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TAIL OF A LINEAR DIFFUSION WITH MARKOV SWITCHING

BY BENOÎTE DE SAPORTA AND JIAN -FENG YAO

Université de Rennes 1

Let Y be an Ornstein–Uhlenbeck diffusion governed by a stationary and
ergodic Markov jump processX: dYt = a(Xt )Yt dt + σ(Xt ) dWt , Y0 = y0.
Ergodicity conditions forY have been obtained. Here we investigate the tail
propriety of the stationary distribution of this model. A characterization of
either heavy or light tail case is established. The method is based on a renewal
theorem for systems of equations with distributions onR.

1. Introduction. The discrete-time modelsY = (Yn, n ∈ N) governed by a
switching processX = (Xn,n ∈ N) fit well to the situations where an autonomous
processX is responsible for the dynamic (orregime) of Y . These models are
parsimonious with regard to the number of parameters, and extend significantly
the case of a single regime. Among them, the so-called Markov-switching ARMA
models are popular in several application fields, for example, in econometric
modeling [see Hamilton (1989, 1990)]. More recently, continuous-time versions
of Markov-switching models have been proposed in Basak, Bisi and Ghosh (1996)
and Guyon, Iovleff and Yao (2004), where ergodicity conditions are established.
In this paper we investigate the tail property of the stationary distribution of
this continuous-time process. One of the main results (Theorem 2) states that
this model can provide heavy tails, which is one of the major features required
in nonlinear time-series modeling. Note that heavy tails may also be obtained
by using a Lévy-driven Ornstein–Uhlenbeck (O.U.) process (without Markov
switching); see Barndorff-Nielsen and Shephard (2001) and Brockwell (2001).

The considered processY , called diffusion with Markov switching, is con-
structed in two steps:

First, theswitching processX = (Xt )t≥0 is a Markov jump process [see Feller
(1966)], defined on a probability space(�,A,Q), with a finite state spaceE =
{1, . . . ,N}, N > 1. We assume that the intensity functionλ of X is positive and
the jump kernelq(i, j) onE is irreducible and satisfiesq(i, i) = 0, for eachi ∈ E.
The processX is ergodic and will be taken stationary with an invariant probability
measure denoted byµ.

Second, letW = (Wt)t≥0 be a standard Brownian motion defined on a
probability space(�,B,Q′), and letF = (Ft ) be the filtration of the motion.
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We will consider the product space(� × �,A × B, (Qx ⊗ Q′)), P = Q ⊗ Q′
andE the associated expectation. Conditionally toX, Y = (Yt)t≥0 is a real-valued
diffusion process, defined, for eachω ∈ � by:

1. Y0 is a random variable defined on(�,B,Q′), F0-measurable;
2. Y is solution of the linear SDE

dYt = a(Xt )Yt dt + σ(Xt) dWt, t ≥ 0.(1)

Thus(Yt ) is a linear diffusion driven by an “exogenous” jump process(Xt ).
We say a continuous- or discrete-time processS = (St )t≥0 is ergodic if there

exists a probability measurem such that whent → ∞, the law ofSt converges
weakly tom independently of the initial conditionS0. The distributionm is then
the limit law of S. WhenS is a Markov process,m is its unique invariant law.

In Guyon, Iovleff and Yao (2004), it is proved that the Markov-switching
diffusionY is ergodic under the condition

α = ∑
i∈E

a(i)µ(i) < 0.(2)

The main results of the present paper are the following theorems. Note that
Condition 2 will be assumed satisfied throughout the paper and we denote byν

the stationary (or limit) distribution ofY .

THEOREM 1 (Light tail case). If for all i, a(i) ≤ 0, then the stationary
distribution ν of the processY has moments of all order; that is, for all s > 0
we have ∫

R

|x|sν(dx) < ∞.

THEOREM 2 (Heavy tail case). If there is ani such thata(i) > 0,one can find
an exponentκ > 0 and a constantL > 0 such that the stationary distributionν of
the processY satisfies

tκν(]t,+∞[) −→
t→+∞ L,

tκν(] − ∞,−t[) −→
t→+∞ L.

Note that the two situations from Theorems 1 and 2 form a dichotomy.
Moreover, the characteristic exponentκ in the heavy tail case is completely
determined as following. Let

s1 = min
{

λ(i)

a(i)

∣∣∣a(i) > 0
}
,

Ms =
(
q(i, j)

λ(i)

λ(i) − sa(i)

)
i,j∈E

for 0 ≤ s < s1.
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Thenκ is the uniques ∈]0, s1[ such that the spectral radius ofMs equals to 1.
The proof of Theorem 1 is a consequence of a result of Guyon, Iovleff and

Yao (2004), and the proof of Theorem 2 is based on a recent renewal theorem for
systems of equations reported in de Saporta (2003) and on an AR(1) recurrence
equation satisfied by the discretization ofY that we will define in Section 2. In
Section 3 we study an operator related to our problem and prove Theorem 1.
Sections 4–7 are devoted to the proof of Theorem 2. First we state two renewal
theorems for systems of equations. Then in Section 5 we derive the renewal
equations associated to our problem. In Sections 6 and 7 we prove Theorem 2, the
latter section being dedicated to the proof that the constantL is nonzero. Finally,
in Section 8 we give further details on the computation of the exponentκ .

2. Discretization of the process and an AR(1) equation. First we give an
explicit formula for the diffusion process. For 0≤ s ≤ t , let

	(s, t) = 	s,t (ω) = exp
∫ t

s
a(Xu) du.

The processY has the representation [see Karatzas and Shreve (1991)]:

Yt = Yt (ω) = 	(0, t)

[
Y0 +

∫ t

0
	(0, u)−1σ(Xu) dWu

]
,

and for 0≤ s ≤ t , Y satisfies the recursion equation

Yt = 	(s, t)

[
Ys +

∫ t

s
	(s, u)−1σ(Xu) dWu

]
= 	(s, t)Ys +

∫ t

s

[
exp

∫ t

u
a(Xv) dv

]
σ(Xu) dWu.

It is useful to rewrite this recursion as

Yt (ω) = 	s,t (ω)Ys(ω) + V
1/2
s,t (ω)ξs,t ,(3)

whereξs,t is a standard Gaussian variable, function of(Wu, s ≤ u ≤ t), and

Vs,t (ω) =
∫ t

s
exp

[
2

∫ t

u
a(Xv) dv

]
σ 2(Xu) du.

Forδ > 0, we will calldiscretization at step sizeδ of Y the discrete-time process
Y (δ) = (Ynδ)n, wheren ∈ N. Our study ofY is based on the investigations of these
discretizationY (δ) as in Guyon, Iovleff and Yao (2004).

More precisely, for a fixedδ > 0, the discretizationY (δ) follows an AR(1)

equation with random coefficients:

Y(n+1)δ(ω) = 	n+1(ω)Ynδ(ω) + V
1/2
n+1(ω)ξn+1,(4)
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with

	n+1(ω) = 	n+1(δ)(ω) = exp
[∫ (n+1)δ

nδ
a
(
Xu(ω)

)
du

]
,

Vn+1(ω) =
∫ (n+1)δ

nδ
exp

[
2

∫ (n+1)δ

u
a
(
Xv(ω)

)
dv

]
σ 2(Xu(ω)

)
du,

where (ξn) is a standard Gaussian i.i.d. sequence defined on(�,B,Q′). Note
that under Condition 2, all these discretizations are ergodic with the same limit
distributionν [see Guyon, Iovleff and Yao (2004)].

