The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Surviving type I migration (the old and the new): oligarchic formation of hot neptunes		
Author(s)	McNeil, DS; Nelson, RP		
Citation	Winter Workshop on Planetary Astrophysics, KIAA, Peking University, Beijing, China, 12-19 December 2009.		
Issued Date	2009		
URL	http://hdl.handle.net/10722/133006		
Rights	Creative Commons: Attribution 3.0 Hong Kong License		

Surviving type I migration (the old and the new): oligarchic formation of hot Neptunes

D.S. McNeil R.P. Nelson

Overview

- Hot Neptunes, and why we care
- The old migration:
 Predictions of the simplest classic oligarchy + type I models
- The new Paardekooper migration
 - A simple toy model
 - A more accurate model

•Where we are now

The exoplanet distribution

(as of August 2009)

Why are hot Neptunes important?

- large enough to be observable (~20 known)
- large enough to undergo dangerous amounts of type I migration (unlike Earths)
- small enough that they formed via core accretion
- small enough that they can't open a gap and switch to type II

 \rightarrow excellent probes of type I migration

Our favourite Neptunes

HD69830 (Lovis et al. 2006)

object	mass	a [AU]	ecc.
b	10.5 M _E	0.0785	0.10 ± 0.04
С	12.1 M _E	0.186	0.13 ± 0.06
Beichman et al. (2005) asteroid belt	25 x AB? (22-64) Sedna?	0.42	
d	18.4 M _E	0.63	0.07 ± 0.07
water?		0.72?	
Lisse et al. (2006) debris disc	> 3 x 10 ¹⁷ kg	0.93-1.16	
KI LIA I			

What does the simplest model (oligarchy + the traditional type I) predict?

Method: Moderate resolution N-body integrations using multiscale parallel Kepler-adapted symplectic integrator NAOKO [McNeil & Nelson 2009a]

Tanaka et al. (2002) type I torques

 $\Gamma_{\text{total}}(3\text{D}) = (1.364 + 0.541\alpha) \left(\frac{M_p}{M_c} \frac{r_p \Omega_p}{c}\right)^2 \sigma_p r_p^4 \Omega_p^2$

 $\Gamma_{\text{total}}(2\text{D}) = (1.160 + 2.828\alpha) \left(\frac{M_p}{M_c} \frac{r_p \Omega_p}{c}\right)^2 \sigma_p r_p^4 \Omega_p^2$

The new type I migration

Paardekooper & Mellema 2006; Baruteau & Masset 2008; Paardekooper & Mellema 2008; Paardekooper & Papaloizou 2008; Kley & Crida 2008; Kley, Bitsch, Klahr 2009; Paardekooper et al. 2009

$$\frac{\gamma\Gamma}{\Gamma_0} = \left[-2.5 - 1.7\beta + 0.1\alpha\right] + \left[1.1\left(\frac{3}{2} - \alpha\right)\right] + \left[7.9\frac{\xi}{\gamma}\right]$$

Lindblad torques Barotropic corotation Nonbarotropic corotation corotation

NBCT can be > LT + BCT \rightarrow outward motion

Must avoid saturation: $f[\tau_{lib}/\tau_{diff}] = ?$

Our first toy model, without NBCT

Our very first run with NBCT

Combined runs with diffusion fudge factor in [0.1..10]

Conclusions

Multiple lukewarm Neptune systems are excellent tests of type I migration physics because they're so hard to form

The simplest oligarchy + TTW type I migration models fail badly, dramatically underpredicting the mass

Paardekooper-style type I migration is very promising but frustratingly sensitive [McNeil & Nelson 2009c 2010a!]