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                                                        Abstract 1 

Centromeric instability is characterized by dynamic formation of centromeric breaks, 2 

deletions, iso-chromosomes and translocations, which are commonly observed in cancer. 3 

So far, however, the mechanisms of centromeric instability in cancer cells are still poorly 4 

understood. In this study, we tested the hypothesis that G2 checkpoint defect promotes 5 

centromeric instability. Our observations from multiple approaches consistently support 6 

this hypothesis. We found that overexpression of cyclin B1, one of the pivotal genes 7 

driving G2 to M phase transition, impaired G2 checkpoint and promoted the formation of 8 

centromeric aberrations in telomerase-immortalized cell lines. Conversely, centromeric 9 

instability in cancer cells was ameliorated through reinforcement of G2 checkpoint by 10 

cyclin B1 knockdown. Remarkably, treatment with KU55933 for only 2.5 h, which 11 

abrogated G2 checkpoint, was sufficient to produce centromeric aberrations. Moreover, 12 

centromeric aberrations constituted the major form of structural abnormalities in G2 13 

checkpoint-defective ataxia-telangiectasia (A-T) cells. Statistical analysis showed that the 14 

frequencies of centromeric aberrations in G2 checkpoint-defective cells were always 15 

significantly overrepresented compared with random assumption. Since there are multiple 16 

pathways leading to G2 checkpoint defect, our finding offers a broad explanation for the 17 

common occurrence of centromeric aberrations in cancer cells.    18 
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Introduction 1 

Centromeres are integral chromosomal elements where sister chromatids are constricted 2 

and the microtubules are attached for chromosome segregation during cell division. 3 

Investigations on chromosomal structural dynamics indicate that centromeres, being  4 

hotspots for rearrangements during species evolution, are intrinsically predisposed to 5 

instability (Eichler and Sankoff, 2003). Cytogenetic studies have shown that centromeric 6 

or pericentromeric aberrations such as whole-arm translocations, deletions and iso-7 

chromosomes are common in human cancer cell lines and primary solid tumors of 8 

various origins  (Jin et al., 1995; Zhu et al., 1995; Johansson et al., 1995; Beheshti et al., 9 

2000; Wong et al., 2000; Padilla-Nash et al., 2001). The frequent occurrence of 10 

centromeric aberrations in tumor cells suggests that centromeric instability may 11 

contribute to tumor development. However, the mechanisms of centromeric instability in 12 

carcinogenesis remain poorly understood. Elevated levels of centromeric instability are 13 

well characterized in ICF (immunodeficiency, centromeric region instability, facial 14 

anomaly) patients, and are ascribed to hypomethylation of centromeric DNA, leading to 15 

centromeric aberrations specifically on chromosomes 1, 16, and sometimes 9 (Ehrlich, 16 

2002). Yet, centromeric aberrations in most human tumors are not limited to the three 17 

chromosomes. Therefore, other mechanisms are probably involved in the genome-wide 18 

centromeric instability in tumor cells.   19 

   Human centromeres consist largely of repeated short sequences known as α-satellite 20 

DNA sequences, which are tightly packed into centromeric heterochromatin. It has been 21 

proposed that the condensed structure of heterochromatin presents barriers to DNA 22 

replication such that replication fork stalling occurs; and unresolved stalled replication 23 
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forks may generate DNA double-strand breaks (Leach et al., 2000). In normal cells, the 1 

G2 checkpoint exerts its protective function by delaying cell cycle progression from G2 2 

to M phase to provide time for correction of post-replication errors and DNA damage 3 

repair. We therefore hypothesize that centromeric DNA may be preferentially subject to 4 

erroneous replication that fails to be corrected in cells with defective G2 checkpoint, 5 

leading to centromeric instability. Cyclin B1 is one of the specific and pivotal genes 6 

driving G2 to M phase transition. The overexpression of cyclin B1 is expected to induce 7 

