channel matrix is
completely characterized by the combined CFO and channel
vector (I𝐿 ⊗ Φ(𝜀𝑖))ĥ𝑖. To evaluate the performance of the
proposed algorithm, the MSE of the combined CFO and
channel estimation is compared with the Bayesian Cramer
Rao Bound (BCRB) given in Appendix C. Notice that in the
derived BCRB, we consider all subcarriers are used for pilot
transmission, since the performance of the proposed algorithm
with scattered pilots is expected to approach the all pilot case.
The simulated normalized MSE (NMSE) of combined CFO
and channel estimation at the 𝑖𝑡ℎ iteration is defined as

𝑁𝑀𝑆𝐸 =

∑𝑀−1
𝑛=0 ∣∣(I𝐿 ⊗Φ(𝜀𝑖))ĥ𝑖 − (I𝐿 ⊗Φ(𝜀))h∣∣2∑𝑀−1

𝑛=0 ∣∣(I𝐿 ⊗Φ(𝜀))h∣∣2 .

(38)

A. Convergence of the proposed algorithm

Fig. 1 shows the NMSE convergence performance of the
combined CFO and channel estimation with signal-to-noise
ratios (SNRs) equal to 20dB and 30dB. It can be seen that
the NMSEs of the combined CFO and channel estimation
improve significantly in the first iteration and they converge to
stable values quickly after about three iterations. Furthermore,
after convergence, the performance of the combined CFO
and channel estimation only shows slight degradation when
the normalized maximum Doppler shift increases from 0.05
to 0.15, i.e., the velocity increases from 105.5𝑘𝑚/ℎ𝑟 to
316.4𝑘𝑚/ℎ𝑟.

Fig. 2 shows the symbol error rates (SERs) of data detection
versus the number of iterations for SNR=20dB and 30dB.
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Fig. 1. Convergence of the combined CFO and channel estimates.
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Fig. 2. Convergence of data detection.

Similarly, the SERs converge qucikly after three iterations
for both cases. After convergence, the performance of the
proposed data estimator over different maximum Doppler
shifts is almost the same at the same SNR level, which demon-
strates the robustness of the proposed data detection against
Doppler spreads. Notice that , for SNR=30dB, the proposed
data detection performs slightly better at 𝑁𝑓𝑑𝑇𝑠 = 0.15 than
𝑁𝑓𝑑𝑇𝑠 = 0.05. This slight improvement comes from Doppler
diversity [16], which increases as the velocity becomes larger.

B. Performance of the proposed algorithm

In Fig. 3, the NMSE of the combined CFO and channel
estimates versus different SNRs are depicted for the case
𝑁𝑓𝑑𝑇𝑠 = 0.15. The performance of the proposed initial CFO
and channel estimators is marked as ‘Iter=0’. The BCRB
derived with full training and the performance of the CFO and
channel estimation with full training [18] are also shown for
comparison. It can be seen that the performance of combined
CFO and channel estimation improves significantly in the
first iteration. Furthermore, after three iterations, the NMSE
of the proposed algorithm almost touches the derived BCRB
(after normalization) at high SNRs. Fig. 4 shows the BER
performance of the proposed algorithm as a function of SNR

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

N
M

S
E

 o
f c

om
bi

ne
d 

C
F

O
 a

nd
 c

ha
nn

el
 e

st
im

at
io

n

 

 

Iter=0
Iter=1
Iter=3
Full training [18]
BCRB

Fig. 3. NMSE of combined CFO and channel estimation for 𝑁𝑓𝑑𝑇𝑠 = 0.15.
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Fig. 4. Performance of data detection for 𝑁𝑓𝑑𝑇𝑠 = 0.15.

with 𝑁𝑓𝑑𝑇𝑠 = 0.15. The proposed initial data estimator is
labeled as ‘Iter=0’. The ideal case which assumes perfect
CFO and channel state information is also depicted as a
reference. As can be seen, though the density of pilots is
low (roughly 32.81% pilots inserted), after three iterations, the
SER performance is very close to the ideal case. Similar results
are also observed for the case 𝑁𝑓𝑑𝑇𝑠 = 0.05 and figures are
not presented here due to space limitation.

