The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Impact of G 2 checkpoint defect on centromeric instability
Author(s)Deng, W; Tsao, SW; Mak, GWY; Tsang, CM; Ching, YP; G XY; Huen, MSY; Cheung, ALMCitationOncogene, 2011, v. 30 n. 11, p. 1281-1289	
URL	http://hdl.handle.net/10722/133574
Rights	Creative Commons: Attribution 3.0 Hong Kong License

1 Impact of G2 checkpoint defect on centromeric instability

2	Wen Deng ¹ , Ph.D.; Sai Wah Tsao ¹ , Ph.D.; Grace W.Y. Mak ¹ , M.Phil; Chi M. Tsang ¹ ,
3	Ph.D.; Wilson Y. P. Ching ¹ , Ph.D.; Xin-Yuan Guan ² , Ph.D.; Michael S.Y. Huen ¹ , Ph.D.;
4	and Annie L.M. Cheung ^{1,3} , Ph.D.
5	¹ Department of Anatomy and ² Department of Clinical Oncology, Li Ka Shing Faculty of
6	Medicine, The University of Hong Kong, Hong Kong, SAR, China
7	
8	³ Correspondence
9	Dr. Annie L. M. Cheung
10	Department of Anatomy, The University of Hong Kong,
11	Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
12	Tel. No. (852) 28199293 Fax No. (852) 28170857
13	Email: lmcheung@hkucc.hku.hk
14	
15	Running title: G2 phase defect promotes centromeric instability
16	
17	
18	
19	

1

Abstract

2 Centromeric instability is characterized by dynamic formation of centromeric breaks, 3 deletions, iso-chromosomes and translocations, which are commonly observed in cancer. 4 So far, however, the mechanisms of centromeric instability in cancer cells are still poorly 5 understood. In this study, we tested the hypothesis that G2 checkpoint defect promotes 6 centromeric instability. Our observations from multiple approaches consistently support 7 this hypothesis. We found that overexpression of cyclin B1, one of the pivotal genes 8 driving G2 to M phase transition, impaired G2 checkpoint and promoted the formation of 9 centromeric aberrations in telomerase-immortalized cell lines. Conversely, centromeric 10 instability in cancer cells was ameliorated through reinforcement of G2 checkpoint by 11 cyclin B1 knockdown. Remarkably, treatment with KU55933 for only 2.5 h, which 12 abrogated G2 checkpoint, was sufficient to produce centromeric aberrations. Moreover, 13 centromeric aberrations constituted the major form of structural abnormalities in G2 14 checkpoint-defective ataxia-telangiectasia (A-T) cells. Statistical analysis showed that the 15 frequencies of centromeric aberrations in G2 checkpoint-defective cells were always 16 significantly overrepresented compared with random assumption. Since there are multiple 17 pathways leading to G2 checkpoint defect, our finding offers a broad explanation for the 18 common occurrence of centromeric aberrations in cancer cells.

19 Key words: G2 checkpoint, defect, centromere, instability

20

Introduction

2 Centromeres are integral chromosomal elements where sister chromatids are constricted 3 and the microtubules are attached for chromosome segregation during cell division. 4 Investigations on chromosomal structural dynamics indicate that centromeres, being 5 hotspots for rearrangements during species evolution, are intrinsically predisposed to 6 instability (Eichler and Sankoff, 2003). Cytogenetic studies have shown that centromeric 7 or pericentromeric aberrations such as whole-arm translocations, deletions and iso-8 chromosomes are common in human cancer cell lines and primary solid tumors of 9 various origins (Jin et al., 1995; Zhu et al., 1995; Johansson et al., 1995; Beheshti et al., 10 2000; Wong et al., 2000; Padilla-Nash et al., 2001). The frequent occurrence of 11 centromeric aberrations in tumor cells suggests that centromeric instability may 12 contribute to tumor development. However, the mechanisms of centromeric instability in 13 carcinogenesis remain poorly understood. Elevated levels of centromeric instability are 14 well characterized in ICF (immunodeficiency, centromeric region instability, facial 15 anomaly) patients, and are ascribed to hypomethylation of centromeric DNA, leading to 16 centromeric aberrations specifically on chromosomes 1, 16, and sometimes 9 (Ehrlich, 17 2002). Yet, centromeric aberrations in most human tumors are not limited to the three 18 chromosomes. Therefore, other mechanisms are probably involved in the genome-wide 19 centromeric instability in tumor cells.

Human centromeres consist largely of repeated short sequences known as α -satellite DNA sequences, which are tightly packed into centromeric heterochromatin. It has been proposed that the condensed structure of heterochromatin presents barriers to DNA replication such that replication fork stalling occurs; and unresolved stalled replication

1 forks may generate DNA double-strand breaks (Leach et al., 2000). In normal cells, the 2 G2 checkpoint exerts its protective function by delaying cell cycle progression from G2 3 to M phase to provide time for correction of post-replication errors and DNA damage 4 repair. We therefore hypothesize that centromeric DNA may be preferentially subject to 5 erroneous replication that fails to be corrected in cells with defective G2 checkpoint, 6 leading to centromeric instability. Cyclin B1 is one of the specific and pivotal genes 7 driving G2 to M phase transition. The overexpression of cyclin B1 is expected to induce 8 G2 checkpoint defect. In this study, for the first time, we obtained the evidence that 9 defective G2 checkpoint, induced by manipulation of cyclin B1 overexpression and 10 inhibition of its upstream regulator ATM (ataxia telangiectasia-mutated), indeed 11 promotes centromeric instability in the context of spontaneous DNA damage 12 preferentially occurring at or near centromeres.

