
Title Contributions of tester experience and a checklist guideline to
the identification of categories and choices for software testing

Author(s) Poon, PL; Tse, TH; Tang, SF; Kuo, FC

Citation Software Quality Journal, 2011, v. 19 n. 1, p. 141-163

Issued Date 2011

URL http://hdl.handle.net/10722/133801

Rights The Author(s)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/37957478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ORI GIN AL PA PER

Contributions of tester experience and a checklist
guideline to the identification of categories and choices
for software testing

Pak-Lok Poon • T. H. Tse • Sau-Fun Tang • Fei-Ching Kuo

Published online: 31 August 2010
� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract An early step for most black-box testing methods is to identify a set of cate-

gories and choices (or their equivalents) from the specification. The identification is often

performed in an ad hoc manner, thus the quality of categories and choices is in doubt.

Poorly identified categories and choices will affect the comprehensiveness of test cases. In

this paper, we describe several comparative studies using three commercial specifications

and discuss the major results. The objectives of our studies are (a) to investigate the

differences in the types and amounts of mistakes made between inexperienced and

experienced software testers in an ad hoc identification approach and (b) to determine the

extent of mistake reduction after discussing the mistakes with the software testers and

providing them with an identification checklist.

Keywords Black-box testing � Choice relation framework � Classification-tree

methodology � Software testing

P.-L. Poon (&)
School of Accounting and Finance, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
e-mail: afplpoon@inet.polyu.edu.hk

T. H. Tse
Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
e-mail: thtse@cs.hku.hk

S.-F. Tang � F.-C. Kuo
Faculty of Information and Communication Technologies, Swinburne University
of Technology, Hawthorn, VIC 3122, Australia
e-mail: s.tang6@pgrad.unimelb.edu.au

F.-C. Kuo
e-mail: dkuo@swin.edu.au

123

Software Qual J (2011) 19:141–163
DOI 10.1007/s11219-010-9109-4

1 Introduction

There are many chances to make mistakes in software development, resulting in software

design and programming faults (Boehm and Basili 2001). Reported cases of faulty systems

and their associated catastrophes are abundant (Grottke and Trivedi 2007; National

Research Council 1991; Neumann 1991; Paulk et al. 1995). Software quality is of the

utmost importance to both developers and users of software systems. Testing remains the

most practical means of assuring the quality of software (Bache and Müllerburg 1990; Yu

et al. 2001).

In general, testing helps reveal failures due to software faults and prevents them from

propagating to the final production system, where the cost of fault removal would be far

greater (Boehm and Basili 2001; Miller et al. 1992; Shepard et al. 2001). Studies by IBM

and others have shown that to correct a fault after coding is at least ten times as costly as

before it, and to correct a production fault is at least 100 times as costly (Perry 2006).

Similar observations are reported in other literature—the cost-escalation factors range from

5:1 to 100:1, depending on the types and sizes of the software systems (Boehm and Basili

2001; Grottke and Trivedi 2007).

On average, a software developer spends 40–50% of predelivery development costs on

testing in order to achieve reasonable quality levels (Sanders and Curran 1994; Shepard

et al. 2001). Since testing is expensive and labor intensive, it should be well planned,

organized, and executed. Among the various activities in testing, the generation of test
suites (that is, sets of test cases) is particularly important and receives much attention. This

is because the comprehensiveness of a test suite determines the scope of testing and in turn

the chance of revealing software failures. Not surprisingly, numerous software practitioners

and researchers have spent a lot of effort to develop test suite generation methodolo-

gies, including domain testing (Beizer 1990), equivalence partitioning (Myers 2004),

in-parameter-order (Lei and Tai 1998; Tai and Lei 2002), the category-partition method

(Ostrand and Balcer 1988), and the classification-tree method (Grochtmann and Grimm

1993; Hierons et al. 2003; Singh et al. 1997). Recently, an integrated classification-tree

methodology (Cain et al. 2004; Chen et al. 2000) and CHOiCe reLATion framEwork

(CHOC’LATE) (Chen et al. 2003; Poon et al. 2010) were also proposed. (The integrated

classification-tree methodology (Cain et al. 2004; Chen et al. 2000) is an extension to the

‘‘original’’ classification-tree method (Grochtmann and Grimm 1993; Hierons et al. 2003;

Singh et al. 1997). For ease of presentation, they will be collectively referred to as the

Classification-Tree Methodology (CTM).) All these methods fall under the black-box
approach, where test suites are generated from specifications without knowledge of the

internal structure of the programs under test.

In CHOC’LATE and CTM, we observe that identifying categories and choices (which form

the basis for subsequent test case generation) from an entire informal specification1 is often

done in an ad hoc manner because of the absence of any systematic identification tech-

nique. The ad hoc identification approach will certainly pose a threat to the quality of the

test cases.

Motivated by this problem, we have conducted several comparative studies using three

commercial specifications written primarily in an informal manner. They are based on our

1 In general, there are two types of specifications, namely formal and informal. Formal specifications are
written in a mathematical notation such as Z (Wordsworth 1992) and Boolean predicates (Lau and Yu 2005;
Tai 1996), whereas informal specifications are mainly written in natural or graphical languages. Relatively
speaking, informal specifications are more popular than formal ones in the commercial software industry.

142 Software Qual J (2011) 19:141–163

123

previous studies in Chen et al. (2004) to be outlined in Sect. 3. The present comparative

studies serve two purposes: (a) to verify how the types and numbers of mistakes made by

the testers in an ad hoc identification approach vary with their working experience in

software development and testing and (b) to determine, after discussing the mistakes with

the testers and providing them with our checklist as a simple guideline for detecting

problematic categories and choices (Chen et al. 2004), how many mistakes can be avoided

in the next identification exercises.

2 Identification of categories, choices, and their relations

Given a specification (or its functional units, which are smaller units of the specification

whose corresponding subsystems can be tested independently), an early step in CHOC’LATE

(Chen et al. 2003; Poon et al. 2010) and CTM (Cain et al. 2004; Chen et al. 2000;

Grochtmann and Grimm 1993; Hierons et al. 2003; Singh et al. 1997) is to identify cat-

egories and their associated choices. (Note that identifying categories and choices, or their

equivalents, is also a necessary step in domain testing (Beizer 1990), equivalence parti-

tioning (Myers 2004), and in-parameter-order (Lei and Tai 1998; Tai and Lei 2002). Thus,

the findings reported in this paper are also largely applicable to these methods.) A category
is defined as a major property or characteristic of a parameter or an environment condition

of the software system that affects its execution behavior. The possible values associated

with each category are partitioned into disjoint subsets known as choices. Similarly, an

early step in CTM is to identify classifications and their associated classes. ‘‘Classifications’’

in CTM are equivalent to ‘‘categories’’ in CHOC’LATE, and ‘‘classes’’ in CTM are equivalent to

‘‘choices’’ in CHOC’LATE. For the ease of presentation, we will refer to them only as

categories and choices, respectively. For further ease of presentation, parameters and

environment conditions are collectively known as factors in this paper. In addition, any

factor is said to be influencing if it affects the execution behavior of a system.

Consider an undergraduate award classification system AWARD, whose main function

is to determine whether a student is eligible for graduation. A possible category for

AWARD is ‘‘Cumulative Number of Credits (N)’’, with ‘‘Cumulative Number of Credits

(N) 0BN\120’’ and ‘‘Cumulative Number of Credits (N)NC120’’ as its two associated

choices.2 This category and its associated choices are identified according to the infor-

mation in the specification that a student needs to accumulate at least 120 credits for

graduation. Thus, ‘‘Cumulative Number of Credits (N)0BN\120’’ corresponds to the situa-

tion where a student is not eligible for graduation. On the other hand, ‘‘Cumulative Number

of Credits (N)NC120’’ corresponds to the situation where a student may or may not be

eligible for graduation, depending on other influencing factors such as their average GPA

score. Note that a choice may comprise a set of possible values. For example, ‘‘Cumulative

Number of Credits (N)0BN\120’’ = {0, 1, …, 119}.