3. Study of a related operator. We now introduce a related operatorA and
investigate its properties. Fixs ≥ 0 andδ > 0. We define the operatorA(s,δ) by

A(s,δ)ϕ(i) = Ei[	s
1(δ)ϕ(Xδ)],

for every functionϕ :E → R and everyi in E. It has the following semigroup
property:

PROPOSITION1. Fix s ≥ 0. Then for allδ, γ > 0 we have

A(s,δ)A(s,γ ) = A(s,δ+γ ).

PROOF. Setϕ :E → R andi in E. We have

A(s,δ)A(s,γ )ϕ(i) = Ei

[
	s

1(δ)A(s,γ )ϕ(Xδ)
]

= Ei

[
	s

1(δ)EXδ
[	s

1(γ )ϕ(Xγ )]]
= Ei

[
exp

(
s

∫ δ

0
a(Xu) du

)
EXδ

[
exp

(
s

∫ γ

0
a(Xu) du

)
ϕ(Xγ )

]]
.

Then the Markov property yields

A(s,δ)A(s,γ )ϕ(i) = Ei

[
exp

(
s

∫ δ+γ

0
a(Xu) du

)
ϕ(Xδ+γ )

]
= Ei[	s

1(δ + γ )ϕ(Xδ+γ )]
= A(s,δ+γ )ϕ(i). �

Note thatA(s,δ)ϕ(i) = ∑N
j=1 Ei[	s

11Xδ=j ]ϕ(j), and thereforeA(s,δ) can be
rewritten as the matrix((A(s,δ))ij )1≤i,j≤N with (A(s,δ))ij = Ei[	s

11Xδ=j ]. Note
also that it is a positive operator.
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3.1. Spectral radius. Now we investigate the properties of the spectral radius
of A. First, we recall a result from Guyon, Iovleff and Yao (2004).

PROPOSITION 2. Fix s > 0 and δ > 0. ThenA(s,δ) is irreducible, aperiodic
and satisfies

Eµ[(	1 · · ·	k)
s] = ∑

i∈E

Ak
(s,δ)1(i)µ(i) = µAk

(s,δ)1,(5)

where1 is the constant function equal to1 onE.

We denote byρ(X) the spectral radius of a matrixX. Proposition 2 yields the
following corollaries.

COROLLARY 1. We have

ρ
(
A(s,δ)

) = lim
k→∞

(
Eµ[(	1 · · ·	k)

s])1/k
.

PROOF. As A(s,δ) is a (component-wise) positive, irreducible and aperiodic
matrix, Theorem 8.5.1 of Horn and Johnson (1985) gives the existence of a
matrix B(s,δ) with positive coefficients such that

(A(s,δ))
n

(ρ(A(s,δ)))
n

−→
n→∞B(s,δ).(6)

This result and (5) yield the expected result.�

COROLLARY 2. For all fixedδ > 0, the mappings �−→ logρ(A(s,δ)) is convex
onR+.

Note that for all fixedδ > 0 andi in E, we haveA(0,δ)1(i) = Ei(1) = 1. Thus,
asA(0,δ) is a positive operator, it is also a stochastic matrix andρ(A(0,δ)) = 1.

PROPOSITION3. For all fixedδ > 0, the right-hand derivative of the mapping
s �−→ logρ(A(s,δ)) at 0 is negative.

PROOF. As all the functions considered are convex, we have

∂

∂s
log

(
ρ

(
A(s,δ)

)) = lim
n→∞

∂

∂s

1

n
logEµ[(	1 · · ·	n)

κ ]

= lim
n→∞

1

n

Eµ[(	1 · · ·	n)
κ · ∑n

i=1 log	i]
Eµ[(	1 · · ·	n)κ ] .

The sequence(	n) is stationary, thus the ergodic theorem yields

1

n

n∑
k=1

log	k −→
n→∞ Eµ[log	1], Pµ-almost surely.(7)
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But Eµ[log	1] < 0 because of Condition 2. Indeed, we have

Eµ[log	1] = Eµ

[∫ δ

0
a(Xu) du

]
=

∫ δ

0
Eµ[a(Xu)]du = δα < 0.

Thus we get, as expected,

∂

∂s

∣∣∣∣
s=0

log
(
ρ

(
A(s,δ)

)) = lim
n→∞

1

n
Eµ

[
n∑

i=1

log	i

]
= Eµ[log	1] < 0. �

COROLLARY 3. Fix δ > 0. We have the following dichotomy:

(i) either for all s > 0, ρ(A(s,δ)) < 1,
(ii) or there exists a uniqueκ > 0 such thatρ(A(κ,δ)) = 1, and in this case

ρ(A(s,δ)) > 1 for all s > κ andρ(A(s,δ)) < 1 for all 0< s < κ .

3.2. Choice ofδ. Now we are going to prove that the preceding dichotomy is
in fact independent of the value ofδ.

PROPOSITION4. Fix s ≥ 0. The following propositions are equivalent:

(i) there existsδ > 0 such thatρ(A(s,δ)) < 1,
(ii) for all δ > 0 we haveρ(A(s,δ)) < 1.

The same equivalence is true if we replace“< 1” by “> 1” or “= 1.”

PROOF. Setδ > 0 such thatρ(A(s,δ)) < 1, andγ > 0. For all integern ≥ 1 we
definemn ∈ N

∗ and 0≤ βn < δ by nγ = mnδ + βn (mn the integer part ofnγ/δ

andβn its fractional part multiplied byδ). Thus Proposition 1 yields

An
(s,γ ) = A(s,nγ ) = A

mn

(s,δ)A(s,βn).

But for all n we have ∥∥A(s,βn)

∥∥ ≤ max
i

Ei[	s
1(βn)]

≤ exp
(
sβn max

i
(ai)

)
≤ exp

(
sδ max

i
(ai)

)
.

This upper bound is independent ofn. Thus we have

log
∥∥An

(s,γ )

∥∥ ≤ log
∥∥Amn

(s,δ)

∥∥ + c,
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wherec is a positive constant. We get

logρ
(
A(s,γ )

) = lim
n

1

n
log

∥∥An
(s,γ )

∥∥
≤ lim sup

n

1

n
log

∥∥Amn

(s,δ)

∥∥
= γ

δ
logρ

(
A(s,δ)

)
,

asmn ∼ nγ δ−1. Henceρ(A(s,γ )) ≤ ρ(A(s,δ))
γ /δ < 1.

For the case “= 1,” fix δ0 and a correspondingκ such thatρ(A(κ,δ0)) = 1. The
mappings �−→ ρ(A(s,δ0)) is log-convex hence continuous. Thus we have

ρ
(
A(κ,δ0)

) = sup
s<κ

ρ
(
A(s,δ0)

)
.

Setδ > 0. We want to prove thatρ(A(κ,δ)) = 1. According to Corollary 3, for all
s < κ we haveρ(A(s,δ0)) < 1. Thus the preceding study yields that for alls < κ

we also haveρ(A(s,δ)) < 1. Hence we have

ρ
(
A(κ,δ)

) = sup
s<κ

ρ
(
A(s,δ)

) ≤ 1.

Suppose thatρ(A(κ,δ)) < 1; then the first case implies again thatρ(A(κ,δ0)) < 1,
which is impossible. Thus we haveρ(A(κ,δ)) = 1 as expected.

The case “> 1” is a consequence of these two cases and Corollary 3.�

In the following we will writeAs instead ofA(s,δ) each time it is nonambiguous.
We have an easy criterion to know in which case we are.

PROPOSITION5. The following properties are equivalent:

(i) for all i in E, a(i) ≤ 0,
(ii) for all s > 0, ρ(As) < 1.