13

14

Results

15 Cyclin B1 overexpression promotes G2 checkpoint defect and centromeric instability

To study the causative role of G2 checkpoint defect in centromeric instability, we stably overexpressed cyclin B1 in two human telomerase-immortalized cell lines derived from normal esophageal epithelial cells (NE2-hTERT) (Cheung et al., 2010) and nasopharyngeal epithelial cells (NP460-hTERT) (Li et al., 2006), which were chosen because they had low background levels of centromeric instability. The cells were infected with retroviral plasmids expressing cyclin B1 or empty vector and selected with puromycin for 6 days. Western blotting analysis demonstrated the successful

1 overexpression of cyclin B1 (Figure 1a, lanes 1-4). This was also accompanied by the 2 increased expression of active form of phospho-cdc2, p-cdc2(Thr161), which is known to 3 form complex with cyclin B1 to promote G2 to M phase transition, while there was no 4 remarkable change in the total levels of cdc2. Because intact G2 checkpoint enforces G2 5 arrest after DNA damage, the function of G2 checkpoint was readily monitored by the 6 percentage of mitotic cells 2 h after 1 Gy γ -ray irradiation relative to that of un-irradiated 7 control cells (i.e. relative mitotic index) (Xu et al., 2002; Terzoudi et al., 2005; Deckbar 8 et al., 2007). We confirmed that the cyclin B-overexpressing cells had impaired G2 9 checkpoint function as evidenced by the higher relative mitotic indices (Figure 1a, lanes 10 1-4, and Table S1) compared with empty-vector infected cells after γ -ray irradiation, 11 indicating inefficient G2 arrest after cyclin B1 overexpression.

12 Un-irradiated cells were analyzed for spontaneous chromosome aberrations using 13 24-color spectral karyotyping (SKY) and pan-centromere fluorescence in situ 14 hybridization (FISH) at the 6th population doubling (PD) after puromycin selection. The 15 most remarkable finding was a ~20-fold increase in the frequencies of non-clonal 16 centromeric aberrations in cyclin B1 overexpressing cells compared with empty-vector 17 infected cells (Figure 2, lanes 1-4). The new aberrations (Table S2) included centromeric 18 chromatid breaks, centromeric chromosomal deletions, centromeric translocations and 19 iso-chromosomes, as exemplified in Figure 3a. The centromeric aberrations were 20 confirmed by the presence of centromere FISH signals at the broken ends or chromosome 21 rejoining points (Figure 3a, right). These results represent the first direct evidence that G2 22 checkpoint defect promotes centromeric instability.

Cyclin B1 knockdown reinforces G2 checkpoint function and reduces centromeric instability in cancer cells

3 We next tested the impact of G2 checkpoint defect on centromeric instability in cancer 4 cells. Three cancer cell lines of different cell types: HeLa (cervical cancer), SLMT-1 5 (esophageal cancer) (Tang et al., 2001) and HNE-1 (nasopharyngeal cancer) (Glaser et al., 6 1989) were examined. Although cancer cells are known to retain some degree of G2 7 checkpoint function, we anticipated that the G2 checkpoint in cancer cells may not be as 8 stringent as in normal cells. To obtain normal control cells, we cultured primary epithelial 9 cells from normal tissues donated by 6 independent individuals (NC104 and NC105 for 10 cervical epithelial cells, NP601 and NP602 for nasopharyngeal epithelial cells, NE1 and 11 NE6 for esophageal epithelial cells). SKY analysis confirmed that an average of 98% of 12 these primary epithelial cells had a normal karyotype. Western blotting analysis showed 13 that the control cells had significantly lower protein expression of cyclin B1, active form 14 of phospho-cdc2 and total cdc2 than the cancer cells (Figure 1a, lanes 5-7, 12-14, and 19-15 21). The relative mitotic indices of normal and cancer cells after γ -ray irradiation 16 decreased to an average of 2 and 34%, respectively (Figure 1b, lanes 6-8, 12-14 and 18-17 20), demonstrating that the cancer cells had defective G2 checkpoint. Detailed mitotic 18 indices are given in Table S3). Karyotype analysis revealed that each cancer cell line (un-19 irradiated and pooled culture) had specific clonal structural aberrations that were present 20 in all analyzed metaphases. However, the cells from each cancer cell line also had high 21 frequencies of non-clonal structural aberrations, which predominantly involved 22 centromeric regions (Figure 2, lanes 8, 14, and 20, and Table S4), indicating severe 23 centromeric instability. Strikingly, the majority of clonal structural aberrations in the

cancer cell lines were also centromeric aberrations. Examples of karyotypes of the three
 cell lines are shown in Figure S1.