After identifying a set of categories and choices, constraints or relations at the choice

level (in CHOC’LATE) or the category level (in CTM) are defined by software testers. Suppose

‘‘Cumulative Number of Credits (N)0BN\120’’, ‘‘Cumulative Number of Credits (N)NC120’’,

‘‘Number of Full Years of Study (Y)0BY\3’’, ‘‘Average GPA Score (S)3.5BSB4.0’’, and some

other choices are identified for AWARD. Suppose further that it is impossible for a student

with less than three full years of study to accumulate 120 or more credits. In this case, a

2 In this paper, we will use the notation Q to denote a category, and Qx to denote a choice x of category
Q. When there is no ambiguity, we will simply refer to Qx as x.

Software Qual J (2011) 19:141–163 143

123

constraint (or relation) exists, namely ‘‘Cumulative Number of Credits (N)NC120’’ cannot be

combined with ‘‘Number of Full Years of Study (Y)0BY\3’’ to form part of any valid choice

combination. Another constraint is that ‘‘Cumulative Number of Credits (N)0BN\120’’ or

‘‘Cumulative Number of Credits (N)NC120’’ may or may not be combined with ‘‘Average

GPA Score (S)3.5BSB4.0’’ to form part of any valid choice combination, depending on the

final score of each course that a student has obtained.

The identified choices and constraints will then be processed by predefined algorithms

in CHOC’LATE or CTM for generating complete test frames. In brief, a test frame is a set of

choices. A test frame is said to be complete if, whenever a single value is selected from

each choice, a test case is formed. Otherwise, it is said to be incomplete. In the rest of the

paper, we will use B, Bc, and tc to denote a test frame, a complete test frame, and a test

case, respectively. Details of the algorithms provided by CHOC’LATE and CTM to generate Bcs

are outside the scope of this paper. Readers may refer to the relevant literature (Cain et al.

2004; Chen et al. 2000, 2003; Grochtmann and Grimm 1993; Hierons et al. 2003; Poon

et al. 2010; Singh et al. 1997) for details.

Once a set of Bcs is generated, test cases can be formed. Consider, for instance,

B1
c = {Cumulative Number of Credits (N)0BN\120, Number of Full Years of Study

(Y)0BY\3, Average GPA Score (S)3.5BSB4.0, …}. By selecting a single value from each

choice in B1
c, some tcs can be formed. An example of such a tc is (Cumulative Number of

Credits (N) = 90, Number of Full Years of Study (Y) = 2, Average GPA Score

(S) = 3.7, …).

If a valid choice x is missing, for instance, then no Bc containing x will be generated.

Consequently, any failure associated with x may not be detected. We note that identifying

categories and choices from an entire informal specification is often done in an ad hoc

manner because of the absence of a systematic identification technique.3 The quality of the

test cases resulting from such an ad hoc approach may be in question.

3 Previous work on category and choice identification

Grochtmann and Grimm (1993) have investigated the feasibility of applying artificial

intelligence techniques to automatically identify categories and choices from informal

specifications. Their work outlines the challenges of this. They argue that identifying

categories and choices is a creative process that probably can never be done automatically

in its entirety (Grochtmann and Grimm 1993). They have then shifted their attention to the

identification process based on formal specifications. Other researchers such as Amla and

Ammann (1992), Hierons et al. (2003), and Singh et al. (1997) have also conducted work

in this direction. While we concur with the view that the identification of categories and

choices from informal specifications is challenging and cannot be fully automatic, we take

3 More specifically, a systematic and effective identification technique does not exist for various test suite
generation methodologies including domain testing (Beizer 1990), equivalence partitioning (Myers 2004),
in-parameter-order (Lei and Tai 1998; Tai and Lei 2002), CTM (Cain et al. 2004; Chen et al. 2000;
Grochtmann and Grimm 1993; Hierons et al. 2003; Singh et al. 1997), and CHOC’LATE (Chen et al. 2003;
Poon et al. 2010). In this paper, we are interested in an effective technique to identify categories and choices
that are free from problems and omissions, rather than an effective technique to organize or manipulate the
identified categories and choices in order to generate test cases with a high failure detection capability,
which is the target of most test suite generation methodologies. Furthermore, the occurrence of missing and
problematic categories and choices should also affect the failure detection capability, although the study of
such a complex correlation is beyond the scope of the present paper.

144 Software Qual J (2011) 19:141–163

123

the position that research on identification processes for informal specifications is a must,

because this type of specification is more commonly accepted by the software industry.

As a start, we conducted a literature review into the work on identifying categories and

choices from specifications that are not written in a strict formal nature such as Z

(Wordsworth 1992) and Boolean predicates (Lau and Yu 2005; Tai 1996). Very little

relevant work was found. De la Riva et al. (2006) developed a partition-based approach

where categories and choices are identified by systematically examining both the XML

schema and the XML query. Chen et al. (2005) and Hartmann et al. (2005) introduced

their methods to identify categories and choices from UML activity diagrams, which are

just one component in a specification. Thus, our review indicates that a systematic iden-

tification technique for the entire informal specification does not exist.

Consequently, we have conducted some empirical studies to investigate the common

mistakes made by testers involving the entire informal specifications under an ad hoc

identification approach (Chen et al. 2004). We have formally defined these common

mistakes under various types of problematic categories and choices and missing categories

and choices. A major contribution of our empirical studies in Chen et al. (2004) is to help

reduce the chance of repeating these mistakes by making them known to testers. As an

interim solution, we have developed a checklist to serve as a simple guideline for detecting

missing/problematic categories and choices (Chen et al. 2004).

4 Experimental settings

We conjecture that the types and amounts of mistakes made by testers in an ad hoc

identification approach may vary with their past experience. Thus, we conduct the present

studies to compare with our previous studies in (Chen et al. 2004) to verify the conjecture.

Also, after discussing the mistakes with the subjects and providing them with the checklist,

we will further determine how many mistakes the subjects can avoid in the next identi-

fication exercises. In this section, we describe and contrast the experimental settings of our

present and previous studies.

4.1 The present studies

Our studies use three commercial specifications that are written primarily in an informal

manner. These specifications are briefly described as follows.

The first specification STRADE is related to the credit sales of goods by a wholesaler to

retail customers. The main function of the system is to decide whether credit sales should

be approved for individual retail customers. Such a decision considers several issues,

including the credit status and credit limit of the customer and the billing amount of the

transactions.

The second specification SPURCHASE is related to the purchase of goods using credit cards

issued by an international bank. Each credit card is associated with several attributes such

as status (diamond, gold, or classic), type (corporate or personal), and credit limit (different

card statuses will have different credit limits). The main functions of the system are to

decide whether a purchase using a credit card should be approved and to calculate the

number of reward points to be granted for an approved purchase. The number of reward

points further determines the type of benefit (such as free airline tickets and shopping

vouchers) that the customer is entitled to.

Software Qual J (2011) 19:141–163 145

123

The third specification SMOS is related to a meal ordering system (MOS), which is being

used by an international company providing catering service for many different airlines.

The main function of MOS is to help the catering company determine the types (such as

normal, child, and vegetarian) and numbers of meals to be prepared and loaded onto each

flight served by the company.

In order to protect the identity of the three companies and to make STRADE; SPURCHASE, and

SMOS suitable for our studies, we have slightly amended the original specifications before

commencing the studies. The majority of the contents of the original specifications,

however, have remained unchanged.

We recruited 16 software practitioners as the subjects of our studies. They will be

referred to as Subjects 1, 2, …, 16. In general, their IT qualifications are undergraduate or

postgraduate degrees in information technology, information systems, business computing,

computer science, computing studies, and computer engineering. (Some of these subjects

also have other non-IT academic qualifications such as MBA degrees.) In addition, the

subjects have 8–20 years of commercial experience in software development and testing,

with a mean of 11.9 years of experience. Thus, they are classified as experienced testers.

On the other hand, the subjects in our previous studies in Chen et al. (2004) were

undergraduates or postgraduates with little or no working experience in software devel-

opment or testing. Hence, they are classified as inexperienced testers.

Before commencing our present studies, we prepared all the subjects by giving them a

one-hour introduction of CHOC’LATE and CTM, supported by related literature, including

Chen et al. (1998), Grochtmann and Grimm (1993), and Singh et al. (1997). The intro-

duction was followed by a one-hour discussion in which some examples of CHOC’LATE and

CTM (such as a program counting the number of times that an element occurs in a list

(Grochtmann and Grimm 1993)) were used to reinforce the subjects’ understanding of

these techniques.