PROOF. Suppose that for alli in E we havea(i) ≤ 0. Fix δ > 0. Then for all
s > 0, we have	s

1 ≤ 1. Thus for alli, As1(i) = Ei[	s
1] ≤ 1, and component-wise

we haveAs1 ≤ 1, which implies thatρ(As) ≤ 1 for all s > 0. Corollary 3 then
yields that for alls, we have actuallyρ(As) < 1.

Now suppose there exists ani0 such thata(i0) > 0. Fix s ≥ 2λ(i0)a(i0)
−1. It is

proved in Guyon, Iovleff and Yao (2004) that for all functionϕ from E into R and
all i in E we have for smallδ,

Asϕ(i) = [
1+ δ

(
sa(i) − λ(i)

)]
ϕ(i) + δλ(i)

∑
j �=i

[q(i, j)ϕ(j)] + o(δ).(8)
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Let ψ be the function fromE into R such thatψ(i0) = 1 andψ(i) = 0 for all
i �= i0. Then for alli �= i0 we haveAsψ(i) = Ei[	s

11Xδ=i0] ≥ 0 and fori = i0 we
have

Asψ(i0) = 1+ δ
(
sa(i0) − λ(i)

) + o(δ) ≥ 1+ δ
sa(i0)

2
+ o(δ)

as we have chosens ≥ 2λ(i)a(i0)
−1. Thus component-wise, for small enoughδ,

we have

Asψ ≥
(

1+ δ
sa(i0)

2
+ o(δ)

)
ψ

≥
(

1+ δ
sa(i0)

4

)
ψ.

Thusρ(As) ≥ 1+ δ
sa(i0)

4 > 1. �

This proposition ends the proof of Theorem 1 since we have the following result
from Guyon, Iovleff and Yao (2004) that relates the spectral radius ofAs to the
moments of the stationary lawν:

PROPOSITION6. Sets > 0. If ρ(As) < 1, then the stationary lawν of Y has
a moment of orders.

The proof of Theorem 1 is now complete.

4. Renewal theory for systems. Now we proceed to prove Theorem 2. From
now on, we will assume that there is ani such thata(i) > 0. Our approach is based
on a new renewal theorem for systems of renewal equations. First we introduce
some notation and conventions that we will apply throughout.

Let F = (Fij )1≤i,j≤p be a matrix of distributions: nondecreasing, right-
continuous functions onR into R+ with limit 0 at −∞. For all p × r matrix H

of Borel-measurable, real-valued functionsHij onR that are bounded on compact
intervals, we define theconvolution productF ∗ H by

(F ∗ H)ij (t) =
p∑

k=1

∫ ∞
−∞

Hkj(t − u)Fik(du)

where it exists.
The transpose of a vector or matrixX will always be denotedX′. We study

the renewal equationZ = F ∗ Z + G, where G = (G1, . . . ,Gp)′ is a vector
of Borel-measurable, real-valued functions, bounded on compact intervals, and
Z = (Z1, . . . ,Zp)′ is a vector of functions. The renewal theorem will give the
limit of Z at+∞.

For all realt , we set:
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(a) B = (bij )1≤i,j≤p wherebij = ∫
uFij (du) if it exists, the expectation ofF ,

(b) F (0)(t) = (δij (t))1≤i,j≤p whereδij (t) = 1t≥0 if i = j and 0 otherwise, so
thatF (0) ∗ H = H for all H as in the definition above,

(c) F (n)(t) = F ∗ F (n−1)(t), then-fold convolution ofF ,
(d) U(t) = ∑∞

n=0F (n)(t), therenewal functionassociated withF .

We will also assume that all the measuresFij are finite:

Fij (∞) = lim
t→∞Fij (t) < ∞,

and thatF(∞) is an irreducible matrix.F(∞) being an irreducible nonnegative
matrix, we can use the Perron–Frobenius theorem: its spectral radiusρ(F (∞)) is
a simple eigenvalue with right and left positive eigenvectors. We will also assume
thatρ(F (∞)) = 1, and we choose two positive eigenvectorsm andu so that

F(∞)m = m, u′F(∞) = u′,
p∑

i=1

mi = 1,

p∑
i=1

uimi = 1.

We also assume that the sequence(‖F(∞)n‖) is bounded [e.g., ifF(∞) is
aperiodic, this is true]. We recall the following definition:F is lattice if the
following conditions are satisfied:

(a) For alli �= j , Fij is concentrated on a set of the formbij + λij Z.
(b) For alli, Fii is concentrated on a set of the formλiiZ.
(c) Eachλii is an integral multiple of the same number. We takeλ to be the

largest such number.
(d) For all aij , ajk , aik points of increase ofFij , Fjk, Fik , respectively,

aij + ajk − aik is an integral multiple ofλ.

We can now state the renewal theorem. It extends a previous result of Crump
(1970) and Athreya and Rama Murthy (1976) which deals with the positive case:
each distributionFij has support onR+. The proof of this theorem is given in
de Saporta (2003).

RENEWAL THEOREM A. Assume thatF is as above and that, in addition, it
is a nonlattice matrix, that its expectationB exists, and that for all t ∈ R, U(t)

is finite. If G is directly Riemann integrable[see Feller(1966)],andZ = U ∗ G

exists, then for all i, we have

lim
t→∞Zi(t) = cmi

p∑
j=1

[
uj

∫ ∞
−∞

Gj(y) dy

]
,

wherem andu are the eigenvectors defined above andc = (u′Bm)−1 (under these
assumptions, u′Bm �= 0).
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We also recall Theorem 2.3 of Athreya and Rama Murthy (1976) that will
be used in Section 7. Note that this theorem can now be seen as a corollary of
Theorem A.

RENEWAL THEOREM B. Let F be a nonlattice matrix of distributions with
support on the positive half-line, such that:

(i) ρ(F (0)) < 1,
(ii) F(∞) is finite, irreducible and aperiodic,
(iii) there existi andj such thatFij (0) < Fij (∞).

Assume also that there is anα > 0 such thatρ(Fα) = 1, where (Fα)ij =∫ ∞
0 e−αuFij (du). Then for allh > 0, and all i, j , we have

lim
t→∞

∫ t+h

t
e−αyUij (dy) = cmiujh,

wherem andu are right and left eigenvectors ofFα , with the same normalization
as above, c = (u′Bm)−1, and B = bij with bij = ∫ ∞

0 ue−αuFij (du), c being
interpreted as zero if somebij is equal to infinity.

5. The renewal equations. Now we are going to derive the renewal equations
associated to our problem. In the following, we will suppose that the assumptions
of Theorem 2 are satisfied. We setδ = 1, andκ will denote the unique positive
solution ofρ(As) = 1. We are going to study the discretizationY (1).

5.1. Notation. As X is a stationary process, we can extend it to negativet and
define the coefficients	n, Vn andξn for negative values ofn. Letbn = V

1/2
n ξn and

Rn =
∞∑

k=0

	n	n−1 · · ·	n−k+1bn−k

(instead ofỸn) be the unique stationary solution of (4):Rn+1 = 	n+1Rn + bn+1.
The limit lawν of Y is also the law ofR1. Thus we are going to study the random
variableR1.