Besides that, comparison has also been performed between
our proposed algorithm and those derived for channel estima-
tion only given in [20] and [21], where basis expansion models
(BEMs) are adopted to approximate the DSCs. Specifically,
the proposed algorithm is compared with the LS estimator
using GCE-BEM, the LMMSE estimator using KL-BEM in
[21], and the LMMSE estimator using CE-BEM in [20]. The
number of BEM coefficients used for each channel tap are
three, five, three for GCE-BEM, KL-BEM and CE-BEM re-
spectively. For a fair comparison, CFO is not considered here,
i.e., 𝜀 = 0. Results are shown in Fig. 5. It can be seen that,
after convergence, the performance of the proposed algorithm
is much better than those in [20] and [21]. This is because
in the proposed algorithm, data is tentatively recovered to aid
the channel estimation via EM algorithm, while it is treated
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Fig. 5. Performance comparison of the proposed algorithm with [20] and
[21] (𝑁𝑓𝑑𝑇𝑠 = 0.15).

as interference in [20] and [21].

C. Effect of channel statistics mismatch

In the proposed algorithm, the required channel statistics de-
pends on the maximum Doppler shift 𝑓𝑑 and PDP. Generally,
𝑓𝑑 and PDP are obtained by estimation or measurement, and
mismatch between estimated and true channel statistics may
exist. The mismatch effect on the performance of the proposed
algorithm is now illustrated. Take the maximum Doppler shift
𝑓𝑑 = 585.94 Hz as an example, which corresponds to the case
𝑁𝑓𝑑𝑇𝑠 = 0.15. The normalized mismatch of the maximum
Doppler shift 𝑒𝑓𝑑 , which is defined as 𝑒𝑓𝑑 = 𝑓𝑑−𝑓𝑑

𝑓𝑑
, varies

from -0.5 to 0.5 to test its effect on the proposed algorithm.
Simulation results given in Fig. 6 show that the mismatch of
maximum Doppler shift (𝑒𝑓𝑑 ∕= 0) results in only slight perfor-
mance degradation on the proposed algorithm. With respect to
the impact of PDP mismatch, following the idea of Whitworth
[22], PDP mismatch is characterized by the mismatch in the
knowledge of 𝛽, since 𝛽 is the only essential parameter in
the PDP once the channel length 𝐿 is fixed. Fig. 7 shows the
performance of the proposed algorithm when the normalized
mismatch of 𝛽, i.e., 𝑒𝛽 = 𝛽−𝛽

𝛽 , varies within [−0.5, 0.5]. It
can be seen that the performance degradation caused by the
PDP mismatch is almost negligible, which is consistent with
the conclusion given in [22]. These results demonstrate that
the proposed method is robust against mismatch in the channel
statistics.

VI. CONCLUSIONS

Semiblind iterative data detection for OFDM systems over
unknown doubly selective channels and CFO was developed
based on the expectation-maximization algorithm. For initial-
ization, approximated ML CFO estimator and MMSE-based
channel and data estimators were derived respectively. Simu-
lation results demonstrated that the proposed EM algorithm is
robust to Doppler spread. After convergence, the performance
of data detection is close to the ideal case with perfect CFO
and channel state information. Moreover, the NMSE of the
combined CFO and channel estimates almost touch the derived
BCRB for full training at high SNRs.
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Fig. 6. The effect of Doppler shift mismatch (𝑁𝑓𝑑𝑇𝑠 = 0.15).
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Fig. 7. The effect of power delay profile (PDP) mismatch (𝑁𝑓𝑑𝑇𝑠 = 0.15).

APPENDIX A
DERIVATION OF (15) AND (16)

Using Bayes’ rule, the conditional pdf can be expressed as

𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 ) =

𝑝(y∣𝜀,h,x𝑑)𝑝(h)

𝑝(y∣𝜀,x𝑑)

∣∣∣
𝜀=𝜀𝑖−1,x𝑑=x̂𝑖−1

𝑑

(39)
where 𝑝(h) and 𝑝(y∣𝜀,h,x𝑑) are specified in (9) and (10)
respectively. Putting (9) and (10) into (39), using the fact that
D[s]h = H[h](F𝐻

𝑝 x𝑝+F𝐻
𝑑 x𝑑) and completing the square for

h, 𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 ) becomes

𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 ) =

1

𝑝(y∣𝜀𝑖−1, x̂𝑖−1
𝑑 )

× 1

(𝜋)𝑁𝐿∣C𝑖
ℎ∣

exp{−(h− ĥ𝑖)𝐻(C𝑖
ℎ)

−1(h− ĥ𝑖)}

× ∣C𝑖
ℎ∣

(𝜋𝜎2
𝑤)