G2 checkpoint defect. In this study, for the first time, we obtained the evidence that 8 

defective G2 checkpoint, induced by manipulation of cyclin B1 overexpression and 9 

inhibition of its upstream regulator ATM (ataxia telangiectasia-mutated), indeed 10 

promotes centromeric instability in the context of spontaneous DNA damage 11 

preferentially occurring at or near centromeres.    12 

 13 

Results  14 

Cyclin B1 overexpression promotes G2 checkpoint defect and centromeric instability  15 

To study the causative role of G2 checkpoint defect in centromeric instability, we stably 16 

overexpressed cyclin B1 in two human telomerase-immortalized cell lines derived from 17 

normal esophageal epithelial cells (NE2-hTERT) (Cheung et al., 2010) and 18 

nasopharyngeal epithelial cells (NP460-hTERT) (Li et al., 2006), which were chosen 19 

because they had low background levels of centromeric instability. The cells were 20 

infected with retroviral plasmids expressing cyclin B1 or empty vector and selected with 21 

puromycin for 6 days. Western blotting analysis demonstrated the successful 22 
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overexpression of cyclin B1 (Figure 1a, lanes 1-4). This was also accompanied by the 1 

increased expression of active form of phospho-cdc2, p-cdc2(Thr161), which is known to 2 

form complex with cyclin B1 to promote G2 to M phase transition, while there was no 3 

remarkable change in the total levels of cdc2. Because intact G2 checkpoint enforces G2 4 

arrest after DNA damage, the function of G2 checkpoint was readily monitored by the  5 

percentage of mitotic cells 2 h after 1 Gy γ-ray irradiation relative to that of un-irradiated 6 

control cells (i.e. relative mitotic index) (Xu et al., 2002; Terzoudi et al., 2005; Deckbar 7 

et al., 2007). We confirmed that the cyclin B-overexpressing cells had impaired G2 8 

checkpoint function as evidenced by the higher relative mitotic indices (Figure 1a, lanes 9 

1-4, and Table S1) compared with empty-vector infected cells after γ-ray irradiation, 10 

indicating inefficient G2 arrest after cyclin B1 overexpression.  11 

        Un-irradiated cells were analyzed for spontaneous chromosome aberrations using 12 

24-color spectral karyotyping (SKY) and pan-centromere fluorescence in situ 13 

hybridization (FISH) at the 6th population doubling (PD) after puromycin selection. The 14 

most remarkable finding was a ~20-fold increase in the frequencies of non-clonal 15 

centromeric aberrations in cyclin B1 overexpressing cells compared with empty-vector 16 

infected cells (Figure 2, lanes 1-4). The new aberrations (Table S2) included centromeric 17 

chromatid breaks, centromeric chromosomal deletions, centromeric translocations and 18 

iso-chromosomes, as exemplified in Figure 3a. The centromeric aberrations were 19 

confirmed by the presence of centromere FISH signals at the broken ends or chromosome 20 

rejoining points (Figure 3a, right). These results represent the first direct evidence that G2 21 

checkpoint defect promotes centromeric instability.  22 
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Cyclin B1 knockdown reinforces G2 checkpoint function and reduces centromeric 1 

instability in cancer cells 2 

We next tested the impact of G2 checkpoint defect on centromeric instability in cancer 3 

cells. Three cancer cell lines of different cell types: HeLa (cervical cancer), SLMT-1 4 

(esophageal cancer) (Tang et al., 2001) and HNE-1 (nasopharyngeal cancer) (Glaser et al., 5 

1989) were examined. Although cancer cells are known to retain some degree of G2 6 

checkpoint function, we anticipated that the G2 checkpoint in cancer cells may not be as 7 

stringent as in normal cells. To obtain normal control cells, we cultured primary epithelial 8 

cells from normal tissues donated by 6 independent individuals (NC104 and NC105 for 9 

cervical epithelial cells, NP601 and NP602 for nasopharyngeal epithelial cells, NE1 and 10 

NE6 for esophageal epithelial cells). SKY analysis confirmed that an average of 98% of 11 

these primary epithelial cells had a normal karyotype. Western blotting analysis showed 12 

that the control cells had significantly lower protein expression of cyclin B1, active form 13 

of phospho-cdc2 and total cdc2 than the cancer cells (Figure 1a, lanes 5-7, 12-14, and 19-14 