The tail of the stationary solution of such recursive equations has already been
studied in various cases. In the i.i.d. multidimensional case:	n are matrices and
Rn andbn vectors, renewal theory is used in Kesten (1973) to prove a heavy tail
property when the	n either have a density or are nonnegative. These results were
extended in Le Page (1983) to a wider class of i.i.d. random matrices. Finally,
in Goldie (1991) a new specific implicit renewal theorem is proved and the same
results are derived in the i.i.d. one-dimensional case. This theorem also applies to
the study of the tail of several other random recurrences implying i.i.d. random
variables. Recently, Goldie’s results were extended in de Saporta (2004) to the
case where(	n) is a finite state space Markov chain. Here,(	n) is not a Markov
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chain, but conditionally toXn, 	n and	n+1 are independent. Our proof is thus
very similar to that of de Saporta (2004), but we will repeat all the details for
completeness.

Note thatξn are standard Gaussian random variables, thus they are symmetric,
and they are also independent from the sequences(	n) and(Vn). Hence we have

Pµ

( ∞∑
k=0

	1	0 · · ·	2−kb1−k > t

)

= Pµ

( ∞∑
k=0

	1	0 · · ·	2−kV
1/2
1−kξ1−k > t

)

= Pµ

( ∞∑
k=0

	1	0 · · ·	2−kV
1/2
1−k(−ξ1−k) > t

)

= Pµ

(
−

∞∑
k=0

	1	0 · · ·	2−kb1−k > t

)
.

Thus we haveν(]t,+∞[) = ν(]−∞,−t[) for all t ; hence if one of the limits stated
in Theorem 2 exists, the other exists too and equals the same value. Therefore we
need study only one limit.

To study the tail ofR1, we introduce a new function. For allt in R, we set

z(t) = e−t
∫ et

0
uκ

P(R1 > u)du.

Lemma 9.3 of Goldie (1991) ascertains that ifz(t) has a limit whent tends to
infinity, thentκP(R1 > t) also has the same limit.

For all i in E andt in R, we also set

Zi(t) = e−t
∫ et

0
uκ

P(R1 > u,X1 = i) du,

so thatz(t) = ∑N
i=1 Zi(t). We are now going to prove thatZ = t(Z1, . . . ,ZN)

satisfies a system of renewal equations.

5.2. The renewal equations.As Rn satisfies (4), we haveR1 = 	1R0 + b1;
thus for allt in R, we have

Pµ(R1 > u,X1 = i) = Pµ(	1R0 > u,X1 = i) + ψi(u),

where

ψi(t) = Pµ(t − b1 < 	1R0 ≤ t,X1 = i) − Pµ(t < 	1R0 ≤ t − b1,X1 = i).

We setGi(t) = e−t
∫ et

0 uκψi(u) du, andG = t(G1, . . . ,GN). Then we have

z(t) =
N∑

i=1

[
e−t

∫ et

0
uκ

Pµ(	1R0 > u,X1 = i) du + Gi(t)

]
.
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We have	1 ≥ 0 and conditionally toX0, 	1 andR0 are independent. Thus, a
simple change of variable and stationarity yield

e−t
∫ et

0
uκ

Pµ(	1R0 > u,X1 = i) du

=
N∑

j=1

e−t
∫ et

0
uκ

Pµ(	1R0 > u,X1 = i|X0 = j)µ(j) du

=
N∑

j=1

e−t
∫ et

0
uκ

Pj (	1R0 > u,X1 = i)µ(j) du

=
N∑

j=1

Ej

[
	κ

11X1=ie
−(t−log	1)

∫ et−log	1

0
uκ

Pj (R0 > u)du

]
µ(j)

=
N∑

j=1

Ej

[
	κ

11X1=ie
−(t−log	1)

∫ et−log	1

0
uκ

Pµ(R0 > u|X0 = j) du

]
µ(j)

=
N∑

j=1

Ej

[
	κ

11X1=ie
−(t−log	1)

∫ et−log	1

0
uκ

Pµ(R1 > u,X1 = j) du

]
.

Thus we get the following system of equations: for alli in E, we have

Zi(t) =
N∑

j=1

[
Ej

[
	κ

11X1=iZj (t − log	1)
]] + Gi(t)

(9)

=
N∑

j=1

[Fij ∗ Zj (t)] + Gi(t),

where Fij (t) = Ej [	κ
11X1=i1t≥log	1]. Thus F = (Fij )i,j∈E is a matrix of

distributions in the sense of Section 4, and system (9) is a system of renewal
equations that can be rewritten asZ = F ∗ Z + G. To apply Theorem A, we now
have to prove thatF andG satisfy its assumptions.

6. Proof of Theorem 2, part I. As E is a finite set,	1 is bounded. Therefore,
for all i, j in E, the measuresFij are finite andFij (∞) = Ej [	κ

11X1=i]. Note that
F(∞) = A′

κ . AsAκ is irreducible and aperiodic by Proposition 2, so isF(∞), and
its spectral radius also equals to 1. Besides, we havebij = Ej [	κ

11X1=i log	1],
thus theFij have finite expectation.

We are going to prove that the other assumptions of Theorem A are valid here
in the following sections.
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6.1. F is nonlattice. Setam = mini∈E{a(i)}, aM = maxi∈E{a(i)} and i0, j0

in E such thata(i0) = am anda(j0) = aM .

PROPOSITION7. For all i, j in E, x ∈ ]am,aM [ and small enoughε > 0, we
have

Pi

(∫ 1

0
a(Xu) du ∈ ]x − ε;x + ε[, X1 = j

)
> 0,

that is, x is a point of increase oflog	1 conditionally toX0 = i andX1 = j .

PROOF. Setx ∈ ]am,aM [ and 0< t < 1 such thatx = tam + (1 − t)aM . Fix
i andj in E. As q is an irreducible matrix, we can find integers 0≤ l ≤ m ≤ n

andk1, . . . , kn in E such thatqi,k1qk1,k2 · · ·qkl,i0 > 0, qi0,kl+1qkl+1kl+2 · · ·qkm,j0 > 0
andqj0,km+1qkm+1km+2 · · ·qkn,j > 0. Set alsoy = a(i) + a(k1) + · · · + a(kl) − (l +
1)am + a(kl+1) + · · · + a(km) − (n − l + 1)aM + a(km+1) + · · · + a(kn) + a(j),
andz = min{ε|y|−1, t (l + 1)−1, (1− t)(n − l + 1)−1}. Then we have

Pi

(∫ 1

0
a(Xu) du ∈ ]x − ε;x + ε[, X1 = j

)
≥ Pi

(
Xu = i on [0;η[, Xu = k1 on [η;2η[, . . . , Xu = kl on [lη; (l + 1)η[,
Xu = i0 on [(l + 1)η, t[, Xu = kl+1 on [t; t + η[,Xu = kl+2 on

[t + η; t + 2η[, . . . , Xu = km on [t + (m − l − 1)η; t + (m − l)η[,(10)

Xu = j0 on [t + (m − l)η;1− (n − m + 1)η[, Xu = km+1 on

[1− (n − m + 1)η;1− (n − m)η[, . . . , Xu = kn on [1− 2η;1− η[,
Xu = j on [1− η;1]; η ∈]0; z[).

Indeed, on this event we have∫ 1

0
a(Xu) du

= ηa(i) + ηa(k1) + · · · + ηa(kl) + (
t − (l + 1)η

)
am + ηa(kl+1)

+ · · · + ηa(km) + (
(1− t) − (n − l + 1)η

)
aM + ηa(km+1)

+ · · · + ηa(kn) + ηa(j)

= tam + (1− t)aM + ηy

= x + ηy,
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thus ifη < ε|y|−1, then we have
∫ 1
0 a(Xu) du ∈ ]x −ε;x +ε[. Probability (10) can

be computed [see, e.g., Norris (1998)]:

(10) = µ(i)qi,k1qk1,k2 · · ·qkl,i0qi0,kl+1 · · ·qkm,j0qj0,km+1 · · ·qkn,j

× λ(i)λ(k1) · · ·λ(kn)λ(i0)(l − 1)λ(j0)(n − l + 1)

×
∫ z

0

[
e−λ(i)ηe−λ(k1)η

· · · e−λ(kn)ηe−λ(i0)(t−(l−1)η)e−λ(j0)(1−t−(n−l+1)ηe−λ(j)η]
dη.