𝑁 ∣Rℎ∣ exp{−
1

𝜎2
𝑤

(y𝐻y − 𝜎2
𝑤(ĥ

𝑖)𝐻(C𝑖
ℎ)

−1ĥ𝑖)}
(40)

where ĥ𝑖 ≜ (D𝐻 [ŝ𝑖−1]D[ŝ𝑖−1] + 𝜎2
𝑤R

−1
ℎ )−1D𝐻 [ŝ𝑖−1]

Φ𝐻(𝜀𝑖−1)y and C𝑖
ℎ ≜ 𝜎2

𝑤(D
𝐻 [ŝ𝑖−1]D[ŝ𝑖−1] + 𝜎2

𝑤R
−1
ℎ )−1

with ŝ𝑖−1 = F𝐻
𝑑 x̂𝑖−1

𝑑 + F𝐻
𝑝 x𝑝.

In ĥ𝑖 and C𝑖
ℎ, the matrix inverse of Rℎ is required, but

it does not exist. To avoid this, using the matrix inversion
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lemma,

ĥ𝑖 = RℎD
𝐻 [ŝ𝑖−1](𝜎2

𝑤I𝑁 +D[ŝ𝑖−1]RℎD
𝐻 [ŝ𝑖−1])−1

×Φ𝐻(𝜀𝑖−1)y, (41)

C𝑖
ℎ = Rℎ −RℎD

𝐻 [ŝ𝑖−1]

× (𝜎2
𝑤I𝑁 +D[ŝ𝑖−1]RℎD

𝐻 [ŝ𝑖−1])−1D[ŝ𝑖−1]Rℎ. (42)

Obviously from (40), the pdf 𝑝(y∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) needs to be

computed. Based on (9) and (10), and after completing square
for h,

𝑝(y∣𝜀𝑖−1, x̂𝑖−1
𝑑 ) =

∫
𝑝(y∣𝜀𝑖−1, x̂𝑖−1

𝑑 ,h)𝑝(h)dh

=
∣C𝑖

ℎ∣
(𝜋𝜎2

𝑤)
𝑁 ∣Rℎ∣ exp{−

1

𝜎2
𝑤

(y𝐻y − 𝜎2
𝑤(ĥ

𝑖)𝐻(C𝑖
ℎ)

−1ĥ𝑖)}.
(43)

Putting (43) into (40),

𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 ) =

1

(𝜋)𝑁𝐿∣C𝑖
ℎ∣

× exp{−(h− ĥ𝑖)𝐻(C𝑖
ℎ)

−1(h− ĥ𝑖)}.
(44)

The pdf 𝑝(h∣y, 𝜀𝑖−1, x̂𝑖−1
𝑑 ) is a Gaussian distribution. There-

fore, ĥ𝑖 and C𝑖
ℎ given in (41) and (42) respectively are in fact

its conditional mean and covariance, and thus (15) and (16)
are proved.

APPENDIX B
DERIVATION OF (28)

Notice that 𝔼{y∣𝜀} = 0, the covariance matrix of y given
𝜀 is equivalent to its correlation matrix and is given by

𝔼{yy𝐻 ∣𝜀} = 𝔼h,x𝑑,w{(Φ(𝜀)H[h]s+w)(Φ(𝜀)H[h]s +w)𝐻}
= 𝔼h{Φ(𝜀)H[h](F𝐻

𝑝 x𝑝x
𝐻
𝑝 F𝑝 + F𝐻

𝑑 Λ𝑑F𝑑)

×H𝐻 [h]Φ𝐻(𝜀) + 𝜎2
𝑤I𝑁 ∣𝜀} (45)

with the second equality due to expectation with respect to
x𝑑 and w. Notice that Λ𝑑 is diagonal and the FFT matrix
is orthogonal, we then have F𝐻

𝑑 Λ𝑑F𝑑 =
∑

𝑚∈𝐼𝑑
𝜎2
𝑥𝑚

f𝑚f𝐻𝑚
with 𝜎2

𝑥𝑚
being the 𝑚𝑡ℎ diagonal element of Λ𝑑 and f𝑚

being the corresponding row of F𝑑. Therefore, with Property
1, H[h]F𝐻

𝑑 Λ𝑑F𝑑H
𝐻 [h] =

∑
𝑚∈𝐼𝑑

𝜎2
𝑥𝑚

D[f𝑚]hh𝐻D𝐻 [f𝑚].
Putting this result into (45) and taking expectation with respect
to h, 𝔼{yy𝐻 ∣𝜀} becomes