21). The relative mitotic indices of normal and cancer cells after γ-ray irradiation 15 

decreased to an average of 2 and 34%, respectively (Figure 1b, lanes 6-8, 12-14 and 18-16 

20), demonstrating that the cancer cells had defective G2 checkpoint. Detailed mitotic 17 

indices are given in Table S3). Karyotype analysis revealed that each cancer cell line (un-18 

irradiated and pooled culture) had specific clonal structural aberrations that were present 19 

in all analyzed metaphases. However, the cells from each cancer cell line also had high 20 

frequencies of non-clonal structural aberrations, which predominantly involved 21 

centromeric regions (Figure 2, lanes 8, 14, and 20, and Table S4), indicating severe 22 

centromeric instability. Strikingly, the majority of clonal structural aberrations in the 23 
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cancer cell lines were also centromeric aberrations. Examples of karyotypes of the three 1 

cell lines are shown in Figure S1. 2 

       To examine whether defective G2 checkpoint truly contributes to centromeric 3 

instability in the cancer cell lines, we reinforced G2 checkpoint function by cyclin B1 4 

knockdown to see if centromeric instability could be reduced. RNA interference directed 5 

against cyclin B1 was performed using plasmids containing a human cyclin B1 sequence 6 

that, when expressed, forms a short-hairpin RNA (shRNA) which gets processed into a 7 

cyclin B1-specific short interfering RNA. Figure 1a (lanes 8, 9, 15, 16, 22 and 23) shows 8 

the effective knockdown of cyclin B1 protein expression in the three cancer cell lines 9 

measured at 24 and 72 h after the plasmid transfection. Interestingly, the active form of 10 

phospho-cdc2 protein expression also showed some degree of decrease, but not the total 11 

levels of cdc2. The cyclin B1 shRNA-transfected cells had significantly lower mitotic 12 

indices (P < 0.05, Table S3) and were more sensitive to γ-ray irradiation compared with 13 

parental and control plasmid-transfected cells (Figure 1b and Table S3), suggesting the 14 

improvement of G2 checkpoint function after cyclin B1 knockdown. To achieve 15 

sustained cyclin B1 knockdown, we repeated cyclin B1 shRNA plasmid transfections 16 

twice with an interval of 48 h, and the cells were harvested 72 h after the third 17 

transfection. By the time of harvest, the cells had been transfected with cyclin B1 shRNA 18 

or control plasmids for 7 d. We then analyzed metaphases for spontaneous chromosome 19 

abnormalities and found that total non-clonal centromeric aberrations in the cells with 20 

cyclin B1 knockdown decreased significantly (P < 0.05) to about 40% of that in the 21 

parental and control plasmid-transfected cell lines (Figure 2, lanes 9, 10, 15, 16, 21, 22 22 

and Table S4), indicating the amelioration of centromeric instability. The decreased 23 
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centromeric aberrations included chromatid-type (chromatid breaks) and chromosome-1 

type (chromosome deletions, iso-chromosomes, centromeric translocations, centromeric-2 

to-telomeric fusions). Although the frequencies of chromatid-type aberrations were 3 

expected to decrease with the checkpoint improvement within a single G2 phase, new 4 

chromosome-type aberrations could be generated by rearrangements of chromatid-type 5 

aberrations after DNA replication in the next cell cycle. Therefore the decrease in 6 

frequencies of both centromeric chromatid-type and chromosome-type aberrations was 7 

observed in cells harvested on Day 7 (which allowed cell proliferation for multiple cell 8 

cycles) of cyclin B1 knockdown. The frequencies of other non-clonal, non-centromeric 9 

aberrations also showed a trend of decrease but to a lesser extent than centromeric 10 

aberrations (Figure 2, lanes 9, 15 and 21). Taken together, the above data enabled us to 11 

conclude that G2 checkpoint defect induced by cyclin B1 overexpression plays an 12 

important role in the manifestation of centromeric instability in cancer cells.  13 