3 To examine whether defective G2 checkpoint truly contributes to centromeric 4 instability in the cancer cell lines, we reinforced G2 checkpoint function by cyclin B1 5 knockdown to see if centromeric instability could be reduced. RNA interference directed 6 against cyclin B1 was performed using plasmids containing a human cyclin B1 sequence 7 that, when expressed, forms a short-hairpin RNA (shRNA) which gets processed into a 8 cyclin B1-specific short interfering RNA. Figure 1a (lanes 8, 9, 15, 16, 22 and 23) shows 9 the effective knockdown of cyclin B1 protein expression in the three cancer cell lines 10 measured at 24 and 72 h after the plasmid transfection. Interestingly, the active form of 11 phospho-cdc2 protein expression also showed some degree of decrease, but not the total 12 levels of cdc2. The cyclin B1 shRNA-transfected cells had significantly lower mitotic 13 indices (P < 0.05, Table S3) and were more sensitive to γ -ray irradiation compared with 14 parental and control plasmid-transfected cells (Figure 1b and Table S3), suggesting the 15 improvement of G2 checkpoint function after cyclin B1 knockdown. To achieve 16 sustained cyclin B1 knockdown, we repeated cyclin B1 shRNA plasmid transfections 17 twice with an interval of 48 h, and the cells were harvested 72 h after the third 18 transfection. By the time of harvest, the cells had been transfected with cyclin B1 shRNA 19 or control plasmids for 7 d. We then analyzed metaphases for spontaneous chromosome 20 abnormalities and found that total non-clonal centromeric aberrations in the cells with 21 cyclin B1 knockdown decreased significantly (P < 0.05) to about 40% of that in the 22 parental and control plasmid-transfected cell lines (Figure 2, lanes 9, 10, 15, 16, 21, 22 23 and Table S4), indicating the amelioration of centromeric instability. The decreased

1 centromeric aberrations included chromatid-type (chromatid breaks) and chromosome-2 type (chromosome deletions, iso-chromosomes, centromeric translocations, centromeric-3 to-telomeric fusions). Although the frequencies of chromatid-type aberrations were 4 expected to decrease with the checkpoint improvement within a single G2 phase, new 5 chromosome-type aberrations could be generated by rearrangements of chromatid-type 6 aberrations after DNA replication in the next cell cycle. Therefore the decrease in 7 frequencies of both centromeric chromatid-type and chromosome-type aberrations was 8 observed in cells harvested on Day 7 (which allowed cell proliferation for multiple cell 9 cycles) of cyclin B1 knockdown. The frequencies of other non-clonal, non-centromeric 10 aberrations also showed a trend of decrease but to a lesser extent than centromeric 11 aberrations (Figure 2, lanes 9, 15 and 21). Taken together, the above data enabled us to 12 conclude that G2 checkpoint defect induced by cyclin B1 overexpression plays an 13 important role in the manifestation of centromeric instability in cancer cells.

We also studied the growth kinetics of cancer cells under cyclin B1 knockdown. By day 7, the numbers of cells transfected with cyclin B1 shRNA were about 50% that of cells transfected with control plasmids (Figure S2), indicating that cyclin B1 knockdown decreased cell proliferation rate by about one cell population doubling within 7 days of experiments. The slower population doubling of cancer cells after G2 checkpoint improvement with cyclin B1 knockdown might offer a trivial explanation for the reduction of centromeric and non-centromeric non-clonal aberrations.

21 G2 checkpoint defect induced by ATM inhibitor promotes centromeric instability

We then examined whether the upstream regulator of cyclin B1 also affects centromere instability. It is well-established that ATM is essential in maintaining G2 checkpoint

1 function (Terzoudi et al., 2005; Deckbar et al., 2007) through inhibition of cyclin 2 B1/cdc2 (Abraham, 2001). We therefore examined the effect of a specific and potent ATM inhibitor, KU55933 (Rainey et al., 2008), which is known as a "molecular switch" 3 4 because of its rapid and reversible inactivation of ATM (White et al., 2008), on 5 centromeric instability. Being aware that ATM also has G1/S checkpoint functions 6 (Abraham, 2001), we particularly designed experiments to examine the effect of 7 KU55933 treatment without the confounding factor of G1/S checkpoint inactivation. The 8 NE2-hTERT and NP460-hTERT cells were treated with 10 µM KU55933 or DMSO for 9 2.5 h, with the addition of colcemid 0.5 h after KU55933 or DMSO treatment to enable 10 the collection of metaphases accumulated from G2 cells. The data in Figure 4a confirmed 11 the G2 checkpoint inactivation by KU55933. An average of 11 non-clonal centromeric 12 aberrations (mainly centromeric chromatid breaks) per 100 metaphases was detected after 13 KU55933 treatment (Figure 4b and detailed data in Table S5). This frequency was 21-14 fold higher than that in control (DMSO-treated) cells (0.5 non-clonal centromeric 15 aberrations per 100 metaphases). Other intra-arm aberrations were also induced by the 16 inhibitor treatment but the frequencies were lower than centromeric aberrations (Figure 17 4b and Table S5). Because the total duration of the inhibitor treatment was only 2.5 h, 18 and the duration of G2 phase of a typical human cell cycle lasts about 4 h even under the 19 condition of ATM inhibition (Pincheira and Lopez-Saez, 1991), it is unlikely that the new 20 aberrations in the metaphases after the transient inhibitor treatment stemmed from G1 or 21 S phase. We therefore conclude that the centromeric aberrations can be induced by the 22 ATM inhibition through the inactivation of G2 checkpoint function.