4.2 Our previous studies

Prior to our present studies, we conducted similar studies (Chen et al. 2004) with subjects

having less experience in software development and testing. Our previous studies involved

48 final-year undergraduates in the computer science and software engineering programs at

The University of Melbourne and a mix of 44 undergraduates and postgraduates in the

computer science, software engineering, and information technology programs in Swin-

burne University of Technology. All the students had little or no working experience in

software development and testing. Thus, when compared with the subjects in the present

studies who have, on average, 11.9 years of relevant experience, the students can be

considered as inexperienced testers.

The students were introduced to the concepts of the testing methods (such as CTM) in a

one-hour lecture using the same set of literature. This was followed by a one-hour tutorial

discussion using the same examples as in the present studies. Even the testing methods

were taught by the same instructor in both our previous and present studies. They were then

given the same set of specifications (STRADE; SPURCHASE, and SMOS) as in the present studies.

Thus, the preparation exercise in our previous studies was essentially the same as in the

present studies, in terms of the instructor, teaching method, and teaching material. Fur-

thermore, in both series of studies, the subjects were asked to identify categories and

choices from the same set of specifications using a similar (ad hoc) identification approach

(see Sect. 6.1 for more details). This arrangement allows us to compare the results between

our previous and present studies in a meaningful way.

146 Software Qual J (2011) 19:141–163

123

5 Terminology and definitions

As introduced in Sect. 1, categories are the major properties or characteristics of influ-

encing factors of a software system. For every category Q proposed by the subjects, it may

either be identified according to the definition or incorrectly identified with something else

in mind. In view of this situation, we will refer to any Q identified by the subjects as a

potential category. Similarly, any Qx identified by the subjects is called a potential choice.

Although readers are advised to refer to our previous paper (Chen et al. 2004) for the

details of the different types of mistakes that may occur in an ad hoc identification

approach, a basic understanding of such mistakes is needed for further discussions. We will

therefore provide an overview of the mistakes below, without going into the detailed

formal definitions in Chen et al. (2004).

Any potential category Q is said to be relevant if it is defined with respect to a factor

that influences the observable results of a software system. Otherwise, it is said to be

irrelevant. Only relevant categories are useful for test case generation. In the rest of the

paper, relevant categories are simply referred to as categories unless otherwise stated.

Given a set (denoted by PC) of potential categories and their associated potential choices,

if there exists a (relevant) category Q such that Q 62PC, then Q is a missing category with

respect to PC.

Given a category Q, any potential choice Qx is said to be valid if there exists some

complete test frame Bc such that Bc contains Qx. Otherwise, Qx is said to be invalid.

Obviously, only valid choices are useful for test case generation. In the rest of the paper,

valid choices are simply referred to as choices unless otherwise stated. If a (valid) choice

x is omitted in PC, then it is a missing choice with respect to PC. Any choice that is not

properly identified can be classified into one or more of the following types:

(One of the overlapping choices) Given a category Q, two distinct choices Qx and Qy

are said to be overlapping if there exists a common element in both Qx and Qy (that is,

the two sets of possible values are not disjoint).

(One of the combinable choices) Given a category Q, two distinct choices Qx and Qy

are said to be combinable if, for any complete test frames Bc
1 and Bc

2 containing Qx and

Qy, respectively, such that Bc
1 n fQxg ¼ Bc

2 n fQyg, they are associated with the same

function rule in the specification. (The mapping between a given set of system inputs

and the corresponding set of system outputs is expressed by means of a function rule.

This rule states precisely the preconditions for the function to execute and how the

outputs are related to the inputs (Chen et al. 2004).) In this case, we should replace the

individual Qx and Qy by a combined Qz ¼ Qx [Qy so as to reduce the number of

complete test frames and, hence, save testing effort.

(A composite choice) Given a category Q, any choice Qz is said to be composite if there

exist valid, nonoverlapping, and noncombinable choices Qx and Qy such that

Qx [Qy � Qz. (Thus, we should replace Qz by Qx and Qy in order to increase the

comprehensiveness of the resulting set of complete test frames.)

A potential choice x is said to be problematic if at least one of the following criteria is

satisfied:

– It is an invalid choice.

– It is one of the overlapping choices.

– It is one of the combinable choices.

– It is a composite choice.

Software Qual J (2011) 19:141–163 147

123

Similarly, a potential category Q is said to be problematic if at least one of the following

criteria is satisfied:

– It is an irrelevant category.

– It is a category with missing choices.

– It is a category with problematic choices.

Obviously, the occurrence of missing and problematic categories will affect the com-

prehensiveness of the test suite. To be more specific, non-problematic categories and their

associated choices can be directly used for generating test cases, but problematic categories

need to be refined or corrected in order that their non-problematic choices can be used in

test case generation.

6 Study 1: Effect of tester experience

6.1 Objective and steps

The main objective of the first study is to investigate how the types and amounts of

mistakes made in an ad hoc identification approach vary between inexperienced and

experienced testers. The manual checking of missing and problematic categories is carried

out by one of the authors of this paper, who has substantial experience in CHOC’LATE and

CTM. This is also the case for study 2 to be described later. Since MOS contains numerous

modules and is fairly complex in logic, we first decompose SMOS into several functional

units. For instance, there is a functional unit UMEAL directly related to the generation of daily

meal schedules and other units related to the maintenance of the airline codes and city

codes. Such decomposition does not apply to STRADE and SPURCHASE because their corre-

sponding systems are less complex and, hence, can be tested in their entirety. Thus, we

treat STRADE and SPURCHASE as functional units denoted by UTRADE and UPURCHASE, respectively.

After the subjects have learned CHOC’LATE and CTM, we ask each of them to do the first

round of identification exercises according to the following scheme:

(a) Subjects 1 to 8: For each of UTRADE and UPURCHASE, identify from it a set of potential

categories and their associated potential choices in an ad hoc manner. Furthermore,

for each identified potential category and potential choice, the reason of its

identification has to be stated. We have asked the eight subjects to work on UTRADE

before UPURCHASE.

(b) Subjects 9 to 16: Repeat (a) above for UMEAL instead of UTRADE and UPURCHASE. The

primary reason for choosing UMEAL for the study (rather than other functional units of

SMOS) is because generating daily meal schedules is the most important core function

of MOS.

Because of the above scheme, there were eight experienced subjects involved in each

functional unit. The rationale of breaking the subjects into two groups was to reduce biases

in the later investigation on how they performed in study 2. While the subjects were

randomly assigned in groups, we have kept the average years of commercial experience in

software development and testing of each group of subjects as similar as possible. Note that

each subject was asked to identify one PC for each assigned functional unit. Thus, the

number of PCs for each functional unit was equal to the number of subjects. This was also

the case for our previous studies in Chen et al. (2004). (In the previous studies, the number

of subjects for UTRADE; UPURCHASE, and UMEAL was 48, 48, and 44, respectively.)

148 Software Qual J (2011) 19:141–163

123

6.2 Findings and discussion

6.2.1 Potential categories and choices

Consider Table 1, which shows the statistics on potential categories and choices identified

for each functional unit. Two sets of results are separated by slashes (‘‘/’’). The first set

corresponds to our previous studies in Chen et al. (2004) involving inexperienced testers,

while the second set corresponds to our present studies involving experienced testers. The

data outside the brackets correspond to potential categories, while those in brackets cor-

respond to potential choices. We have the following observations from the table:

Observation 1: Complexity of the functional units and the mean numbers of potential
categories and choices The mean numbers of potential categories and choices identified

by both inexperienced and experienced testers increase with the complexity of the func-

tional units, with the minimum numbers attached to the least complex UTRADE and the

maximum numbers attached to the most complex UMEAL.

Interpretation: A natural reason for this phenomenon is that software systems asso-

ciated with complex specifications often contain many aspects for testing, thus contributing

to more potential categories and choices to be identified.

Observation 2: Variations in the numbers of potential categories and choices The

numbers of potential categories and choices vary substantially among the subjects, as

evidenced by the large ranges and standard deviations. This, in turn, indicates that the

quality of PCs, as identified by the subjects in an ad hoc manner, also varies significantly.