       We also studied the growth kinetics of cancer cells under cyclin B1 knockdown. By 14 

day 7,  the numbers of cells transfected with cyclin B1 shRNA were about 50% that of 15 

cells transfected with control plasmids (Figure S2), indicating that cyclin B1 knockdown 16 

decreased cell proliferation rate by about one cell population doubling within 7 days of 17 

experiments. The slower population doubling of cancer cells after G2 checkpoint 18 

improvement with cyclin B1 knockdown might offer a trivial explanation for the 19 

reduction of centromeric and non-centromeric non-clonal aberrations.  20 

G2 checkpoint defect induced by ATM inhibitor promotes centromeric instability       21 

We then examined whether the upstream regulator of cyclin B1 also affects centromere 22 

instability. It is well-established that ATM is essential in maintaining G2 checkpoint 23 
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function (Terzoudi et al., 2005; Deckbar et al., 2007) through inhibition of cyclin 1 

B1/cdc2  (Abraham, 2001). We therefore examined the effect of a specific and potent 2 

ATM inhibitor, KU55933 (Rainey et al., 2008), which is known as a “molecular switch” 3 

because of its rapid and reversible inactivation of ATM (White et al., 2008), on 4 

centromeric instability. Being aware that ATM also has G1/S checkpoint functions 5 

(Abraham, 2001), we particularly designed experiments to examine the effect of 6 

KU55933 treatment without the confounding factor of G1/S checkpoint inactivation. The 7 

NE2-hTERT and NP460-hTERT cells were treated with 10 µM KU55933 or DMSO for 8 

2.5 h, with the addition of colcemid 0.5 h after KU55933 or DMSO treatment to enable 9 

the collection of metaphases accumulated from G2 cells. The data in Figure 4a confirmed 10 

the G2 checkpoint inactivation by KU55933. An average of 11 non-clonal centromeric 11 

aberrations (mainly centromeric chromatid breaks) per 100 metaphases was detected after 12 

KU55933 treatment (Figure 4b and detailed data in Table S5). This frequency was 21-13 

fold higher than that in control (DMSO-treated) cells (0.5 non-clonal centromeric 14 

aberrations per 100 metaphases). Other intra-arm aberrations were also induced by the 15 

inhibitor treatment but the frequencies were lower than centromeric aberrations (Figure 16 

4b and Table S5). Because the total duration of the inhibitor treatment was only 2.5 h, 17 

and the duration of G2 phase of a typical human cell cycle lasts about 4 h even under the 18 

condition of ATM inhibition (Pincheira and Lopez-Saez, 1991), it is unlikely that the new 19 

aberrations in the metaphases after the transient inhibitor treatment stemmed from G1 or 20 

S phase. We therefore conclude that the centromeric aberrations can be induced by the 21 

ATM inhibition through the inactivation of G2 checkpoint function.  22 
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        It is of interest to examine if the functions of ATM in G1 and S phases also play a 1 

role in regulating centromeric instability. We cultured NE2-hTERT and NP460-hTERT 2 

cells in KU55933- or DMSO-containing medium for 48 h (with medium change every 12 3 

h). Colcemid was added into the culture medium 18 h before cell harvest to allow 4 

metaphase accumulation from G2, S and G1 phases. Chromosome aberration analysis 5 

showed ~ 30% increases in the frequency of non-clonal centromeric aberrations in both 6 

cell lines compared with 2.5 h treatment with KU55933 (Figure 4b and Table S5), 7 

indicating that G1/S checkpoint inactivation by ATM inhibition also induced centromeric 8 

instability but to a lesser extent than G2 checkpoint inactivation in the cell lines.   9 

Human primary fibroblasts from A-T patients exhibit elevated centromeric instability 10 

To further confirm the role of G2 checkpoint defect in centromeric instability, we used 11 

primary fibroblasts (without any ectopic gene expression) from patients with ataxia 12 

telangiectasia (A-T) syndrome, a cancer-prone disorder, to investigate whether these cells 13 

also show centromeric instability. The A-T cells were used as additional cell models 14 

because they are well-known to have defective G2 checkpoint due to the mutations in 15 

ATM and are frequently used in G2 checkpoint functional studies (Xu et al., 2002; 16 