1 It is of interest to examine if the functions of ATM in G1 and S phases also play a 2 role in regulating centromeric instability. We cultured NE2-hTERT and NP460-hTERT 3 cells in KU55933- or DMSO-containing medium for 48 h (with medium change every 12 4 h). Colcemid was added into the culture medium 18 h before cell harvest to allow 5 metaphase accumulation from G2, S and G1 phases. Chromosome aberration analysis 6 showed $\sim 30\%$ increases in the frequency of non-clonal centromeric aberrations in both 7 cell lines compared with 2.5 h treatment with KU55933 (Figure 4b and Table S5), 8 indicating that G1/S checkpoint inactivation by ATM inhibition also induced centromeric 9 instability but to a lesser extent than G2 checkpoint inactivation in the cell lines.

10 Human primary fibroblasts from A-T patients exhibit elevated centromeric instability

11 To further confirm the role of G2 checkpoint defect in centromeric instability, we used 12 primary fibroblasts (without any ectopic gene expression) from patients with ataxia 13 telangiectasia (A-T) syndrome, a cancer-prone disorder, to investigate whether these cells 14 also show centromeric instability. The A-T cells were used as additional cell models 15 because they are well-known to have defective G2 checkpoint due to the mutations in 16 ATM and are frequently used in G2 checkpoint functional studies (Xu et al., 2002; 17 Terzoudi et al., 2005; Deckbar et al., 2007). Analyses of relative mitotic indices after γ -18 radiation showed that the primary A-T cells from two patients (AG02496 and AG04405) 19 had severe G2 checkpoint defect (Figures 4c). We found 55 and 72 spontaneous 20 structural chromosome aberrations in 100 AG02496 and AG04405 metaphases, 21 respectively, whereas ≤ 2 aberrations were detected in 100 primary fibroblasts derived 22 from normal individuals. Strikingly, chromosome breakpoint analysis using SKY and 23 centromere FISH showed that the majority of the aberrations in the un-irradiated A-T cells occurred in centromeric regions (Figure 4d), producing centromeric chromatid
 breaks, whole-arm translocations, centromeric chromosomal deletions, iso-chromosomes,
 and another unexpected form described below.

4 Primary A-T cells are known to have telomeric instability (Pandita, 2002). Our 5 analysis showed that these A-T cells not only had telomeric end-to-end fusions but also 6 dicentrics formed by fusion between centromeric ends and telomeric ends (Figure 3b). 7 The centromeric aberrations that were involved in fusions with telomeric ends accounted 8 for about one fifth of the total centromeric aberrations in the A-T cells (Table S6). These 9 results demonstrate that centromeric instability not only occurs independently but also 10 cooperates with telomeric instability to generate complex genetic changes in G2 11 checkpoint-defective A-T cells. Although centromeric instability was not previously 12 identified as a particular form of instability in A-T lymphocytes probably due to the high 13 background of random genomic instability, previous cytogenetic analysis of A-T 14 fibroblasts did show that centromeric or pericentromeric regions are hot-spots of 15 breakage (Kojis et al., 1989), consistent with our results.

16 Statistical validation of significant overrepresentation of centromeric aberrations in G2

17 checkpoint-defective cells

Statistical analysis of the chromosome aberration data in Figure 2 showed that the frequencies of non-clonal centromeric aberrations were always significantly higher (P < 0.05) than those of non-centromeric aberrations in cyclin B1-overexpressing immortalized cells and G2 checkpoint-defective cancer cells (Figure 2, lanes 2, 4, 8, 10, 14, 16, 20, and 22). The frequencies of non-clonal centromeric aberrations in other G2 checkpoint-defective cells (KU55933-treated and A-T cells) were also higher than non-

1 centromeric aberrations (Figures 4b and 4d), although the differences were not 2 statistically significant (P > 0.05). However, it is important to emphasize that the band 3 ratio of centromeric (p11-q11) to non-centromeric bands is only about 0.27 in the male 4 haploid genome (Stewenius et al., 2005). If the chromosome aberrations were randomly 5 distributed along chromosomes, the expected ratio of centromeric aberrations to non-6 centromeric aberrations would be 0.27. Yet our experimental ratios of centromeric 7 aberrations to non-centromeric aberrations in KU55933-treated and A-T cells (from male 8 donors) ranged from 1.39 \pm 0.38 to 2.00 \pm 0.64 (Table 1), which were significantly (P < 9 (0.05) higher than the expected value based on random assumption. These results together 10 suggested that centromeric aberrations were significantly overrepresented in G2 11 checkpoint-defective cells.