Thus our choice ofk1, . . . , kn and z ascertains that this probability is positive,
which proves the proposition.�

Therefore none of theFij (·) = Ej [	κ
11X1=i1·≥log	1] can be concentrated on a

lattice set, and in particularF is nonlattice.

6.2. Finiteness ofU . We are going to prove that for alli, j in E andt in R,
Uij (t) is finite. We start with computing then-fold convolution ofF .

LEMMA 1. For all n, i, j, t we have

F
(n)
ij (t) = Ej

[
	κ

1 · · ·	κ
n1log	1···	n≥t1Xn=i

]
.

PROOF. Forn = 1, it is the definition ofF . Suppose the formula is true for a
fixedn. Then the Markov property and stationarity yield

F
(n+1)
ij (t)

=
N∑

k=1

Fik ∗ F
(n)
kj (t) =

N∑
k=1

∫
F

(n)
kj (t − u)Fik(du)

=
N∑

k=1

∫
Ej

[
	κ

1 · · ·	κ
n1log	1···	n≤t−u1Xn=k

]
Ek

[
	κ

1δu(log	1)1X1=i

]

=
N∑

k=1

∫
Eµ

[
	κ

1 · · ·	κ
n1log	1···	n≤t−u1Xn=k1X0=j

]
× Eµ

[
	κ

n+1δu(log	n+1)1Xn+1=i1Xn=k

] 1

µ(k)µ(j)

=
N∑

k=1

Eµ

[
	κ

1 · · ·	κ
n1log	1···	n≤t−log	n+11X0=j |1Xn=k

]
× Eµ

[
	κ

n+11Xn+1=i |1Xn=k

]µ(k)

µ(j)
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=
N∑

k=1

Eµ

[
	κ

1 · · ·	κ
n	κ

n+11log	1···	n≤t−log	n+11X0=j 1Xn+1=i |1Xn=k

]µ(k)

µ(j)

= Eµ

[
	κ

1 · · ·	κ
n	

κ
n+11log	1···	n	n+1≤t1X0=j 1Xn+1=i

] 1

µ(j)

= Ej

[
	κ

1 · · ·	κ
n	

κ
n+11log	1···	n	n+1≤t1Xn+1=i

]
.

Thus the formula is also true forn + 1 and the lemma is proved.�

We have seen thatF(∞) = A′
κ . Proposition 1 and the preceding lemma also

imply that for all n we haveF (n)(∞) = (An
κ)′ = F(∞)n. We can prove a more

general result.

LEMMA 2. For all n and0≤ r < κ we have∫ ∞
−∞

e−ruF (n)(du) = (An
κ−r)

′.

PROOF. For all i, j in E, Proposition 1 and the preceding lemma yield∫ ∞
−∞

e−ruF
(n)
ij (du)

=
∫ ∞
−∞

e−ru
Ej

[
	κ

1 · · ·	κ
nδu(log	1 · · ·	n)1Xn=i

]
= Ej

[
	κ

1 · · ·	κ
ne

−r log	1···	n1Xn=i

]
= Ej

[
	κ−r

1 · · ·	κ−r
n 1Xn=i

]
= (An

κ−r)j i. �

Now fix 0 < r < κ . We have

Uij (t) =
∞∑

n=0

F
(n)
ij (t) ≤ ert

∫ t

−∞
e−ru

∞∑
n=0

F
(n)
ij (du)

(11)

≤ ert
∞∑

n=0

∫ ∞
−∞

e−ruF
(n)
ij (du) = ert

∞∑
n=0

(An
κ−r )j i,

according to the preceding lemma. But Corollary 3 says thatρ(Aκ−r ) < 1. Thus
the series in (11) converges. HenceUij (t) < ∞ for all i, j in E andt in R.

6.3. Proof ofZ = U ∗ G. Iterating the renewal equation (9) yields, for alln,

Z = F (n) ∗ Z +
n−1∑
k=0

F (k) ∗ G.(12)
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The same change of variable as in Section 5.2 yields

N∑
i=1

(F (n) ∗ Z)i(t) = e−t
∫ et

0
uκ

Pµ(	1	2 · · ·	nR0 > u)du.

But we have seen at (7) that we have	1 · · ·	n → 0 whenn tends to infinity. Thus
the bounded convergence Theorem yields

∑N
i=1(F

(n) ∗ Z)i(x, t) → 0 asn tends
to infinity. Each term of this sum is nonnegative, thus each term tends to 0. Letting
n tend to infinity in (12), we thus getZ = U ∗ G.

6.4. G is directly Riemann integrable.As theGi are clearly continuous int ,
it is sufficient to prove that

∞∑
l=−∞

sup
l≤t<l+1

|Gi(t)| < ∞

[see Feller (1966)]. But for alli, t , we haveGi(t) = G1
i (t) − G2

i (t), where

G1
i (t) = e−t

∫ et

0
uκ

Pµ(u − b1 < 	1R0 ≤ u,X1 = i) du ≥ 0,

G2
i (t) = e−t

∫ et

0
uκ

Pµ(u < 	1R0 ≤ u − b1,X1 = i) du ≥ 0.

For all real t , we haveGi(t) ≤ G1
i (t) ≤ e−t

∫ et

0 uκ du = et(κ+1)(κ + 1)−1. In
particular,Gi is directly Riemann integrable onR−. We still have to studyG1

i

andG2
i on R+. These two functions being of the same kind, we only give the

detailed study of the first one.
The proof is adapted from Le Page (1983). Setε ∈ ]0;1[ such that−1 <

κ − (1− ε) < 0. Thus we have

0 ≤ etG1
i (t) ≤

∫ et

0
uκ

Pµ(b1 > uε,X1 = i) du

(13)

+
∫ et

0
uκ

Pµ(u − uε < 	1R0 ≤ u,X1 = i) du.

We are going to give an upper bound for each one of these two terms.

First term. Chebychev inequality yields∫ et

0
uκ

Pµ(b1 > uε,X1 = i) du ≤ Eµ|b1|κ et(1+κ(1−ε))

1+ κ(1− ε)
.(14)

Note that b1 has moments of all order. Indeed, we have, by independence,
Eµ|b1|κ = Eµ(V

κ/2
1 )Eµ|ξ1|κ , and ξ1 is a standard Gaussian variable andV1 is

bounded.
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Second term. We have∫ et

0
uκ

Pµ(u − uε < 	1R0 ≤ u,Xδ = i) du

=
∫ et

0
uκ

Pµ(	1R0 > u − uε,Xδ = i) du

−
∫ et−etε

0
uκ

Pµ(	1R0 > u,Xδ = i) du

≤
∫ et

0
uκ [1− 1u≥1(u − uε)κ(1− εuε−1)]Pµ(	1R0 > u − uε,Xδ = i) du.