Terzoudi et al., 2005; Deckbar et al., 2007). Analyses of relative mitotic indices after γ-17 

radiation showed that the primary A-T cells from two patients (AG02496 and AG04405) 18 

had severe G2 checkpoint defect (Figures 4c). We found 55 and 72 spontaneous 19 

structural chromosome aberrations in 100 AG02496 and AG04405 metaphases, 20 

respectively, whereas ≤ 2 aberrations were detected in 100 primary fibroblasts derived 21 

from normal individuals. Strikingly, chromosome breakpoint analysis using SKY and 22 

centromere FISH showed that the majority of the aberrations in the un-irradiated A-T 23 
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cells occurred in centromeric regions (Figure 4d), producing centromeric chromatid 1 

breaks, whole-arm translocations, centromeric chromosomal deletions, iso-chromosomes, 2 

and another unexpected form described below.  3 

        Primary A-T cells are known to have telomeric instability (Pandita, 2002). Our 4 

analysis showed that these A-T cells not only had telomeric end-to-end fusions but also 5 

dicentrics formed by fusion between centromeric ends and telomeric ends (Figure 3b). 6 

The centromeric aberrations that were involved in fusions with telomeric ends accounted 7 

for about one fifth of the total centromeric aberrations in the A-T cells (Table S6). These 8 

results demonstrate that centromeric instability not only occurs independently but also 9 

cooperates with telomeric instability to generate complex genetic changes in G2 10 

checkpoint-defective A-T cells. Although centromeric instability was not previously 11 

identified as a particular form of instability in A-T lymphocytes probably due to the high 12 

background of random genomic instability, previous cytogenetic analysis of A-T 13 

fibroblasts did show that centromeric or pericentromeric regions are hot-spots of 14 

breakage (Kojis et al., 1989), consistent with our results.    15 

Statistical validation of significant overrepresentation of centromeric aberrations in G2 16 

checkpoint-defective cells  17 

Statistical analysis of the chromosome aberration data in Figure 2 showed that the 18 

frequencies of non-clonal centromeric aberrations were always significantly higher (P < 19 

0.05) than those of non-centromeric aberrations in cyclin B1-overexpressing 20 

immortalized cells and G2 checkpoint-defective cancer cells (Figure 2, lanes 2, 4, 8, 10, 21 

14, 16, 20, and 22). The frequencies of non-clonal centromeric aberrations in other G2 22 

checkpoint-defective cells (KU55933-treated and A-T cells) were also higher than non-23 
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centromeric aberrations (Figures 4b and 4d), although the differences were not 1 

statistically significant (P > 0.05). However, it is important to emphasize that the band 2 

ratio of centromeric (p11-q11) to non-centromeric bands is only about 0.27 in the male 3 

haploid genome  (Stewenius et al., 2005). If the chromosome aberrations were randomly 4 

distributed along chromosomes, the expected ratio of centromeric aberrations to non-5 

centromeric aberrations would be 0.27. Yet our experimental ratios of centromeric 6 

aberrations to non-centromeric aberrations in KU55933-treated and A-T cells (from male 7 

donors) ranged from 1.39 ± 0.38 to 2.00 ± 0.64 (Table 1), which were significantly (P < 8 

0.05) higher than the expected value based on random assumption. These results together 9 

suggested that centromeric aberrations were significantly overrepresented in G2 10 

checkpoint-defective cells.  11 

 12 

Discussion 13 

In this study, we uncovered a previously uncharacterized role of G2 checkpoint defect in 14 

chromosome instability. We have shown, for the first time, that defective G2 checkpoint 15 

preferentially promotes the manifestation of centromeric instability. Cyclin B1 is one of 16 

central and specific effector proteins driving G2 to M phase transition. We found that 17 

cyclin B1 overexpression in telomerase-immortalized cell lines compromised G2 18 

checkpoint and increased the frequencies of non-clonal centromeric aberrations. We also 19 

showed that centromeric instability in cancer cells was associated with G2 checkpoint 20 

defect. Conversely, centromeric instability in cancer cells was reduced by G2 checkpoint 21 

improvement using cyclin B1 knockdown by RNA interference. We further demonstrated 22 
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that inhibition of ATM, the upstream regulator of cyclin B1/cdc2 and the well-recognized 1 

potent regulator of G2 checkpoint, induced de novo centromeric aberrations. It is 2 

important to note that although ATM also has G1 and S phase checkpoint functions, our 3 

experiments showed that transient (2.5 h) treatment with the specific ATM inhibitor, 4 