𝔼{yy𝐻 ∣𝜀} = Φ(𝜀)(D[F𝐻
𝑝 x𝑝]RℎD

𝐻 [F𝐻
𝑝 x𝑝]

+
∑
𝑚∈𝐼𝑑

𝜎2
𝑥𝑚

D[f𝑚]RℎD
𝐻 [f𝑚] + 𝜎2

𝑤I𝑁 )Φ𝐻(𝜀), (46)

where we also used the fact that H[h]F𝐻
𝑝 x𝑝 = D[F𝐻

𝑝 x𝑝]h.
According to the definition of D[f𝑚] and Rℎ, we have

D[f𝑚]RℎD
𝐻 [f𝑚] =

∑𝐿−1
𝑙=0 𝜎2

𝑙 diag{Ξ𝑙f𝑚}Jdiag𝐻{Ξ𝑙f𝑚}.
Notice that [Ξ𝑙f𝑚]𝑛 = 𝑒𝑗2𝜋𝑚(𝑛−𝑙)/𝑁 , it then follows that
[diag{Ξ𝑙f𝑚}Jdiag𝐻{Ξ𝑙f𝑚}]𝑛,𝑘 = [J]𝑛,𝑘𝑒

𝑗2𝜋𝑚(𝑛−𝑘)/𝑁 which
does not depend on 𝑙. Therefore,

[
∑
𝑚∈𝐼𝑑

𝜎2
𝑥𝑚

D[f𝑚]RℎD
𝐻 [f𝑚]]𝑛,𝑘 = [J]𝑛,𝑘 ⋅ [F𝐻

𝑑 Λ𝑑F𝑑]𝑛,𝑘

(47)

where the fact that
∑𝐿−1

𝑙=0 𝜎2
𝑙 = 1 has been used. It follows

that ∑
𝑚∈𝐼𝑑

𝜎2
𝑥𝑚

D[f𝑚]RℎD
𝐻 [f𝑚] = J⊙ (F𝐻

𝑑 Λ𝑑F𝑑). (48)

Putting (48) into (46), we finally have (28).

APPENDIX C
BCRB

First we rewrite the system model as

y = D[s](I𝐿 ⊗Φ(𝜀))h+w. (49)

The pdf of the combined channel vector h̄ ≜ (I𝐿 ⊗Φ(𝜀))h
can be easily shown to be

𝑝(h̄) =
1

(𝜋)𝑁𝐿∣Rh∣
× exp(−h̄𝐻(I𝐿 ⊗Φ(𝜀))R−1

h (I𝐿 ⊗Φ(𝜀))𝐻 h̄).

(50)

With s being known, the likelihood function of y given h̄ is

𝑝(y∣h̄) = 1

(𝜋𝜎2
𝑤)

𝑁
exp(− 1

𝜎2
𝑤

∥y−D[s]h̄∥2). (51)

Defining 𝜽 = [ℜ{h̄}𝑇ℑ{h̄}𝑇 ]𝑇 , the BCRB for the com-
bined CFO and channel estimate can be expressed as [23]

𝐵𝐶𝑅𝐵 = Tr{(J𝐹 + J𝑃 )
−1} (52)

where J𝐹 is given by [24]

J𝐹 = 𝔼h̄{𝔼y∣h̄{
∂2log 𝑝(y∣h̄)
∂𝜽∂𝜽𝑇

}}

=
2

𝜎2
𝑤

[ℜ{D𝐻(s)D[s]} −ℑ{D𝐻(s)D[s]}
ℑ{D𝐻(s)D[s]} ℜ{D𝐻(s)D[s]}

]
(53)

and J𝑃 is the prior information matrix defined as [23]

J𝑃 = −𝔼h̄{
∂2log 𝑝(h̄)

∂𝜽∂𝜽𝑇
}

= 2

[
(I𝐿 ⊗Φ(𝜀))R−1

ℎ (I𝐿 ⊗Φ(𝜀))𝐻 0
0 (I𝐿 ⊗Φ(𝜀))R−1

ℎ (I𝐿 ⊗Φ(𝜀))𝐻

]
(54)

with the second equality due to (50).
After inverting J𝐹 + J𝑃 , combining together the real part

and imaginary part of h̄ and eliminating 𝜀, we can obtain the
bound as

𝐵𝐶𝑅𝐵 = 𝜎2
𝑤Tr{(D𝐻 [s]D[s] + 𝜎2

𝑤R
−1
ℎ )−1}. (55)
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