Interpretation: Suppose, among all the PCs identified by the subjects, one of them

(denoted by PC0) is a ‘‘good’’ set, in the sense that PC0 contains all the relevant categories

and has no missing or problematic categories. Now, given any set PC1 with more potential

categories and choices than PC0, PC1 may contain irrelevant categories, categories with

invalid choices, or categories with combinable choices. On the other hand, given any set

PC2 with fewer potential categories and choices than PC0, PC2 may have missing cate-

gories or may contain categories with missing or composite choices. Thus, neither PC1 nor

PC2 is of good quality.

Table 1 Statistics on potential categories and choices identified by inexperienced and experienced testers

Functional
unit

Numbers
of PCsa

Numbers of potential categories (choices)

Totals Meansb Ranges Standard
deviations

By inexperienced testers/experienced testers

UTRADE 48/8 265 (579)/54 (124) 5.5 (12.1)/6.8 (15.5) 5 (10)/2 (8) 0.9 (1.5)/0.7 (2.5)

UPURCHASE 48/8 475 (1 138)/101
(278)

9.9 (23.7)/12.6 (34.8) 8 (20)/4 (11) 2.0 (4.4)/1.3 (3.1)

UMEAL 44/8 615 (1 488)/134
(299)

14.0 (33.8)/16.8
(37.4)

36 (73)/3 (10) 7.8 (16.7)/1.5
(3.7)

Averages 9.8 (23.2)/12.0 (29.2) 16.3 (34.3)/3.0
(9.7)

3.6 (7.5)/1.2 (3.1)

a PC = set of potential categories and choices
b For each subject

Software Qual J (2011) 19:141–163 149

123

In this case, the large ranges and standard deviations indicate that the quality of PCs

(identified by the subjects in an ad hoc manner) varies significantly. Thus, the failure

identification capability of the Bcs constructed from such PC is in doubt. Systematic

identification techniques for identifying categories and choices from informal specifica-

tions are certainly needed, with a view to improving the quality of the PC.

Observation 3: Experience of the subjects and the mean numbers of potential cate-
gories and choices The mean numbers of potential categories and choices identified by

experienced testers are about 22 and 26% larger than those by inexperienced testers,

respectively.

Interpretation: This observation should be interpreted with caution because, by itself, it

does not necessarily indicate that the PCs identified by experienced testers are more

comprehensive than those by inexperienced testers. The comprehensiveness of a PC
depends on the number of non-problematic categories it contains. Even when a large

number of potential categories are identified, some of them may be problematic and, hence,

not useful for test case generation.

Observation 4: Experience of the subjects and the variations in the numbers of
potential categories and choices Among the three functional units, the ranges and

standard deviations are generally much larger for inexperienced testers than for experi-

enced testers. Thus, this observation suggests that the variation in the sizes of PCs is much

larger for inexperienced testers than for experienced testers.

Interpretation: A plausible reason for the observation is that, by virtue of their

experience, the experienced subjects are able to identify PCs with more consistent qual-

ities. The observation shows that experience in software development and testing is vital to

the identification process.

However, we remind readers to interpret this observation carefully. Our argument that

experienced testers are able to identify PCs with more consistent qualities is put forward in

a relative sense, when compared to inexperienced testers. It does not mean that the PCs

identified by experienced testers are necessarily of good quality, as indicated by our later

observations that even experienced testers have made numerous mistakes in the identifi-

cation process. These later observations also suggest that although practice and experience

in software development and testing do contribute to the identification of categories and

choices, such practice and experience cannot eliminate the need for systematic techniques.

In summary, the above observations show that:

• When the complexity of the functional units increases, the numbers of potential

categories and choices identified by both groups of subjects also increase.

• There are large variations in the numbers of potential categories and choices identified

by the subjects, and the variations are generally much larger for inexperienced testers

than for experienced testers.

• Compared with inexperienced testers, experienced testers are able to identify more

potential categories and choices.

6.2.2 Missing categories

We turn our attention to Table 2, which shows the data on missing categories for each

functional unit. We observe the following from Table 2:

150 Software Qual J (2011) 19:141–163

123

Observation 5: Complexity of the functional units and the mean numbers of missing
categories Similar to observation 1, the mean numbers of missing categories in each PC
generally increase with the complexity of the functional units for both groups of subjects.

Interpretation: A plausible reason for this phenomenon is that, in an ad hoc identifi-

cation approach, the chance of omitting relevant categories is higher for more complex

functional units.

Observation 6: Experience of the subjects and the mean numbers of missing
categories In addition, Table 2 shows that, when considering all three functional units

together, the mean number of missing categories in each PC is significantly larger (about

63%) for inexperienced testers than for experienced testers.

Interpretation: The observation suggests that experience in software development and

testing does help testers a great deal in avoiding the omission of relevant categories in the

absence of a systematic identification technique.

In summary, the numbers of missing categories increase with the complexity of the

functional units for both groups of subjects. In addition, by virtue of their experience,

experienced testers have overlooked less relevant categories than inexperienced testers in

the ad hoc identification approach.

6.2.3 Problematic and non-problematic categories

After examining the missing categories, we then analyze the problematic categories and

choices identified by experienced testers for the three functional units. It turns out that all

these categories and choices can be classified into the problematic types as defined in Chen

et al. (2004). In other words, no new type of problematic category and choice is found.

This suggests that the list of problematic categories and choices in Chen et al. (2004) is

fairly comprehensive.

Table 3 shows the data on problematic and non-problematic categories for each func-

tional unit. Let us first focus on problematic categories.

Observation 7: Complexity of the functional units and the mean numbers/percentages
of problematic categories Similar to observations 1 and 5, the mean numbers of

problematic categories in each PC and the mean percentages of problematic categories

among all potential categories increase with the complexity of the functional units for both

groups of subjects.

Table 2 Total numbers, mean numbers, and mean percentages of missing categories by inexperienced and
experienced testers

Functional
unit

Total numbers
of missing
categories

Mean numbers
of missing categories
in each PCa

% of mean numbers of missing categories
in each PCa in relation to mean numbers
of potential categories in each PCa

By inexperienced testers/experienced testers

UTRADE 1/5 0.02/0.63 0.38%/9.26%

UPURCHASE 33/5 0.69/0.63 6.95%/4.95%

UMEAL 158/11 3.59/1.38 25.69%/8.21%

Averages 1.43/0.88 11.01%/7.47%

a PC = set of potential categories and choices

Software Qual J (2011) 19:141–163 151

123

Interpretation: Recall that observation 1 states that the mean numbers of potential

categories identified by each subject (that is, the mean numbers of potential categories in

each PC) increase with the complexity of the functional units. In general, more potential

categories to be identified would increase the chance of the occurrence of problematic

categories.

Observation 8: Experience of the subjects and the mean numbers/percentages of
problematic categories Across the three functional units, the mean numbers of prob-

lematic categories in each PC and the mean percentages of problematic categories among

all the potential categories identified by inexperienced testers are consistently larger (by an

average of about 9 and 39%, respectively) than those by experienced testers.

Interpretation: Experience in software development and testing helps testers reduce

the chances of identifying problematic categories.

Observation 9: Experience of the subjects and the reduction in the mean numbers of
problematic categories Consider the reduction in the mean numbers of problematic

categories in each PC for a given functional unit from inexperienced to experienced testers.

These reductions are 0.27, 0.15, and 0.09 for UTRADE; UPURCHASE, and UMEAL, respectively. We

note that the reductions decrease with the complexity of the functional unit.

Interpretation: Although observation 8 finds that testing experience helps reduce the

number of problematic categories, this advantage diminishes as the functional units

become more complex. In other words, the need for a systematic identification technique

for categories and choices is higher for more complex functional units.

We turn now to non-problematic categories.

Observation 10: Complexity of the functional units and the mean numbers/percent-
ages of non-problematic categories Table 3 shows that, for both inexperienced and

experienced testers, the mean numbers of non-problematic categories increase with the

complexity of the functional units (observation 10(a)). However, the table also shows that

the mean percentages of non-problematic categories among all the potential categories

identified by both groups of subjects decrease with the complexity of the functional units

(observation 10(b)).