KU55933, was sufficient to induce centromeric aberrations. Because the treatment 5 

duration was shorter than G2 phase duration (usually lasts about 4 h), the confounding 6 

factor of G1/S phase checkpoint inhibition was avoided. Moreover, we analyzed detailed 7 

chromosome aberrations in primary fibroblasts derived from A-T patients. We 8 

particularly chose to test primary A-T cells because they are close to the in vivo situation 9 

and are frequently used in G2 checkpoint functional studies. We found that centromeric 10 

or pericentromeric aberrations were the most prominent form of spontaneous 11 

chromosome structural abnormalities in primary A-T fibroblasts. KU55933 treatments 12 

and ATM mutations also promoted non-centromeric chromosome instability, but to lesser 13 

extents than centromeric instability. Collectively, the above data lead us to conclude that 14 

G2 checkpoint defect plays a critical role in promoting centromeric instability.  15 

       It is envisaged that centromeric regions intrinsically present replication barriers due 16 

to the condensed structure of heterochromatin, and unresolved replication barriers and/or 17 

asynchronous replication may result in DNA damage such as DNA double-strand breaks 18 

(Leach et al., 2000). Overstimulation of cell proliferation pathways has been shown to 19 

generate replication stress and DNA double-strand breaks at regions difficult to replicate, 20 

due to the conflict between unscheduled DNA synthesis and uncoordinated pre-21 

replicative complex assembly (Bartkova et al., 2005; Gorgoulis et al., 2005). Indeed, 22 
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p16INK4a deletion, which promotes cell proliferation, is detected in both of our 1 

telomerase-immortalized cell lines (Li et al., 2006; Cheung et al., 2010).  2 

        Based on the above information, we suggest the following model to explain 3 

centromeric instability. In cells overstimulated to proliferate, centromeric regions are 4 

predisposed to spontaneous DNA damage; defective G2 phase may impair the correct 5 

repair of the damage, which then manifest as chromosomal breaks or rearrangements. 6 

The spontaneous DNA damage and response at or near centromeric regions in G2 7 

checkpoint-defective cells is currently under active investigation in our laboratory.  8 

        Extensive centromeric instability is believed to have oncogenic potential in least two 9 

ways. First, most centromeric aberrations result in whole-arm losses or gains, which lead 10 

to large-scale alterations of gene dosage. Ample amount of data from comparative 11 

genomic hybridization showed that whole-arm imbalances are common in tumors 12 

(Struski et al., 2002). Second, centromeric heterochromatin encompasses multiple forms 13 

of inactive chromatin structure that can lead to gene silencing, so that translocations at 14 

centromeric or pericentromeric regions may result in gene deregulation (Dillon and 15 

Festenstein, 2002; Perrod and Gasser, 2003). We thus propose that centromeric instability 16 

represents one of the basic forms of genomic instability and may play a functional role in 17 

cancer development. 18 

   The role of G2 checkpoint defect in the manifestation of centromeric instability has 19 

important implications for genomic instability in cancer. In the context that low levels of 20 

DNA damage can escape normal G2 checkpoint (Deckbar et al., 2007; Lobrich and Jeggo, 21 

2007), it has been shown that G2 checkpoint defect further reduces the efficacy of DNA 22 

damage repair (Terzoudi et al., 2005). Our data demonstrate that the G2 checkpoint in 23 
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cancer cells is not as stringent as in normal cells. One of the direct causes of G2 1 

checkpoint defect is the overexpression of cyclin B1. In fact, cyclin B1 overexpression 2 

has been frequently detected in numerous types of cancer (Ito et al., 2000; Takeno et al., 3 