Set 0< r < κ . As 	1 is bounded, there exists a positive constantc such that for
all u > 0 we have

Pµ(	1R0 > u,X1 = i) ≤ c
Eµ|R0|r

ur
,

which is bounded by Proposition 6. Thus we get∫ et

0
uκ

Pµ(u − uε < 	1R0 ≤ u,X1 = i) du ≤ Cet(κ−r+ε−1),(15)

whereC is a positive constant. Now setβ = max{κ + ε − r ; 1+ κ − κε} ∈ ]0;1[.
Then (13)–(15) yieldetG1

i (t) ≤ cetβ for all t > 0. Thus G1
i (t) ≤ cet(β−1) is

directly Riemann integrable onR+.

6.5. Tail of the distribution. We have now proved thatF andG satisfy the
assumptions of Theorem A. Thus we get, for alli, t ,

Zi(t) −→
t→∞ cmi

N∑
j=1

uj

∫ ∞
−∞

Gj(y) dy.(16)

Summing up these terms, we get

z(t) −→
t→∞ c

N∑
j=1

uj

∫ ∞
−∞

Gj(y) dy,(17)

as
∑

mi = 1. We still have to prove that this limit is nonzero.

7. Proof of Theorem 2, part II. Now we are going to prove that there exists
a positive constantC such thattκPµ(|R1| > t) ≥ C > 0 whent tends to infinity.
First, we give a lower bound of this probability involving the products	1 · · ·	n,
and then we study the asymptotic behavior of such products.
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7.1. Lower bound forν{x : |x| > t}. The following proof is adapted from
Goldie (1991) and de Saporta (2004).

PROPOSITION8. There existε > 0 and a corresponding positive constantC

such that for large enought we have

Pµ(|R1| > t) ≥ CPµ

(
sup
n

(	1 · · ·	n) >
2t

ε

)
.

For the i.i.d. case, the key to such a lower bound is an inequality established in
Grincevǐcius (1980) that extends Lévy’s symmetrization inequality [see Chow and
Teicher (1978)]. Here we need first to extend this inequality.

Recall thatR1 = ∑∞
k=0 	1	0 · · ·	2−kb1−k . For alln ≥ 1, we set

Rn
1 =

n−1∑
k=0

	1	0 · · ·	2−kb1−k and �n = 	1	0 · · ·	2−n.

If x is a σ(Xt ,Wt, a ≤ t ≤ b)-measurable random variable, let medi (x) be a
median ofx conditionally toXb = i and med−(x) = mini{medi (x)}.

LEMMA 3. For all t > 0 andn ≥ 1, we have

Pµ

(
max

1≤j≤n

{
R

j
1 + �j med−

(
Rn

1 − R
j
1

�j

)}
> t

)
≤ 2Pµ(Rn

1 > t).

PROOF. SetT = inf{j ≤ n t.q.Rj
1 + �j med−(�−1

j (Rn
1 − R

j
1)) > t} if this

set is not empty,n + 1 otherwise, andBj = {med−(�−1
j (Rn

1 − R
j
1)) ≤ �−1

j (Rn
1 −

R
j
1)}. The event(T = j) is in theσ -field generated by(Xt ,Wt, (1 − j) ≤ t ≤ 1),

andBj is in theσ -field generated by(Xt ,Wt, (1 − n) ≤ t ≤ (1 − j)). Therefore
these events are independent conditionally toX(1−j). Besides, for alli andj we

havePµ(Bj |X(1−j) = i) ≥ Pµ(medi(�
−1
j (Rn

1 − R
j
1)) ≤ �−1

j (Rn
1 − R

j
1)|X(1−j) =

i) ≥ 1/2. Thus, as the products�j are positive or zero, we have

Pµ(Rn
1 > t) ≥ Pµ

(
n⋃

j=1

[Bj ∩ (T = j)]
)

=
n∑

j=1

N∑
i=1

Pµ

(
Bj |X(1−j) = i

)
P

(
T = j |X(1−j) = i

)
µ(i)

≥ 1

2
Pµ(T ≤ n)

= 1

2
Pµ

(
max

1≤j≤n

{
R

j
1 + �j med

(
Rn

1 − R
j
1

�j

)}
> t

)
. �
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Under our assumptions,Rn
1 tends toR1 whenn tends to infinity, and for fixedj ,

�−1
j (Rn

1 − R
j
1) converges to a random variablêR that has the same distribution

asR1. Setm0 = med−(R1) = mini{med(R1|X1 = i)} = med−(R̂), and lettingn

tend to infinity in Lemma 3, we get, for allt > 0,

Pµ

(
sup
j

{Rj
1 + �jm0} > t

)
≤ 2Pµ(R1 > t).

ReplacingR1 by −R1 yields a similar formula; thus, for allt > 0 we get

Pµ

(
sup
j

|Rj
1 + �jm0| > t

)
≤ 2Pµ(|R1| > t).(18)

Furthermore, as proved in Goldie [(1991), page 157], for allt > |m0| we have

Pµ

(
sup
n

{Rn
1 + �nm0} > t

)
≥ Pµ

(∃n s.t.|(Rn+1
1 + �n+1m0) − (Rn

1 + �nm0)| > 2t
)
,

whereR0
1 = 0 and�0 = 1. But we have

(Rn+1
1 + �n+1m0) − (Rn

1 + �nm0)

= 	1	0 · · ·	2−nb1−n + (�n+1 − �n)m0

= �n

(
b1−n + (	1−n − 1)m0

)
.

Thus (18) yields, for allε > 0,

Pµ(|R1| > t) ≥ 1

2
Pµ

(∃n s.t.
∣∣�n

(
b1−n + (	1−n − 1)m0

)∣∣ > 2t
)

(19)

≥ 1

2
Pµ

(
∃n s.t.|�n| > 2t

ε
and|b1−n + (	1−n − 1)m0| > ε

)
.

Now we give an extension of Feller–Chung’s inequality adapted to the present
case [see Chow and Teicher (1978)]:

LEMMA 4. For all t > |m0| andε > 0, we have

Pµ

(
∃n s.t. |�n| > 2t

ε
and|b1−n + (	1−n − 1)m0| > ε

)
≥ min

1≤i≤N
Pi

(|b0 + (	0 − 1)m0| > ε
)
Pµ

(
∃n s.t. |�n| >

2t

ε

)
.
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PROOF. Set A0 = ∅, An = {|�n| > 2tε−1} and Bn = {|b1−n + (	1−n −
1)m0| > ε}. Conditionally toX(1−n), Bn is independent ofA0, . . . ,An. Thus we
have

Pµ

( ∞⋃
n=1

[An ∩ Bn]
)

=
∞∑

n=1

Pµ

(
Bn ∩ An

n−1⋂
j=0

[Bj ∩ Aj ]c
)

≥
∞∑

n=1

Pµ

(
Bn ∩ An

n−1⋂
j=0

Ac
j

)

=
∞∑

n=1

N∑
i=1

[
Pµ

(
Bn|X(1−n) = i

)
Pµ

(
An

n−1⋂
j=0

Ac
j

∣∣∣X(1−n) = i

)
µ(i)

]
,

where Ac denotes the complementary set ofA. But, by stationarity we have
Pµ(Bn|X(1−n) = i) = Pi (|b0 + (	0 − 1)m0| > ε). Thus we get

Pµ

( ∞⋃
n=1

[An ∩ Bn]
)

≥ min
1≤i≤N

Pi

(|b0 + (	0 − 1)m0| > ε
)
Pµ

( ∞⋃
n=1

An

)
.

�

Now we can give the proof of Proposition 8.

PROOF OF PROPOSITION 8. Equation (19) and Lemma 4 yield, for allt >

|m0| andε > 0,

Pµ(|R1| > t) ≥ 1

2
min

1≤i≤N
Pi

(|b0 + (	0 − 1)m0| > ε
)
Pµ

(
∃n s.t.|�n−1| > 2t

ε

)
.