Interpretation: Observation 10(a) is consistent with the trend in observation 1 for

potential categories. A more complex functional unit has more aspects for testing and,

hence, results in the identification of more non-problematic categories. On the other hand,

Table 3 Total numbers, mean numbers, and mean percentages of problematic and non-problematic cate-
gories identified by inexperienced and experienced testers

Functional
unit

Problematic categories Non-problematic categories

Total
numbers

Mean
numbers in
each PCa

Mean % among all
potential categories

Total
numbers

Mean
numbers in
each PCa

Mean % among all
potential categories

By inexperienced testers/experienced testers

UTRADE 43/5 0.90/0.63 16.23%/9.26% 222/49 4.63/6.13 83.77%/90.74%

UPURCHASE 79/12 1.65/1.50 16.63%/11.88% 396/89 8.25/11.13 83.37%/88.12%

UMEAL 158/28 3.59/3.50 25.69%/20.90% 457/106 10.39/13.25 74.31%/79.10%

Averages 2.04/1.88 19.52%/14.01% 7.75/10.17 80.48%/85.99%

a PC = set of potential categories and choices

152 Software Qual J (2011) 19:141–163

123

observation 10(b) indicates that, given a potential category Q identified by either inex-

perienced or experienced testers, the chance of Q being a problematic category is higher

for a more complex functional unit.

Observation 11: Experience of the subjects and the mean numbers/percentages of
non-problematic categories In Table 3, the mean number of non-problematic catego-

ries in each PC and the mean percentage of non-problematic categories among all the

potential categories identified by experienced testers are consistently larger (by an average

of about 31 and 7%, respectively) than those identified by inexperienced testers across the

three functional units.

Interpretation: Once again, experience in software development and testing has a

positive effect on the identification of non-problematic categories. In addition, this

observation indicates that, given a potential category Q identified by experienced testers,

the chance of Q being non-problematic (and, hence, useful for testing) should be higher

than by inexperienced testers.

Following up on the above observations, Table 4 is produced to explore in greater detail

the interrelationships among the complexity of the functional units, the level of experience

of the subjects, and the performance of the subjects in the ad hoc identification exercises.

This table shows the percentage increases/decreases in the mean numbers/percentages of

potential, missing, problematic, and non-problematic categories identified by both groups

of subjects when they work on the next (more complex) functional unit. (Readers may

recall that UTRADE is the least complex and UMEAL is the most complex.) We have the

following observations from Table 4:

Observation 12: Experience of the subjects and the increase in the mean numbers of
missing categories when the complexity of the functional unit increases When a

functional unit becomes more complex, the increase in the mean numbers of missing

categories in each PC (the third column in Table 4) is much more significant for inex-

perienced testers than experienced testers.

Interpretation: This observation allows us to draw a conclusion similar to that in

observation 6, that is, experience in software development and testing, to some extent,

Table 4 Percentage increases/decreases in mean numbers/percentages of potential, missing, problematic,
and non-problematic categories identified by inexperienced and experienced testers

Functional
unit

% increase
in mean
numbers of
potential
categories
in each PCa

% increase
in mean
numbers of
missing
categories
in each PCa

% increase
in mean
numbers of
problematic
categories in
each PCa

% increase in
mean
percentages of
problematic
categories
among all
potential
categories

% increase in
mean
numbers of
non-
problematic
categories in
each PCa

% decrease in
mean percentages
of non-
problematic
categories among
all potential
categories

By inexperienced testers/experienced testers

From
UTRADE to
UPURCHASE

80%/85% 3 350%/0% 83%/138% 2%/28% 78%/82% 0.5%/2.9%

From
UPURCHASE

to UMEAL

41%/33% 420%/
119%

118%/133% 54%/76% 26%/19% 10.9%/10.2%

a PC = set of potential categories and choices

Software Qual J (2011) 19:141–163 153

123

helps testers reduce the occurrence of missing categories in an ad hoc identification

approach.

Observation 13: Experience of the subjects and the percentage increases in the mean
numbers of potential and missing categories when the complexity of the functional
unit increases Let us compare the second and the third columns in Table 4 about the

percentage increases in the mean numbers of potential and missing categories in each PC.

Consider the data for inexperienced testers in both columns first. As the functional units

become more complex, the percentage increases in the mean numbers of missing cate-

gories in each PC (3 350% from UTRADE to UPURCHASE and 420% from UPURCHASE to UMEAL) are

much larger than the percentage increases in the mean numbers of potential categories in

each PC (80% from UTRADE to UPURCHASE and 41% from UPURCHASE to UMEAL). The phe-

nomenon of consistent percentage increase for missing categories, however, is not appli-

cable to experienced testers when the functional units become more complex. Likewise, in

the rightmost column of Table 2, the percentages of the mean numbers of missing cate-

gories in each PC (in relation to the mean numbers of potential categories in each PC)

increase with the complexity of the functional units for inexperienced testers but not

experienced ones.

Interpretation: When the functional unit becomes more complex, inexperienced testers

are able to identify more potential categories, but at the same time they also make more

mistakes in terms of the number of missing categories.

Observation 14: Experience of the subjects and the percentage increases in the mean
numbers/percentages of problematic categories when the complexity of the functional
unit increases Observation 12 shows that the increase in the mean numbers of missing

categories in each PC is much more significant for inexperienced testers than experienced

testers when the functional units become more complex. In contrast to observation 12, the

fourth and the fifth columns in Table 4 show that the percentage increases in the mean

numbers of problematic categories in each PC and the mean percentages of problematic

categories among all potential categories are larger for experienced testers than inexpe-

rienced testers when the functional units become more complex.

Interpretation: This observation provides further support to our argument in obser-

vation 9 that the contribution of testing experience to the reduction of problematic cate-

gories becomes less for more complex functional units.

Observation 15: Difference between the percentage increases in the mean numbers of
problematic categories and those of non-problematic categories when the complexity
of the functional unit increases Let us compare the fourth and the sixth columns in

Table 4 about the percentage increases in the mean numbers of problematic and non-

problematic categories in each PC. For both groups of subjects, as the functional units

become more complex, the percentage increases in the mean numbers of problematic

categories in each PC (such as 83% from UTRADE to UPURCHASE for inexperienced testers) are

larger than the percentage increases in the mean numbers of non-problematic categories in

each PC (such as 78% from UTRADE to UPURCHASE for inexperienced testers).

Interpretation: It appears, therefore, that although both inexperienced and experienced

testers can identify more non-problematic categories when the functional units become

more complex (see observation 10(a)), this advantage is not sufficient to offset the increase

in problematic categories at the same time. This phenomenon provides an explanation to

observation 10(b) discussed earlier.

154 Software Qual J (2011) 19:141–163

123

We can draw further conclusions by considering related observations together:

Complexity of the functional units. Consider observations 1, 5, 7, 10, 13, and 15.

When the complexity of a functional unit increases, there are more aspects to be tested.

On one hand, more testing aspects normally lead to more categories and choices (in

terms of the number of potential categories and choices (observation 1) and the number

of non-problematic categories (observation 10)) to be identified. On the other hand,

more testing aspects would also increase the chances of mistakes (in terms of the number

of missing categories (observations 5 and 13) and the number of problematic categories

(observations 7 and 15)).

Experience of the subjects. Consider observations 6, 8, 9, 11, 12, and 14. When

compared with inexperienced testers, experienced testers have fewer missing categories

(observations 6 and 12) and problematic categories (observation 8), but more non-

problematic categories (observation 11). Hence, experience in software development

and testing does help in the ad hoc identification exercises. It should be noted, however,

that the contribution of experience to the performance of an ad hoc identification

approach decreases with the complexity of the functional unit (observations 9 and 14).

Thus, not only are systematic and more effective identification techniques generally

needed, but such a demand will grow with the complexity of the specifications.