2002; Yoshida et al., 2004; Nakamura et al., 2005; Suzuki et al., 2007). Multiple 4 

pathways are able to up-regulate cyclin B1. One of the well-studied classical pathways is 5 

through mutation or inactivation of ATM (Abraham, 2001). Another classical pathway is 6 

through inactivation of p53, which can regulate G2 checkpoint through inhibition of 7 

cyclin B1 (Innocente et al., 1999), and p53 pathway inactivation has been detected in 8 

most cancer (Hanahan and Weinberg, 2000). Furthermore, oncogenes such as H-Ras 9 

(Santana et al., 2002), c-Myc (Yin et al., 2001) and the viral oncogene human 10 

papillomavirus type 16 E6 (Kaufmann et al., 1997) can also activate cyclin B1. Therefore, 11 

the existence of a plethora of pathways leading to the upregulation of cyclin B1, thus G2 12 

checkpoint defect, offers a novel and broad explanation for the common occurrence of 13 

centromeric aberrations in cancer cells. Further studies on the up-stream mechanisms 14 

underlying the preferential centromeric DNA damage and the role of centromeric 15 

instability in early process of cancer development are warranted.     16 

 17 

                                               Materials and Methods 18 

Cell culture, chemicals and irradiation 19 

Immortalized and primary normal epithelial cells were cultured as reported (Li et al., 20 

2006; Deng et al., 2008; Cheung et al., 2010). Fibroblasts from A-T patients (obtained 21 

from Coriell Cell Repositories) and cancer cells were cultured in DMEM supplemented 22 
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with 10% FBS. Informed consents for normal tissue donation were obtained from the 1 

patients before surgery. KU55933 (Calbiochem) was dissolved in dimethyl sulfoxide 2 

(DMSO). 137Cs γ-ray irradiation was carried out in a GammaCell 220 irradiator (Atomic 3 

Energy of Canada Ltd.) at a dose rate of 1 Gy/min.   4 

Retroviral infection 5 

NE2-hTERT and NP460-hTERT cells were infected with retroviral vector pApuro-6 

CyclinB1 or control vector pBabe-puro using 4 μg/ml polybrene (Sigma-Aldrich). The 7 

cyclin B1 expression vector was a kind gift from Dr. Prochownik, Pittsburgh, PA (Yin et 8 

al., 2001). The pApuro vector was modified from pBabe-puro vector (Takata et al., 1994). 9 

Two days after retroviral infection, the cells were selected with 0.5 μg/ml puromycin for 10 

6 days. The resistant cells were pooled for experiments.   11 

RNA interference 12 

ShRNA plasmid against cyclin B1 (pKD-Cyclin B1-v4) and negative control plasmid 13 

(pKD-NegCon-v1) were purchased from Millipore. Plasmid transfections were carried 14 

out according to the recommended protocols of the company.   15 

Chromosome spreads preparation, SKY, and centromere FISH  16 

The cells in the absence of γ-ray irradiation were analyzed for chromosome aberrations. 17 

To accumulate metaphases, cells were treated with colcemid (Sigma-Aldrich, 0.03 μg/ml) 18 

for 2 h unless otherwise specified. Chromosome spreads were prepared as described 19 

(Deng et al., 2003). SKY and centromere FISH were done sequentially as reported (Deng 20 

et al., 2007). The rhodamine-labeled pan-centromere DNA probes (Cambio Ltd.) were 21 

used for centromere FISH. One to two hundred metaphases from multiple experiments 22 
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were analyzed for detailed chromosome aberrations using SKY and centromere FISH. 1 

Only non-clonal aberrations were used to quantify chromosome instability.  2 

G2 checkpoint function analysis 3 

The function of G2 checkpoint was monitored by the decrease in the percentage of 4 

mitotic spreads 2 h after 1 Gy γ-ray irradiation relative to un-irradiated control cells 5 