We haveb0 = V
1/2
0 ξ0, V0 and	0 are bounded, butξ is not bounded as it is a

Gaussian variable. Thus equalityb0 + (	0 − 1)m0 = 0 cannot holdPi -almost
surely. Thus we can findε > 0 such that min1≤i≤N Pi(|b0+ (	0−1)m0| > ε) > 0.
Hence, as expected there is a constantC > 0 such that for allt > |m0|, we have

Pµ(|R1| > t) ≥ CPµ

(
sup
n

|�n| >
2t

ε

)
. �

7.2. Asymptotic behavior of the products	1 · · ·	n. To estimate the probabil-
ity Pµ(supn |�n| > t), we use the ladder height method given by Feller (1966) for
the study of the maximum of random walks.
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7.2.1. Notation. First we introduce some notation. SetS0 = 0 and for all
positiven, we set

Sn =
n∑

k=1

log(	2−k) = log�n =
∫ 1

(1−n)
a(Xu) du.

Thefirst ladder epochof this random walk isτ = τ1 = inf{n ≥ 1 s.t.Sn > 0}, and
thefirst ladder heightis Sτ . We denote byH(t) the matrix of distributions ofSτ

with the following coordinates:

Hij (t) = Pµ

(
τ < ∞, Sτ ≤ t,X(1−τ) = j |X1 = i

)
.

As Sτ > 0, H is distributed on the positive half-line. Moreover,Sτ > 0, S1−τ ≤ 0
and the	n are bounded, thus we haveSτ ≤ sup log	n ≤ supa(i) < ∞, andH

has bounded support.
We define also thenth ladder epoch byτn = inf{n > τn−1 s.t.Sn > Sτn−1}, and

Sτn is the corresponding ladder height. We check that we have

H
(n)
ij (t) = Pµ

(
τn < ∞, Sτn ≤ t,X(1−τn) = j |X1 = i

)
,

whereH(n) is then-fold convolution ofH . Let � = ∑∞
n=0 H(n) be the renewal

function associated withH .

7.2.2. The random walkSτn . To investigate the asymptotic behavior of(Sτn)

we are going to use a renewal theorem as in Feller (1966) for the i.i.d. case, namely,
Theorem B. We want to apply it forF = H andα = κ , thus we have to prove that
H satisfies its assumptions.

As H(0) = 0, we haveρ(H(0)) < 1, thus the first assumption is true. In
addition, Hij are probability measures, thereforeH is finite. H has bounded
support becauseSτ−1 ≤ 0, Sτ > 0 and	 is bounded. ThuŝB, the expectation
of Hκ(∞) = ∫ ∞

0 e−κuH(du) is well defined. Proposition 7 yields again thatH is
also nonlattice.

Irreducibility and aperiodicity. For all i, j in E, we have

Hij (∞) = Pµ(τ < ∞, X1−τ = j |X1 = i)

≥ Pµ(τ = 1, X0 = j |X1 = i)

= Pj (log	1 > 0, X1 = i)
µ(j)

µ(i)

= Pj

(∫ 1

0
a(Xu) du > 0, X1 = i

)
µ(j)

µ(i)
,

and Proposition 7 implies that the last term is positive as 0∈ ]am;aM [. Thus the
second assumption of Theorem B is valid. We have also proved that for alli andj

we have 0= Hij (0) < Hij (∞), so that the third assumption is also valid.
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Spectral radius ofHκ(∞). Now we define a new probability lawPκ on�×�.
For all boundedA × B-measurable functionsf which first coordinate depends
only on(Xt , (1− n) ≤ t ≤ 1), we set

Pκ(f ) = Eκ(f )

= Eµ(f (	1, . . . ,	2−n, θ)(	1 · · ·	2−n)
κ)

Eµ((	1 · · ·	2−n)
κ)

.

SetHκ(t) = ∫ t
0 e−κuH(du). We have

(Hκ)ij (t) = Pκ(τ < ∞, Sτ ≤ t,X(1−τ) = j |X1 = i)

Eµ((	1 · · ·	1−τ )κ , τ < ∞)

= (H
�
κ )ij (t)

Eµ((	1 · · ·	1−τ )
κ , τ < ∞)

,

where(H
�
κ )ij (t) = Pκ(τ < ∞, Sτ ≤ t,X(1−τ) = j |X1 = i) describes the behavior

of the ladder heights of our random walk under the new probability lawPκ .
The computation we made in the proof of Proposition 3 yields

∂

∂r

∣∣∣∣
r=κ

log
(
ρ(Ar)

) = lim
n→∞

1

n
Eκ

(
n∑

i=1

log	i

)
= Eκ(log	1).

But we have logρ(A0) = logρ(Aκ) = 0; this function is convex (Corollary 2)
and its right-hand derivative at 0 is negative (Proposition 3). Thus its left-hand
derivative atκ is positive, that is,Eκ(log	1) > 0. Under the lawPκ our random
walk thus drifts to+∞, hence for alln andi, we have(Pκ)i(τn < ∞) = 1 andH�

is a stochastic matrix, therefore its spectral radius equals to 1.
For alln, we have

H(n)
κ (∞) = (

Hκ(∞)
)n = (H

�
κ (∞))n

Eµ((	1 · · ·	2−τn)
κ , τ < ∞)

,

thus ρ(Hκ(∞)) = lim(Eµ((	1 · · ·	2−τn)
κ , τ < ∞))−1/n and we now have to

prove that this limit equals to 1. But for alln, we haveτn ≥ n, and the event
(τn = k) depends only on(Xt , (1− k) ≤ t ≤ 1). Thus we have

Eµ

(
(	1 · · ·	1−τn)

κ , τn < ∞)
=

∞∑
k=n

Eµ

(
(	1 · · ·	1−k)

κ , τn = k
)

(20)

=
∞∑

k=n

Pκ(τn = k)Eµ

(
(	1 · · ·	1−k)

κ
)
.
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Setε > 0. For large enoughn, our choice ofκ and (5) and (6) yield

µAn
κ1 − ε ≤ Eµ

(
(	1 · · ·	1−n)

κ
) ≤ µAn

κ1 + ε.

Thus for large enoughn, (20) yields

(µAn
κ1 − ε)

∞∑
k=n

Pκ(τn = k)

≤ Eµ

((
	1 · · ·	1−τn

)κ
, τn < ∞) ≤ (µAn

κ1 + ε)

∞∑
k=n

Pκ(τn = k),

and asPκ(τn < ∞) = 1, we have

µAn
κ1 − ε ≤ Eµ

((
	1 · · ·	1−τn

)κ
, τn < ∞) ≤ µAn

κ1 + ε.

Thus asn → ∞ we have, with the notation of Corollary 1,Eµ(	1 · · ·	1−τn)
κ ∼

µBκ1. Hence we have, as expected,Eµ((	1 · · ·	1−τn)
κ , τn < ∞)1/n → 1.

Thus all the assumptions of Theorem B are valid here. We are going to use it in
the following part.