6.2.4 Types of problematic categories

Let us take a closer examination of the data on the different types of problematic cate-

gories, as summarized in Table 5. For each type of problematic category listed in columns

2–7, the data outside brackets show the total numbers of that type identified by inexpe-

rienced and experienced testers, respectively.4 The data in brackets show the mean num-

bers of that type in each PC. Similarly, for each type of problematic category listed in

Table 5 Total numbers and mean numbers of different types of problematic categories identified by
inexperienced and experienced testers

Functional
unit

Total numbers of different types of problematic categories (Mean numbers of different types of
problematic categories in each PCa)

Irrelevant
categories

With missing
choices

With invalid
choices

With
overlapping
choices

With
combinable
choices

With
composite
choices

By inexperienced testers/experienced testers

UTRADE 0/0 (0.00/0.00) 3/0 (0.06/0.00) 0/0 (0.00/0.00) 6/0 (0.13/
0.00)

0/0 (0.00/
0.00)

34/5 (0.71/
0.63)

UPURCHASE 0/1 (0.00/0.13) 9/1 (0.19/0.13) 2/1 (0.04/0.13) 26/2 (0.54/
0.25)

0/1 (0.00/
0.13)

42/8 (0.88/
1.00)

UMEAL 123/14 (2.80/
1.75)

12/2 (0.27/0.25) 14/4 (0.32/0.50) 4/1 (0.09/
0.13)

5/2 (0.11/
0.25)

4/7 (0.09/
0.88)

Averages (0.93/0.63) (0.17/0.13) (0.12/0.21) (0.25/0.13) (0.04/0.13) (0.56/0.83)

a PC = set of potential categories and choices

4 Readers may notice that, for a functional unit shown in any row of Table 5, the sum of the total numbers
of different types of problematic categories may be greater than or equal to the corresponding total number
of problematic categories shown in Table 3. This is because a category that is erroneously identified may
belong to one or more types of problematic categories.

Software Qual J (2011) 19:141–163 155

123

columns 2–7 of Table 6, the data outside brackets show the percentages of that type among

potential categories. The data in brackets show the percentages of that type among

problematic categories.

Observation 16: Experience of the subjects and the mean numbers of different types
of problematic categories The data in brackets in Table 5 show that, with respect to the

mean numbers of different types of problematic categories in each PC, experienced testers

have identified fewer irrelevant categories, categories with missing choices, and categories

with overlapping choices than their inexperienced counterparts, but more categories with

invalid choices, categories with combinable choices, and categories with composite

choices.

Observation 17: Experience of the subjects and the percentages of different types of
problematic categories In Table 6, we observe a tendency similar to observation 16.

With respect to the percentages of different types of problematic categories in all PCs,

experienced testers have identified fewer irrelevant categories, categories with missing

choices, and categories with overlapping choices than their inexperienced counterparts, but

more categories with invalid choices, categories with combinable choices, and categories

with composite choices.

Interpretation of observations 16 and 17 together: Both observations indicate that

experienced testers are not necessarily better than inexperienced ones in every aspect.

Observation 18: The most and the least frequently occurring types of problematic
categories Given a problematic category Q identified by inexperienced or experienced

testers, the chance that Q is a category with composite choices is the highest. On the other

hand, the chance that it is a category with combinable choices is the smallest.

Interpretation: First, let us refer to Table 1 again. The mean numbers of choices in

each category are 2:37ð¼ 23:2
9:8 Þ and 2:43ð¼ 29:2

12:0Þ for inexperienced and experienced testers,

respectively. The small number of choices per category suggests that all the subjects were

inclined to reduce the total number of choices and, in turn, reduce the total number of

Table 6 Percentages of different types of problematic categories identified by inexperienced and experi-
enced testers

Functional
unit

% of different types of problematic categories among all potential (problematic) categories

Irrelevant
categories

With missing
choices

With invalid
choices

With
overlapping
choices

With
combinable
choices

With
composite
choices

By inexperienced testers/experienced testers

UTRADE 0.0%/0.0%
(0.0%/0.0%)

1.1%/0.0%
(7.0%/0.0%)

0.0%/0.0%
(0.0%/0.0%)

2.3%/0.0%
(14.0%/0.0%)

0.0%/0.0%
(0.0%/0.0%)

12.8%/9.3%
(79.1%/

100.0%)

UPURCHASE 0.0%/1.0%
(0.0%/9.1%)

1.9%/1.0%
(11.4%/
9.1%)

0.4%/1.0%
(2.5%/
9.1%)

5.5%/2.0%
(32.9%/
18.2%)

0.0%/1.0%
(0.0%/
9.1%)

8.8%/7.9%
(53.2%/
66.7%)

UMEAL 20.0%/10.4%
(77.8%/
50.0%)

2.0%/1.5%
(7.6%/
7.1%)

2.3%/3.0%
(8.9%/
14.3%)

0.7%/0.7%
(2.5%/
3.8%)

0.8%/1.5%
(3.2%/
7.1%)

0.7%/5.2%
(2.5%/
25.0%)

Averages 6.7%/3.8%
(25.9%/
19.7%)

1.7%/0.8%
(8.7%/
5.4%)

0.9%/1.3%
(3.8%/
7.8%)

2.8%/0.9%
(16.5%/
7.3%)

0.3%/0.8%
(1.1%/
5.4%)

7.4%/7.5%
(44.9%/
63.9%)

156 Software Qual J (2011) 19:141–163

123

complete test frames5 with a view to saving testing effort. Obviously, fewer choices per

category would also mean that the chance of having combinable choices is smaller.

Second, without the support of a systematic identification technique, it is difficult for the

subjects to partition a given category into choices such that all the values in each choice are

similar in their effects on the system’s behavior or in the type of output they produce. This

difficulty results in categories with composite choices.

Here, we summarize the above observations related to the different types of problematic

categories:

• Experienced testers are not necessarily better than inexperienced ones in every aspect.

Experienced testers have identified fewer irrelevant categories, categories with missing

choices, and categories with overlapping choices than inexperienced testers, but more

categories with invalid choices, categories with combinable choices, and categories

with composite choices.

• Among the different types of problematic categories, categories with composite choices

occur the most, while categories with combinable choices occur the least.

7 Study 2: Effectiveness of checklist guideline

7.1 Objective and steps

In one of our previous papers (Chen et al. 2004), we provided a checklist as a simple

guideline for detecting missing/problematic categories and choices despite an ad hoc

identification approach. The objective of the second study here is to evaluate the effec-

tiveness of our checklist, in terms of its ability to help testers reduce the occurrence of

missing and problematic categories in PCs.

When commencing study 2, we first discussed with the 16 subjects the missing and

problematic categories involved in their first study and how the checklist could be used to

help detect and remove these mistakes. We then asked each subject to perform a second

round of identification exercises according to the following scheme:

(a) Subjects 1 to 8: Identify from UMEAL a set PC of potential categories and their

associated potential choices in an ad hoc manner. Then use the checklist as a simple

guideline for detecting and removing any mistake from the PC and to refine any

potential categories and potential choices in the PC if necessary. Finally, for every

potential category or potential choice that remains in the PC, state the reason why it

should be identified.

(b) Subjects 9 to 16: Repeat (a) above for UTRADE followed by UPURCHASE, instead of UMEAL.

Note that, in study 1 in which our checklist was not used, Subjects 1 to 8 performed the

identification exercises for UTRADE and UPURCHASE only (but not UMEAL), whereas Subjects 9 to

16 performed the exercise for UMEAL only (but not UTRADE and UPURCHASE). This arrangement

prevents the experienced subjects from building up their knowledge of the same functional

unit from study 1 and, hence, allows us to measure the effectiveness of our checklist in an

objective manner.

5 Recall that a complete test frame is a set of choices such that a test case will be formed whenever a single
value is selected from each choice.

Software Qual J (2011) 19:141–163 157

123

7.2 Findings and discussions

We first consider missing categories:

Observation 19: Reducing the numbers of missing categories Table 7 shows the total

numbers of missing categories we have detected from the PCs identified by experienced

testers before and after using the checklist. From there, we see that the checklist helps

reduce the numbers of missing categories for all three functional units. Considering all the

functional units together, the total number of missing categories is reduced by 67%, which

is significant.

The following reports our observations related to problematic categories:

Observation 20: Reducing the occurrence of different types of problematic catego-
ries Table 8 shows the total numbers of different types of problematic categories iden-

tified by experienced testers with and without the use of the checklist. Except for the

irrelevant categories identified from UTRADE, the total numbers for each type of problematic

category across the three functional units using the checklist do not exceed those totals

when the checklist was not used. Considering all three functional units together, the

checklist is able to reduce the numbers of irrelevant categories, categories with missing

choices, categories with invalid choices, categories with overlapping choices, categories

with combinable choices, and categories with composite choices by about 27, 100, 60, 100,

100, and 60%, respectively. Thus, the checklist is most effective in preventing the

occurrence of categories with missing/overlapping/combinable choices.