(relative mitotic index) (Terzoudi et al., 2005; Deckbar et al., 2007). For each experiment 6 

point, at least 5000 cells were counted. Mitotic cells were identified after chromosome 7 

spreading (without colcemid treatment).  8 

Western blotting 9 

Ten-microgram protein was separated by SDS-PAGE and blots were prepared on a 10 

polyvinylidene fluoride membrane (Amersham). Primary antibodies against cyclin B1 11 

and actin were from Santa Cruz Biotechnology. Antibodies against phosph-cdc2(Thr161) 12 

and total cdc2 were from Cell Signaling Technology. The membrane was probed with 13 

secondary antibody against peroxidase-conjugated mouse, rabbit, or goat IgG, and the 14 

blots were visualized by the enhanced chemiluminescence Western blotting system 15 

(Amersham). 16 

Statistical analysis 17 

The two-tailed T-test was used to examine the statistical differences. P values < 0.05 18 

were deemed significant. In all bar graphs, error bars represent standard deviations.     19 
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Table 1.  Statistical analysis of ratios of centromeric to non-centromeric aberrations 1 

in KU55933-treated and A-T cells 2 

 Metaphases 
analyzed 

R* (ratio of centromeric 
aberrations to non-
centromeric aberrations)   
± standard deviation  

P value 
(compared with R 
based on  random 
assumption) 

NE2-hTERT 
(KU55933 2.5 h) 

200 1.83 ± 0.62 < 0.02 

NE2-hTERT 
(KU55955, 48 h) 

200 1.93 ± 0.64 < 0.01  

NP460-hTERT 
(KU55933, 2.5 h) 

200 1.60 ± 0.52 < 0.05 

NP460-hTERT 
(KU55933, 48 h) 

200 2.00 ± 0.64 < 0.01 

AG02496 100 1.39 ± 0.38 < 0.005 

AG04405 100 1.48 ± 0.36 < 0.001 

* Calculated according to the following formula:                  R = A ÷ B 3 

(σR/R)2 = (σA/A)2 + (σB/B)2 4 

where σR/R, σA/A and σB/B are relative standard deviation of R, A and B, respectively.  5 

A (frequency of centromeric aberrations), σA (standard deviation of A), B (frequency of 6 

non-centromeric aberrations), and σB (standard deviation of B) were from data in Figures 7 

4b and 4d. The value of R under random assumption is 0.27.  8 
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Figure legends 1 

Figure 1. Cyclin B1 overexpression and G2 checkpoint function. (a) Western blot 2 

analysis and (b) Relative  mitotic indices expressed as percentages of mitotic cells 2 h 3 

after irradiation relative to un-irradiated cells.  4 

Figure 2. Frequencies of non-clonal chromosome aberrations per 100 metaphases 5 

analyzed using SKY and centromere FISH. *P < 0.05.  6 

Figure 3. Cytogenetic analysis of chromosomal aberrations. Left, middle and right 7 

images show SKY, inverse DAPI, and centromere FISH signals of the same metaphase, 8 

respectively. Arrows indicate aberrant chromosome arms. (a) Examples of centromeric 9 

aberrations in telomerase-immortalized cells overexpressing cyclin B1. Arrow-heads 10 

indicate centromeres at the broken ends or chromosome rejoining points. (b) Example of 11 

fusion between a centromeric end and a telomeric end in AG02496 cells. Arrow-head 12 

indicates the fusion point between a centromere and a telomeric end of another  13 

chromosome. 14 

Figure 4. Effect of KU55933 (KU) treatment and ATM mutation on G2 checkpoint 15 

and chromosome instability. (a) Relative mitotic indices (percentages of mitotic cells 2 16 

h after irrdiation relative to un-irradiated cells). (b) Frequencies of non-clonal 17 

chromosome aberrations per 100 metaphases after DMSO or KU55933 treatment. Two 18 

hundred metaphases were analyzed for DMSO- or KU55933-treated cells. (c) 19 

Comparison between fibroblasts from A-T patients and normal donors for relative mitotic 20 

indices after irradiation. (d) The frequencies of spontaneous non-clonal chromosome 21 
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aberrations in 100 fibroblasts from A-T patients and normal donors.  *P < 0.05, **P < 1 

0.01, ***P < 0.001 for ratio of centromeric aberrations to non-centromeric aberrations 2 

compared with 0.27 which is the expected value based on random assumption. 3 
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