12

13

Discussion

14 In this study, we uncovered a previously uncharacterized role of G2 checkpoint defect in 15 chromosome instability. We have shown, for the first time, that defective G2 checkpoint 16 preferentially promotes the manifestation of centromeric instability. Cyclin B1 is one of 17 central and specific effector proteins driving G2 to M phase transition. We found that 18 cyclin B1 overexpression in telomerase-immortalized cell lines compromised G2 19 checkpoint and increased the frequencies of non-clonal centromeric aberrations. We also 20 showed that centromeric instability in cancer cells was associated with G2 checkpoint 21 defect. Conversely, centromeric instability in cancer cells was reduced by G2 checkpoint 22 improvement using cyclin B1 knockdown by RNA interference. We further demonstrated

1 that inhibition of ATM, the upstream regulator of cyclin B1/cdc2 and the well-recognized 2 potent regulator of G2 checkpoint, induced de novo centromeric aberrations. It is important to note that although ATM also has G1 and S phase checkpoint functions, our 3 4 experiments showed that transient (2.5 h) treatment with the specific ATM inhibitor, 5 KU55933, was sufficient to induce centromeric aberrations. Because the treatment 6 duration was shorter than G2 phase duration (usually lasts about 4 h), the confounding 7 factor of G1/S phase checkpoint inhibition was avoided. Moreover, we analyzed detailed 8 chromosome aberrations in primary fibroblasts derived from A-T patients. We 9 particularly chose to test primary A-T cells because they are close to the *in vivo* situation 10 and are frequently used in G2 checkpoint functional studies. We found that centromeric 11 or pericentromeric aberrations were the most prominent form of spontaneous 12 chromosome structural abnormalities in primary A-T fibroblasts. KU55933 treatments 13 and ATM mutations also promoted non-centromeric chromosome instability, but to lesser 14 extents than centromeric instability. Collectively, the above data lead us to conclude that 15 G2 checkpoint defect plays a critical role in promoting centromeric instability.

It is envisaged that centromeric regions intrinsically present replication barriers due to the condensed structure of heterochromatin, and unresolved replication barriers and/or asynchronous replication may result in DNA damage such as DNA double-strand breaks (Leach et al., 2000). Overstimulation of cell proliferation pathways has been shown to generate replication stress and DNA double-strand breaks at regions difficult to replicate, due to the conflict between unscheduled DNA synthesis and uncoordinated prereplicative complex assembly (Bartkova et al., 2005; Gorgoulis et al., 2005). Indeed,

p16^{INK4a} deletion, which promotes cell proliferation, is detected in both of our
telomerase-immortalized cell lines (Li et al., 2006; Cheung et al., 2010).

Based on the above information, we suggest the following model to explain centromeric instability. In cells overstimulated to proliferate, centromeric regions are predisposed to spontaneous DNA damage; defective G2 phase may impair the correct repair of the damage, which then manifest as chromosomal breaks or rearrangements. The spontaneous DNA damage and response at or near centromeric regions in G2 checkpoint-defective cells is currently under active investigation in our laboratory.

9 Extensive centromeric instability is believed to have oncogenic potential in least two 10 ways. First, most centromeric aberrations result in whole-arm losses or gains, which lead 11 to large-scale alterations of gene dosage. Ample amount of data from comparative 12 genomic hybridization showed that whole-arm imbalances are common in tumors 13 (Struski et al., 2002). Second, centromeric heterochromatin encompasses multiple forms 14 of inactive chromatin structure that can lead to gene silencing, so that translocations at 15 centromeric or pericentromeric regions may result in gene deregulation (Dillon and 16 Festenstein, 2002; Perrod and Gasser, 2003). We thus propose that centromeric instability 17 represents one of the basic forms of genomic instability and may play a functional role in 18 cancer development.

The role of G2 checkpoint defect in the manifestation of centromeric instability has important implications for genomic instability in cancer. In the context that low levels of DNA damage can escape normal G2 checkpoint (Deckbar et al., 2007; Lobrich and Jeggo, 2007), it has been shown that G2 checkpoint defect further reduces the efficacy of DNA damage repair (Terzoudi et al., 2005). Our data demonstrate that the G2 checkpoint in

1 cancer cells is not as stringent as in normal cells. One of the direct causes of G2 2 checkpoint defect is the overexpression of cyclin B1. In fact, cyclin B1 overexpression 3 has been frequently detected in numerous types of cancer (Ito et al., 2000; Takeno et al., 4 2002; Yoshida et al., 2004; Nakamura et al., 2005; Suzuki et al., 2007). Multiple 5 pathways are able to up-regulate cyclin B1. One of the well-studied classical pathways is 6 through mutation or inactivation of ATM (Abraham, 2001). Another classical pathway is 7 through inactivation of p53, which can regulate G2 checkpoint through inhibition of 8 cyclin B1 (Innocente et al., 1999), and p53 pathway inactivation has been detected in 9 most cancer (Hanahan and Weinberg, 2000). Furthermore, oncogenes such as H-Ras 10 (Santana et al., 2002), c-Myc (Yin et al., 2001) and the viral oncogene human 11 papillomavirus type 16 E6 (Kaufmann et al., 1997) can also activate cyclin B1. Therefore, 12 the existence of a plethora of pathways leading to the upregulation of cyclin B1, thus G2 13 checkpoint defect, offers a novel and broad explanation for the common occurrence of 14 centromeric aberrations in cancer cells. Further studies on the up-stream mechanisms 15 underlying the preferential centromeric DNA damage and the role of centromeric 16 instability in early process of cancer development are warranted.

17

18

Materials and Methods

19 Cell culture, chemicals and irradiation

Immortalized and primary normal epithelial cells were cultured as reported (Li et al.,
2006; Deng et al., 2008; Cheung et al., 2010). Fibroblasts from A-T patients (obtained
from Coriell Cell Repositories) and cancer cells were cultured in DMEM supplemented

with 10% FBS. Informed consents for normal tissue donation were obtained from the
 patients before surgery. KU55933 (Calbiochem) was dissolved in dimethyl sulfoxide
 (DMSO). ¹³⁷Cs γ-ray irradiation was carried out in a GammaCell 220 irradiator (Atomic
 Energy of Canada Ltd.) at a dose rate of 1 Gy/min.