Interpretation of observations 19 and 20 together: Both observations serve as strong

evidence that the checklist is fairly effective in reducing missing and problematic cate-

gories. These two observations, however, also reconfirm the need for a systematic

Table 7 Total numbers of
missing categories with and
without checklist

Functional unit Total numbers of
missing categories

Without checklist/with checklist

UTRADE 5/1

UPURCHASE 5/2

UMEAL 11/4

Totals 21/7

Table 8 Total numbers of different types of problematic categories with and without checklist

Functional
unit

Total numbers of different types of problematic categories

Irrelevant
categories

With missing
choices

With invalid
choices

With
overlapping
choices

With
combinable
choices

With
composite
choices

Without checklist/with checklist

UTRADE 0/1 0/0 0/0 0/0 0/0 5/2

UPURCHASE 1/1 1/0 1/1 2/0 1/0 8/3

UMEAL 14/9 2/0 4/1 1/0 2/0 7/3

Totals 15/11 3/0 5/2 3/0 3/0 20/8

158 Software Qual J (2011) 19:141–163

123

identification technique because missing and problematic categories still exist even with

the use of the checklist.

Observation 21: Reducing the occurrence of irrelevant categories Table 8 also

shows that, among different types of problematic categories, the checklist is least effective

in reducing the occurrence of irrelevant categories.

Interpretation: A plausible reason is that, to avoid the identification of irrelevant

categories, testers must determine the influencing factors of the software system under test.

This determination task is non-trivial and may sometimes be intangible at the specification

stage.

To summarize, among the various types of problematic categories, the checklist is most

effective in preventing the occurrence of categories with missing/overlapping/combinable

choices and least effective in reducing the occurrence of irrelevant categories.

8 Threats to validity

There are four threats to validity in our present empirical studies owing to various

settings. First, the present studies involve only 16 experienced subjects compared with 44

to 48 undergraduates and postgraduates in our previous studies (Chen et al. 2004). It

would certainly be better if more experienced subjects participated. However, it was not

easy to find a large group of experienced software testers who were willing to participate

in empirical studies (with or without remuneration). Second, only three specifications

were used in the studies. Nevertheless, we believe that even with 16 experienced subjects

and three specifications, our findings still provide an inspiring insight into the effect of

tester experience on category and choice identification. This is because our empirical

studies are largely exploratory in nature (‘‘to find out what is happening’’, ‘‘to seek new

insights’’, and ‘‘to generate ideas and hypotheses for future research’’ (Robson 2002))

rather than attempts to identify causal relationships among various factors through sta-

tistical hypothesis testing.

Third, as stated in Sect. 6.1, the checking of missing and problematic categories was

carried out by one of the authors. Although the author is knowledgeable in CHOC’LATE and

CTM, he has a stake in the outcome of the studies as well as prior knowledge of the

hypotheses. This may be a potential source of bias.

Fourth, one may argue that the subjects may gain in experience after doing one case

(such as UTRADE). We believe that this effect should be minimal in study 1 because, in this

study, Subjects 1 to 8 were advised of their errors only after they have completed all the

identification tasks for their assigned functional unit(s). Furthermore, Subjects 9 to 16

were only involved with the functional unit UMEAL. The experience effect, however, might

exist in study 2 because the same groups of subjects were asked to perform the identi-

fication exercises for the purpose of applying CHOC’LATE and/or CTM without the checklist

(in study 1) and then with the checklist (in study 2). Their performance in the identifi-

cation exercises was found to improve, which might indicate that the subjects had ben-

efited from the first study. This was indeed plausible. Although the subjects were

experienced, they were not necessarily experienced in CHOC’LATE and/or CTM and had

received only one hour of training in the methods. In addition, after the first study, the

subjects were given feedback regarding the mistakes they had made and might have

therefore learned from this.

Software Qual J (2011) 19:141–163 159

123

9 Summary and conclusion

We have described our comparative studies using three commercial specifications and

involving inexperienced and experienced software testers. In general, experienced testers

identified more potential categories and choices. They also had fewer missing categories

and problematic categories. At the same time, they identified more non-problematic cat-

egories. These observations thus provide evidence that experience in software development

and testing does help improve the quality of the identified PC despite an ad hoc identifi-

cation approach. We must, however, point out that the contribution of experience to the
reduction in mistakes decreases with the complexity of the functional units. We find from
the empirical results that although experienced testers can identify more non-problematic
categories when the functional units become more complex, this advantage is not sufficient
to offset the increase in problematic categories at the same time. (This phenomenon also

occurs for inexperienced testers.) Thus, software development experience cannot replace

the demand for a systematic identification methodology.

Regarding the types of mistakes committed, experienced testers are not necessarily
better than inexperienced ones in every aspect. First, on one hand, the increase in missing

categories in each PC is larger for inexperienced testers than experienced testers when the

functional units become more complex; on the other hand, the increase in problematic

categories in each PC is smaller for inexperienced testers than experienced testers as the

functional units become more complex. Second, with respect to all potential/problematic

categories, experienced testers have identified fewer irrelevant categories and categories

with missing/overlapping choices, but more categories with invalid/combinable/composite

choices. Because neither the experienced nor the inexperienced testers performed better in

all aspects in the identification exercises, it makes sense to involve both groups of testers in

the identification process in real industrial settings.

Moreover, we observe that the use of the checklist helps software testers reduce the

occurrence of missing categories and problematic categories of all types. (There may be a

threat to validity due to the gain in experience by the subjects after doing the exercises in

study 1. Readers may refer to Sect. 8.) Among the different types of problematic cate-

gories, the checklist is more effective for reducing the occurrence of categories with

missing/overlapping/combinable choices, but least effective in reducing the occurrence of

irrelevant categories. Our studies also show that, with the use of the checklist, even

software practitioners with substantial years of commercial experience in software

development and testing still make a number of mistakes.

We end this paper with two final reminders. First, our study results are not restricted to

CHOC’LATE and CTM only. As mentioned in Sect. 1, the identification of categories and

choices (or their equivalents) is also needed in domain testing (Beizer 1990), equivalence

partitioning (Myers 2004), and in-parameter-order (Lei and Tai 1998; Tai and Lei 2002).

Second, in line with the thoughts of the software community (Briand 2007; Carver et al.

2008; Porter and Johnson 1997; Tichy 1998), observation of human performance is an

essential element of software engineering. In this regard, our results should play a part in

the contributions to software engineering research.

Acknowledgments We are grateful to the 16 anonymous software practitioners for their invaluable time
and effort in participating in the studies. We are also grateful to the associate editor and the two reviewers
for their constructive comments of the paper. This work is supported in part by the General Research Fund
of the Research Grants Council of Hong Kong (project no. 717308), a Discovery Grant of the Australian
Research Council (project no. DP09847600), and a Departmental General Research Fund of The Hong Kong
Polytechnic University (project no. 1-ZV2H)

160 Software Qual J (2011) 19:141–163

123

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Amla, N., & Ammann, P. (1992). Using Z specifications in category partition testing. In Systems integrity,
software safety, and process security: building the right system right: Proceedings of the 7th annual
IEEE conference on computer assurance (COMPASS 1992) (pp. 3–10). Los Alamitos, CA: IEEE
Computer Society Press.

Bache, R., & Müllerburg, M. (1990). Measures of testability as a basis for quality assurance. Software
Engineering Journal, 5(2), 86–92.

Beizer, B. (1990). Software testing techniques. Van Nostrand Reinhold, New York, NY.
Boehm, B. W., & Basili, V. R. (2001). Software defect reduction top 10 list. IEEE Computer, 34(1),

135–137.
Briand, L. C. (2007). A critical analysis of empirical research in software testing. In Proceedings of the 1st

international symposium on empirical software engineering and measurement (ESEM 2007) (pp. 1–8).
Los Alamitos, CA: IEEE Computer Society Press.

Cain, A., Chen, T. Y., Grant, D. D., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2004). An automatic test data
generation system based on the integrated classification-tree methodology. In C. V. Ramamoorthy,
Lee, R. Y., & Lee, K. W. (Eds.) Software engineering research and applications, Lecture notes in
computer science (Vol. 3026, pp. 225–238). Berlin, Germany: Springer.

Carver, J. C., Nagappan, N., & Page, A. (2008). The impact of educational background on the effectiveness
of requirements inspections: An empirical study. IEEE Transactions on Software Engineering , 34(6),
800–812.