7.2.3. Asymptotic behavior of the maximum.Let M = supn Sn = supn Sτn be
the maximum of our random walk. Using the definition ofH , we get, for all
1 ≤ i ≤ N ,

Pµ(M ≤ t|X1 = i)

=
∞∑

n=1

Pµ

(
τn < ∞, Sτn ≤ t, τn+1 = ∞|X1 = i

)

=
∞∑

n=1

N∑
j=1

Pµ

(
τn < ∞, Sτn ≤ t, τn+1 = ∞,X1 = i|X(1−τn) = j

)µ(j)

µ(i)

=
∞∑

n=1

N∑
j=1

[
Pµ

(
τn < ∞, Sτn ≤ t,X(1−τn) = j |X1 = i

)
(21)

× (1− Pµ

(
τn+1 < ∞|X(1−τn) = j

)]
=

∞∑
n=1

N∑
j=1

[
H

(n)
ij (t)

(
1−

N∑
k=1

Hjk(∞)

)]

=
N∑

j=1

[
�ij (t)

(
1−

N∑
k=1

Hjk(∞)

)]
.
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Theorem B applied to (21) yields, whent tends to infinity,

1− Pµ(M ≤ t|X1 = i)

=
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)

)∫ ∞
t

e−κu(eκu�ij )(du)

]
(22)

t→∞∼
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)

)∫ ∞
t

e−κuĉ m̂i ûj du

]

=
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)

)
ĉ m̂i ûj

]
e−κt ,

wherem̂ andû are right and left eigenvectors ofHκ(∞) with positive coordinates
with the same normalization as in Section 4, andĉ = (t ûB̂m̂)−1 > 0.

7.3. Conclusion. We still have to prove that there is aj ≤ N such that
1−∑N

k=1Hjk(∞) > 0. But the mappingr �−→ Hr(∞) = ∫ ∞
0 eruH(du) is clearly

increasing component-wise. As these matrices are nonnegative and irreducible,
Corollaries 8.1.19 and 8.1.20 of Horn and Johnson (1985) imply that the mapping
r �−→ ρ(Hr(∞)) is also increasing. Asρ(Hκ(∞)) = 1, we haveρ(H0(∞)) =
ρ(H(∞)) < 1. This is a substochastic, nonstochastic matrix, thus there exists aj

such that we have 1− ∑N
k=1Hjk(∞) > 0.

We have now proved that the right-hand side term in (22) is positive, thus there
is a constantC > 0 such that, whent tends to infinity, we have

eκt
Pµ(M > t) ≥

N∑
i=1

eκt
Pµ(M > t|X1 = i)µ(i) ≥ C.(23)

Putting together this result and Proposition 8, we get, for large enought ,

tκPµ(|R1| > t) ≥ K > 0.(24)

With the notation of Theorem 2, it means thatL > 0, which ends the proof of this
theorem.

8. Determination of κ . Sets1 = min{λ(i)a(i)−1|a(i) > 0}, and letMs be the
matrix with components{q(i, j)λ(i)(λ(i)− sa(i))−1}. This matrix is well defined
for all s < s1. We can precisely compare the spectral radius ofAs and that ofMs .

PROPOSITION 9. For all 0 < s < s1, we haveρ(Ms) < 1 if and only if
ρ(As) < 1, and we haveρ(Ms) > 1 if and only ifρ(As) > 1.
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PROOF. Suppose thatρ(Ms) < 1. Ms is a positive irreducible matrix asq is,
λ being positive ands < s1. Thus the Perron–Frobenius theorem [see, e.g., Horn
and Johnson (1985)] gives the existence of a vectorϕ with positive coordinates
such thatMsϕ = ρ(Ms)ϕ < ϕ. Hence for alli in E, we have

ϕ(i) >
∑
j

q(i, j)
λ(i)

λ(i) − sa(i)
ϕ(j),

that we can rewrite, sinces < s1, as(
sa(i) − λ(i)

)
ϕ(i) + λ(i)

∑
j

q(i, j)ϕ(j) < 0.(25)

Proposition 4 enables us to choose a small enoughδ such that (8) is valid here.
Equation (25) thus yields

Asϕ(i) = [
1+ δ

(
sa(i) − λ(i)

)]
ϕ(i) + δλ(i)

∑
j �=i

[q(i, j)ϕ(j)] + o(δ)

= ϕ(i) + δ

[(
sa(i) − λ(i)

)
ϕ(i) + λ(i)

∑
j

q(i, j)ϕ(j)

]
+ o(δ)

< ϕ(i).

Thus component-wise we getAsϕ < ϕ, which implies thatρ(As) < 1. The proof
thatρ(Ms) > 1 impliesρ(As) > 1 runs the same, the inequalities being reversed.

Suppose now thatρ(As) < 1. As is a positive irreducible matrix, thus the
Perron–Frobenius theorem gives the existence of a vectorψ with positive
coordinates such thatAsψ = ρ(As)ψ < ψ . Hence for all i in E, and small
enoughδ, we have

δ

[(
sa(i) − λ(i)

)
ψ(i) + λ(i)

∑
j

q(i, j)ψ(j)

]
+ o(δ) = Asψ(i) − ψi

< 0.

Hence, for alli, we get(sa(i) − λ(i))ψ(i) + λ(i)
∑

j q(i, j)ψ(j) < 0, or, as
s < s1,

ψ(i) >
λ(i)

λ(i) − sa(i)

∑
j

q(i, j)ψ(j),

and thusMsψ < ψ . AsMs is a positive matrix, we conclude thatρ(Ms) < 1. Here
again the proof thatρ(As) > 1 impliesρ(Ms) > 1 runs the same with reversed
inequalities. �

PROPOSITION 10. The spectral radius ofMs tends to infinity whens tends
to s1.
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PROOF. Seti0 ∈ E such thatλ(i0)a(i0)
−1 = s1, andei0 the row vector with

zero coordinates except thei0th which is set to be 1. Setvi0 = λ(i0)(λ(i0) −
sa(i0))

−1. We haveei0Ms = vi0q(i0, ·) ≥ vi0ei0 asq is a positive matrix. AsMs is
also positive, for alls < s1, we getρ(Ms) ≥ vi0 = λ(i0)(λ(i0) − sa(i0))

−1. Hence
this spectral radius tends to infinity whens tends tos1. �

COROLLARY 4. There is a uniques ∈ ]0; s1[ such thatρ(Ms) = 1, and thiss

equals the uniqueκ such thatρ(Aκ) = 1.

PROOF. For all s < κ , we haveρ(As) < 1 by Corollary 3; thus Proposition 9
yields ρ(Ms) < 1 for all 0 < s < min{κ, s1}. As ρ(Ms) → ∞ as s tends tos1,
we also haveρ(As) > 1 for s close to s1. Thereforeκ < s1, and ρ(As) > 1
for all κ < s < s1. Henceρ(Ms) > 1 for all κ < s < s1. As Ms has continuous
coordinates, its spectral radius is also continuous; thusρ(Mκ) = 1 andκ is the
only value ofs ∈ ]0; s1[ satisfying this equation.�

We now give an illustration by computing the value ofκ whenE = {1,2}. The
jump kernelq then equals to

q =
(

0 1
1 0

)
,

and the invariant law of the processX is µ = (λ(2), λ(1))/(λ(1) + λ(2)). We
suppose thata(1) or a(2) is positive. Condition 2 becomes

λ(1)a(2) + λ(2)a(1) < 0.(26)

For all i in E, setri = a(i)
λ(i)

. We haver1+ r2 < 0, r1r2 > 0 ands1 = max{r−1
1 , r−1

2 }.
For s ∈ [0, s1[, the matrixMs equals to

Ms =
 0

1

1− sr1
1

1− sr2
0

 ,

and its spectral radius is[(1 − sr1)(1 − sr2)]−1/2. It equals to 1 forκ = r−1
1 +

r−1
2 = λ(2)a(2)−1 + λ(1)a(1)−1.
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