5 Retroviral infection

NE2-hTERT and NP460-hTERT cells were infected with retroviral vector pApuroCyclinB1 or control vector pBabe-puro using 4 µg/ml polybrene (Sigma-Aldrich). The
cyclin B1 expression vector was a kind gift from Dr. Prochownik, Pittsburgh, PA (Yin et
al., 2001). The pApuro vector was modified from pBabe-puro vector (Takata et al., 1994).
Two days after retroviral infection, the cells were selected with 0.5 µg/ml puromycin for
6 days. The resistant cells were pooled for experiments.

12 **RNA** interference

ShRNA plasmid against cyclin B1 (pKD-Cyclin B1-v4) and negative control plasmid
(pKD-NegCon-v1) were purchased from Millipore. Plasmid transfections were carried
out according to the recommended protocols of the company.

16 Chromosome spreads preparation, SKY, and centromere FISH

The cells in the absence of γ -ray irradiation were analyzed for chromosome aberrations. To accumulate metaphases, cells were treated with colcemid (Sigma-Aldrich, 0.03 µg/ml) for 2 h unless otherwise specified. Chromosome spreads were prepared as described (Deng et al., 2003). SKY and centromere FISH were done sequentially as reported (Deng et al., 2007). The rhodamine-labeled pan-centromere DNA probes (Cambio Ltd.) were used for centromere FISH. One to two hundred metaphases from multiple experiments 1 were analyzed for detailed chromosome aberrations using SKY and centromere FISH.

2 Only non-clonal aberrations were used to quantify chromosome instability.

3 G2 checkpoint function analysis

4 The function of G2 checkpoint was monitored by the decrease in the percentage of 5 mitotic spreads 2 h after 1 Gy γ-ray irradiation relative to un-irradiated control cells 6 (relative mitotic index) (Terzoudi et al., 2005; Deckbar et al., 2007). For each experiment 7 point, at least 5000 cells were counted. Mitotic cells were identified after chromosome 8 spreading (without colcemid treatment).

9 Western blotting

Ten-microgram protein was separated by SDS-PAGE and blots were prepared on a polyvinylidene fluoride membrane (Amersham). Primary antibodies against cyclin B1 and actin were from Santa Cruz Biotechnology. Antibodies against phosph-cdc2(Thr161) and total cdc2 were from Cell Signaling Technology. The membrane was probed with secondary antibody against peroxidase-conjugated mouse, rabbit, or goat IgG, and the blots were visualized by the enhanced chemiluminescence Western blotting system (Amersham).

17 Statistical analysis

18 The two-tailed T-test was used to examine the statistical differences. P values < 0.0519 were deemed significant. In all bar graphs, error bars represent standard deviations.

20

21 Conflict of Interest

1 The authors declare no conflict of interest.

2

3 Acknowledgements

4 We thank Dr. Prochownik, Children's Hospital of Pittsburgh, Pittsburgh, PA, for the kind 5 gift of pApuro-CyclinB1 plasmids, and Department of Pediatrics and Adolescent 6 Medicine, The University of Hong Kong, for use of SKY facilities. We also thank Dr. J.C. 7 Tang (Department of Applied Biology and Chemical Technology, The Hong Kong 8 Polytechnic University) and Prof. G. Srivastava (Department of Pathology, The 9 University of Hong Kong) for the SLMT-1 cell line, and Dr. R. Glaser (Department of 10 Medical Microbiology and Immunology, Ohio State University Medical Center) for the 11 HNE-1 cell line; T. Chan, P. Y. Cheung, C. S. Leung, P. Mak, J. Cheung, A. Li and B. Lai 12 for technical assistance. This study was supported by a grant from the Research Grants 13 Council of Hong Kong Special Administrative Region, China, Project No. HKU 14 7556/06M.

- 15
- 16
- 17
- 18
- 19
- 20

1 2	References
3	Abraham RT. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases.
4	<i>Genes Dev</i> 15 : 2177-2196.
5	Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage
6	response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:
7	864-870.
8	Beheshti B, Karaskova J, Park PC, Squire JA, Beatty BG. (2000). Identification of a high
9	frequency of chromosomal rearrangements in the centromeric regions of prostate cancer
10	cell lines by sequential giemsa banding and spectral karyotyping. Mol Diagn 5: 23-32.
11	Cheung PY, Deng W, Man C, Tse WW, Srivastava G, Law S et al. (2010). Genetic
12	alterations in a telomerase-immortalized human esophageal epithelial cell line:
13	implications for carcinogenesis. Cancer Lett 293: 41-51.
14	Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S et al. (2007).
15	Chromosome breakage after G2 checkpoint release. J Cell Biol 176: 749-755.
16	Deng W, Tsao SW, Guan XY, Cheung AL. (2007). Microtubule breakage is not a major
17	mechanism for resolving end-to-end chromosome fusions generated by telomere

18 dysfunction during the early process of immortalization. *Chromosoma* **116**: 557-568.