Chen, T. Y., Poon, P.-L., & Tang, S.-F. (1998). A systematic method for auditing user acceptance tests. IS
Audit and Control Journal, 5, 31–36.

Chen, T. Y., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2004). On the identification of categories and choices for
specification-based test case generation. Information and Software Technology, 46(13), 887–898.

Chen, T. Y., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2005). Identification of categories and choices in activity
diagrams. In Proceedings of the 5th international conference on quality software (QSIC 2005)
(pp. 55–63). Los Alamitos, CA: IEEE Computer Society Press.

Chen, T. Y., Poon, P.-L., & Tse, T. H. (2000). An integrated classification-tree methodology for test case
generation. International Journal of Software Engineering and Knowledge Engineering, 10(6),
647–679.

Chen, T. Y., Poon, P.-L., & Tse, T. H. (2003). A choice relation framework for supporting category-partition
test case generation. IEEE Transactions on Software Engineering, 29(7), 577–593.

de la Riva, C., Garcia-Fanjul, J., & Tuya, J. (2006). A partition-based approach for XPath testing. In
Proceedings of the international conference on software engineering advances (ICSEA 2006). Los
Alamitos, CA: IEEE Computer Society Press.

Grochtmann, M., & Grimm, K. (1993). Classification trees for partition testing. Software Testing, Verifi-
cation and Reliability, 3(2), 63–82.

Grottke, M., & Trivedi, K. S. (2007). Fighting bugs: Remove, retry, replicate, and rejuvenate. IEEE
Computer, 40(2), 107–109.

Hartmann, J., Vieira, M., Foster, H., & Ruder, A. (2005). A UML-based approach to system testing.
Innovations in Systems and Software Engineering, 1(1), 12–24.

Hierons, R. M., Harman, M., & Singh, H. (2003). Automatically generating information from a Z speci-
fication to support the classification tree method. In Proceedings of the 3rd international conference of
B and Z users, Lecture notes in computer science (Vol. 2651, pp. 388–407). Berlin, Germany:
Springer.

Lau, M. F., & Yu, Y. T. (2005). An extended fault class hierarchy for specification-based testing. ACM
Transactions on Software Engineering and Methodology, 14(3), 247–276.

Lei, Y., & Tai, K.-C. (1998). In-parameter-order: A test generation strategy for pairwise testing. In Pro-
ceedings of the 3rd IEEE international high-assurance systems engineering symposium (HASE 1998)
(pp. 254–261). Los Alamitos, CA: IEEE Computer Society Press.

Miller, K. W., Morell, L. J., Noonan, R. E., Park, S. K., Nicol, D. M., Murrill, B. W., & Voas, J. M. (1992).
Estimating the probability of failure when testing reveals no failures. IEEE Transactions on Software
Engineering, 18(1), 33–43.

Software Qual J (2011) 19:141–163 161

123

Myers, G. J. (2004). The art of software testing. Hoboken, NJ: Wiley.
National Research Council. (1991). Computers at risk: Safe computing in the information age. Washington,

DC: National Academies Press.
Neumann, P. G. (1991). The computer-related risk of the year: weak links and correlated events. In Systems

integrity, software safety, and process security: Proceedings of the 6th annual conference on computer
assurance (COMPASS 1991) (pp. 5–8). Los Alamitos, CA: IEEE Computer Society Press.

Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and generating func-
tional tests. Communications of the ACM, 31(6), 676–686.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (eds) (1995). The capability maturity model:
Guidelines for improving the software process. Reading, MA: Addison-Wesley.

Perry, W. E. (2006). Effective methods for software testing. Indianapolis, IN: Wiley.
Poon, P.-L., Tang, S.-F., Tse, T. H., & Chen, T. Y. (2010). CHOC’LATE: A framework for specification-

based testing. Communications of the ACM, 53(4), 113–118.
Porter, A. A., & Johnson P. M. (1997). Assessing software review meetings: Results of a comparative

analysis of two experimental studies. IEEE Transactions on Software Engineering, 23(3), 129–145.
Robson, C. (2002). Real world research: A resource for social scientists and practitioner-researchers.

Oxford, UK: Blackwell.
Sanders, J. W., & Curran, E. (1994) Software quality: A framework for success in software development and

support. Wokingham, UK: Addison-Wesley.
Shepard, T., Lamb, M., & Kelly, D. (2001). More testing should be taught. Communications of the ACM,

44(6), 103–108.
Singh, H., Conrad, M., & Sadeghipour, S. (1997). Test case design based on Z and the classification-tree

method. In Proceedings of the 1st IEEE international conference on formal engineering methods
(ICFEM 1997) (pp. 81–90). Los Alamitos, CA: IEEE Computer Society Press.

Tai, K.-C. (1996). Theory of fault-based predicate testing for computer programs. IEEE Transactions on
Software Engineering, 22(8), 552–562.

Tai, K.-C., & Lei, Y. (2002). A test generation strategy for pairwise testing. IEEE Transactions on Software
Engineering, 28(1), 109–111.

Tichy, W. F. (1998). Should computer scientists experiment more? IEEE Computer, 31(5), 32–40.
Wordsworth, J. B. (1992). Software development with Z: A practical approach to formal methods in

software engineering. International Computer Science Series. Wokingham, UK: Addison-Wesley.
Yu, Y. T., Tang, S.-F., Poon, P.-L.,& Chen, T. Y. (2001). A study on a path-based strategy for selecting

black-box generated test cases. International Journal of Software Engineering and Knowledge Engi-
neering, 11(2), 113–138.

Author Biographies

Pak-Lok Poon is an associate professor at the School of Accounting
and Finance of The Hong Kong Polytechnic University. His research
interests include software engineering, information systems and
enterprise systems, information systems audit and control, electronic
commerce, and computers in education. He has been on the editorial
board of the Information Systems Control Journal. He received his
PhD in software engineering from The University of Melbourne in
Australia. He is a member of the IEEE and the ACM.

162 Software Qual J (2011) 19:141–163

123

T. H. Tse is a professor in Computer Science at The University of
Hong Kong. He received his PhD from the London School of Eco-
nomics and was a visiting fellow at the University of Oxford. His
current research interest is in program testing, debugging, and analysis.
He is the steering committee chair of QSIC and an editorial board
member of Journal of Systems and Software, Software Testing, Veri-
fication and Reliability, and Software: Practice and Experience. He is
a fellow of the British Computer Society, a fellow of the Institute for
the Management of Information Systems, a fellow of the Institute of
Mathematics and its Applications, and a fellow of the Hong Kong
Institution of Engineers. He was decorated with an MBE by The
Queen.

Sau-Fun Tang received her PhD in software engineering from
Swinburne University of Technology, Australia. She was an instructor
in the Department of Finance and Decision Sciences of Hong Kong
Baptist University and a lecturer in the School of Accounting and
Finance at The Hong Kong Polytechnic University. She is a member of
the IEEE.

Fei-Ching Kuo is currently a Lecturer at Swinburne University of
Technology, Australia. She received her PhD degree in Software
Engineering, and BSc (Honours) in Computer Science, both from the
Swinburne University of Technology. Her research interests include
software testing, debugging, and project management. She has been an
IEEE member for many years, a co-editor of special issues for Journal
of Systems and Software, Software: Practice and Experience, and
International Journal of Software Engineering and Knowledge Engi-
neering, a program co-chair for QSIC 2010, a PC member of inter-
national conferences and workshops, including COMPSAC and SAC
amongst others, and also acted as a reviewer for several international
journals, including the Journal of Systems and Software and the
Journal of Software.

Software Qual J (2011) 19:141–163 163

123

	Contributions of tester experience and a checklist guideline to the identification of categories and choices for software testing
	Abstract
	Introduction
	Identification of categories, choices, and their relations
	Previous work on category and choice identification
	Experimental settings
	The present studies
	Our previous studies

	Terminology and definitions
	Study 1: Effect of tester experience
	Objective and steps
	Findings and discussion
	Potential categories and choices
	Missing categories
	Problematic and non-problematic categories
	Types of problematic categories

	Study 2: Effectiveness of checklist guideline
	Objective and steps
	Findings and discussions

	Threats to validity
	Summary and conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