1	Deng W, Tsao SW, Kwok YK, Wong E, Huang XR, Liu S et al. (2008). Transforming
2	growth factor beta1 promotes chromosomal instability in human papillomavirus 16
3	E6E7-infected cervical epithelial cells. Cancer Res 68: 7200-7209.
4	Deng W, Tsao SW, Lucas JN, Leung CS, Cheung AL. (2003). A new method for
5	improving metaphase chromosome spreading. <i>Cytometry A</i> 51 : 46-51.
6	Dillon N, Festenstein R. (2002). Unravelling heterochromatin: competition between
7	positive and negative factors regulates accessibility. Trends Genet 18: 252-258.
8	Ehrlich M. (2002). DNA hypomethylation, cancer, the immunodeficiency, centromeric
9	region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr
10	132 : 2424S-2429S.
11	Eichler EE, Sankoff D. (2003). Structural dynamics of eukaryotic chromosome evolution.
12	Science 301 : 793-797.
13	Glaser R, Zhang HY, Yao KT, Zhu HC, Wang FX, Li GY et al. (1989). Two epithelial
14	tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were
15	derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA 86: 9524-9528.
16	Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al.
17	(2005). Activation of the DNA damage checkpoint and genomic instability in human

18 precancerous lesions. *Nature* **434**: 907-913.

1	Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell 100: 57-70.
2	Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. (1999). p53 regulates a G2
3	checkpoint through cyclin B1. Proc Natl Acad Sci U S A 96: 2147-2152.
4	Ito Y, Takeda T, Sakon M, Monden M, Tsujimoto M, Matsuura N. (2000). Expression
5	and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma.
6	<i>Oncology</i> 59 : 68-74.
7	Jin Y, Mertens F, Jin C, Akervall J, Wennerberg J, Gorunova L et al. (1995). Nonrandom
8	chromosome abnormalities in short-term cultured primary squamous cell carcinomas of
9	the head and neck. Cancer Res 55: 3204-3210.
10	Johansson M, Jin Y, Mandahl N, Hambraeus G, Johansson L, Mitelman F et al. (1995).
11	Cytogenetic analysis of short-term cultured squamous cell carcinomas of the lung.
12	Cancer Genet Cytogenet 81: 46-55.
13	Kaufmann WK, Schwartz JL, Hurt JC, Byrd LL, Galloway DA, Levedakou E et al.
14	(1997). Inactivation of G2 checkpoint function and chromosomal destabilization are
15	linked in human fibroblasts expressing human papillomavirus type 16 E6. Cell Growth
16	Differ 8: 1105-1114.

Kojis TL, Schreck RR, Gatti RA, Sparkes RS. (1989). Tissue specificity of chromosomal

18 rearrangements in ataxia-telangiectasia. Hum Genet 83: 347-352.

17

1	Leach TJ, Chotkowski HL, Wotring MG, Dilwith RL, Glaser RL. (2000). Replication of
2	heterochromatin and structure of polytene chromosomes. Mol Cell Biol 20: 6308-6316.
3	Li HM, Man C, Jin Y, Deng W, Yip YL, Feng HC et al. (2006). Molecular and
4	cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by
5	telomerase. Int J Cancer 119: 1567-1576.
6	Lobrich M , Jeggo PA. (2007). The impact of a negligent G2/M checkpoint on genomic
7	instability and cancer induction. Nat Rev Cancer 7: 861-869.
8	Nakamura N, Yamamoto H, Yao T, Oda Y, Nishiyama K, Imamura M et al. (2005).
9	Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal
10	stromal tumor and the relevance of the risk grade. Hum Pathol 36: 828-837.
11	Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, Ghadimi BM, Macville
12	M et al. (2001). Jumping translocations are common in solid tumor cell lines and result in
13	recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer 30: 349-363.
14	Pandita TK. (2002). ATM function and telomere stability. Oncogene 21: 611-618.
15	Perrod S , Gasser SM. (2003). Long-range silencing and position effects at telomeres and

16 centromeres: parallels and differences. *Cell Mol Life Sci* **60**: 2303-2318.

1	Pincheira J , Lopez-Saez JF. (1991). Effects of caffeine and cycloheximide during G2
2	prophase in control and X-ray-irradiated human lymphocytes. <i>Mutat Res</i> 251: 71-77.
3	Rainey MD, Charlton ME, Stanton RV, Kastan MB. (2008). Transient inhibition of ATM
4	kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68:
5	7466-7474.
6	Santana C, Ortega E, Garcia-Carranca A. (2002). Oncogenic H-ras induces cyclin B1
7	expression in a p53-independent manner. Mutat Res 508: 49-58.
8	Stewenius Y, Gorunova L, Jonson T, Larsson N, Hoglund M, Mandahl N et al. (2005).
9	Structural and numerical chromosome changes in colon cancer develop through telomere-
10	mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA
11	102 : 5541-5546.
12	Struski S, Doco-Fenzy M, Cornillet-Lefebvre P. (2002). Compilation of published
13	comparative genomic hybridization studies. <i>Cancer Genet Cytogenet</i> 135 : 63-90.
14	Suzuki T, Urano T, Miki Y, Moriya T, Akahira J, Ishida T et al. (2007). Nuclear cyclin
15	B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98: 644-651.
16	Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T et al. (1994). Tyrosine kinases
17	Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct
10	

18 pathways. *EMBO J* **13**: 1341-1349.

1	Takeno S, Noguchi T, Kikuchi R, Uchida Y, Yokoyama S, Muller W. (2002). Prognostic
2	value of cyclin B1 in patients with esophageal squamous cell carcinoma. Cancer 94:
3	2874-2881.

4	Tang JC, Wan TS, Wong N, Pang E, Lam KY, Law SY et al. (2001). Establishment and
5	characterization of a new xenograft-derived human esophageal squamous cell carcinoma
6	cell line SLMT-1 of Chinese origin. Cancer Genet Cytogenet 124: 36-41.

7 Terzoudi GI, Manola KN, Pantelias GE, Iliakis G. (2005). Checkpoint abrogation in G2

8 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 65:

9 11292-11296.

10 White JS, Choi S, Bakkenist CJ. (2008). Irreversible chromosome damage accumulates

11 rapidly in the absence of ATM kinase activity. Cell Cycle 7: 1277-1284.

12 Wong N, Lai P, Pang E, Leung TW, Lau JW, Johnson PJ. (2000). A comprehensive

13 karyotypic study on human hepatocellular carcinoma by spectral karyotyping.

14 Hepatology 32: 1060-1068.

15 Xu B, Kim ST, Lim DS, Kastan MB. (2002). Two molecularly distinct G(2)/M

16 checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049-1059.

1	Yin XY, Grove L, Datta NS, Katula K, Long MW, Prochownik EV. (2001). Inverse
2	regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1
3	overexpression. Cancer Res 61: 6487-6493.
4	Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H. (2004). The clinical significance of
5	Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15: 252-256.
6	Zhu D, Ma MS, Zhao RZ, Li MY. (1995). Centromere spreading and centromeric
7	aberrations in ovarian tumors. Cancer Genet Cytogenet 80: 63-65.
8	
9	
10	

1 Table 1. Statistical analysis of ratios of centromeric to non-centromeric aberrations

	Metaphases analyzed	R* (ratio of centromeric aberrations to non- centromeric aberrations) ± standard deviation	<i>P</i> value (compared with R based on random assumption)
NE2-hTERT (KU55933 2.5 h)	200	1.83 ± 0.62	< 0.02
NE2-hTERT (KU55955, 48 h)	200	1.93 ± 0.64	< 0.01
NP460-hTERT (KU55933, 2.5 h)	200	1.60 ± 0.52	< 0.05
NP460-hTERT (KU55933, 48 h)	200	2.00 ± 0.64	< 0.01
AG02496	100	1.39 ± 0.38	< 0.005
AG04405	100	1.48 ± 0.36	< 0.001
* Calculated accordin	g to the following	s formula: $R = A \div$	В
$(\sigma R/R)^2 = (\sigma A/A)^2 + (\sigma B/B)^2$			

2 in KU55933-treated and A-T cells

where σR/R, σA/A and σB/B are relative standard deviation of R, A and B, respectively.
A (frequency of centromeric aberrations), σA (standard deviation of A), B (frequency of non-centromeric aberrations), and σB (standard deviation of B) were from data in Figures
4b and 4d. The value of R under random assumption is 0.27.

1 Figure legends

Figure 1. Cyclin B1 overexpression and G2 checkpoint function. (a) Western blot
analysis and (b) Relative mitotic indices expressed as percentages of mitotic cells 2 h
after irradiation relative to un-irradiated cells.

5 **Figure 2.** Frequencies of non-clonal chromosome aberrations per 100 metaphases 6 analyzed using SKY and centromere FISH. *P < 0.05.

7 Figure 3. Cytogenetic analysis of chromosomal aberrations. Left, middle and right 8 images show SKY, inverse DAPI, and centromere FISH signals of the same metaphase, 9 respectively. Arrows indicate aberrant chromosome arms. (a) Examples of centromeric 10 aberrations in telomerase-immortalized cells overexpressing cyclin B1. Arrow-heads 11 indicate centromeres at the broken ends or chromosome rejoining points. (b) Example of 12 fusion between a centromeric end and a telomeric end in AG02496 cells. Arrow-head 13 indicates the fusion point between a centromere and a telomeric end of another 14 chromosome.

Figure 4. Effect of KU55933 (KU) treatment and ATM mutation on G2 checkpoint and chromosome instability. (a) Relative mitotic indices (percentages of mitotic cells 2 h after irrdiation relative to un-irradiated cells). (b) Frequencies of non-clonal chromosome aberrations per 100 metaphases after DMSO or KU55933 treatment. Two hundred metaphases were analyzed for DMSO- or KU55933-treated cells. (c) Comparison between fibroblasts from A-T patients and normal donors for relative mitotic indices after irradiation. (d) The frequencies of spontaneous non-clonal chromosome

- 1 aberrations in 100 fibroblasts from A-T patients and normal donors. *P < 0.05, **P <
- 2 0.01, ***P < 0.001 for ratio of centromeric aberrations to non-centromeric aberrations
- 3 compared with 0.27 which is the expected value based on random assumption.

Figure 1 (Deng W et al)

Figure 2 (Deng W et al)

Figure 3 (Deng W et al)

Figure 4 (Deng W et al)

