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In this paper, we give an explanation to the failure of two likelihood ratio
procedures for testing about covariance matrices from Gaussian populations
when the dimension p is large compared to the sample size n. Next, using re-
cent central limit theorems for linear spectral statistics of sample covariance
matrices and of random F -matrices, we propose necessary corrections for
these LR tests to cope with high-dimensional effects. The asymptotic distri-
butions of these corrected tests under the null are given. Simulations demon-
strate that the corrected LR tests yield a realized size close to nominal level
for both moderate p (around 20) and high dimension, while the traditional
LR tests with χ2 approximation fails.

Another contribution from the paper is that for testing the equality be-
tween two covariance matrices, the proposed correction applies equally for
non-Gaussian populations yielding a valid pseudo-likelihood ratio test.

1. Introduction. The rapid development and wide application of computer
techniques permits to collect and store a huge amount data, where the number of
measured variables is usually large. Such high-dimensional data occur in many
modern scientific fields, such as micro-array data in biology, stock market analy-
sis in finance and wireless communication networks. Traditional estimation or test
tools are no more valid, or perform badly for such high-dimensional data, since
they typically assume a large sample size n with respect to the number of vari-
ables p. A better approach in this high-dimensional data setting would be based
on an asymptotic theory where both n and p approach infinity. To illustrate this
purpose, let us mention the case of Hotelling’s T 2-test. The failure of T 2-test
for high-dimensional data has been mentioned as early as by Dempster [5]. As
a remedy, Dempster proposed a so-called nonexact test. However, the theoretical
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justification of Dempster’s test arises much later in [1] inspired by modern ran-
dom matrix theory (RMT). These authors have found necessary correction for the
T 2-test to compensate effects due to high dimension.

In this paper, we consider two LR tests concerning covariance matrices. We
first give a theoretical explanation for the fail of these tests in high-dimensional
data context. Next, with the aid of random matrix theory, we provide necessary
corrections to these LR tests to cope with the high-dimensional effects.

First, we consider the problem of one-sample covariance hypothesis test. Sup-
pose that x follows a p-dimensional Gaussian distribution N(μp,�p) and we want
to test

H0 :�p = Ip,(1.1)

where Ip denotes the p-dimensional identity matrix. Note that testing �p = A

with an arbitrary covariance matrix A can always be reduced to the above null
hypothesis by the transformation A−1/2x.

Let (x1, . . . ,xn) be a sample from x, where we assume p < n. The sample
covariance matrix is

S = 1

n

p∑
i=1

(xi − x)(xi − x)∗(1.2)

and set

L∗ = tr S − log |S| − p.(1.3)

The likelihood ratio test statistic is

Tn = n · L∗.(1.4)

Keeping p fixed while letting n → ∞, then the classical theory states that Tn

converges to the χ2
1/2p(p+1) distribution under H0.

However, as will be shown, this classical approximation leads to a test size much
higher than the nominal test level in the case of high-dimensional data because Tn

approaches infinity for large p. As seen from Table 1 in Section 3, for dimension
and sample sizes (p,n) = (50,500), the realized size of the test is 22.5% instead
of the nominal 5% level. The result is even worse for the case (p,n) = (300,500),
with a 100% test size.

Based on a recent CLT for linear spectral statistics (LSS) of large-dimensional
sample covariance matrices [3], we construct a corrected version of Tn in Section 3.
As shown by the simulation results of Section 3.1, the corrected test performs
much better in case of high dimensions. Moreover, it also performs correctly for
moderate dimensions like p = 10 or 20. For dimension and sample sizes (p,n)

cited above, the sizes of the corrected test are 5.9% and 5.2%, respectively, both
close to the 5% nominal level.

The second test problem we consider is about the equality between two high-
dimensional covariance matrices. Let xi = (x1i , x2i , . . . , xpi)

T , i = 1, . . . , n1 and
yj = (y1j , y2j , . . . , ypj )

T , j = 1, . . . , n2 be observations from two p-dimensional
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TABLE 1
Sizes and powers of the traditional LRT and the corrected LRT, based on 10,000 independent

replications with real Gaussian variables. Powers are estimated under the alternative
�p = diag(1,0.05,0.05,0.05, . . .)

CLRT LRT

(p,n) Size Difference with 5% Power Size Power

(5, 500) 0.0803 0.0303 0.6013 0.0521 0.5233
(10, 500) 0.0690 0.0190 0.9517 0.0555 0.9417
(50, 500) 0.0594 0.0094 1 0.2252 1
(100, 500) 0.0537 0.0037 1 0.9757 1
(300, 500) 0.0515 0.0015 1 1 1

normal populations N(μk,�k), k = 1,2, respectively. We wish to test the null hy-
pothesis

H0 :�1 = �2.(1.5)

The related sample covariance matrices are

A = 1

n1

n1∑
i=1

(xi − x)(xi − x)∗, B = 1

n2

n2∑
i=1

(yi − y)(yi − y)∗,

where x, y are the respective sample means. Let

L1 = |A|n1/2 · |B|n2/2

|c1A + c2B|N/2 ,(1.6)

where N = n1 + n2 and ck denote nk

N
, k = 1,2. The likelihood ratio test statistic is

TN = −2 logL1,

and when n1, n2 → ∞, we get

TN = −2 logL1 ⇒ χ2
1/2p(p+1)(1.7)

under H0. Of course, in this limit scheme, the data dimension p is held fixed.
However, employing this χ2 limit distribution for dimensions like 30 or 40,

increases dramatically the size of the test. For instance, simulations in Section 4.1
show that, for dimension and sample sizes (p,n1, n2) = (40,800,400), the test
size equals 21.2% instead of the nominal 5% level. The result is worse for the case
of (p,n1, n2) = (80,1600,800), leading to a 49.5% test size. The reason for this
failure of the classical LR test is the following. Modern RMT indicates that when
both dimension and sample size are large, the likelihood ratio statistic TN drifts
to infinity almost surely. Therefore, the classical χ2 approximation leads to many
false rejections of H0 in case of high-dimensional data.

Based on recent CLT for linear spectral statistics of F -matrices from RMT, we
propose a correction to this LR test in Section 4. Although this corrected test is con-
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structed under the asymptotic scheme n1 ∧ n2 → +∞, yn1 = p/n1 → y1 ∈ (0,1),
yn2 = p/n2 → y2 ∈ (0,1), simulations demonstrate an overall correct behavior
including small or moderate dimensions p. For example, for the above cited di-
mension and sample sizes (p,n1, n2), the sizes of the corrected test equal 5.6%
and 5.2%, respectively, both close to the nominal 5% level.

Related work include Ledoit and Wolf [6], Schott [8] and Srivastava [9]. These
authors propose several procedures in the high-dimensional setting for testing that
(i) a covariance matrix is an identity matrix, proportional to an identity matrix
(spherecity) and is a diagonal matrix or (ii) several covariance matrices are equal.
These procedures have the following common feature: their construction involves
some well-chosen distance function between the null and the alternative hypothe-
ses and rely on the first two spectral moments, namely the statistics trSk and trS2

k

from sample covariance matrices Sk . Therefore, the procedures proposed by these
authors are different from the likelihood-based procedures we consider here. An-
other important difference concerns the Gaussian assumption on the random vari-
ables used in all these references. Actually, for testing the equality between two
covariance matrices, the correction proposed in this paper applies equally for non-
Gaussian and high-dimensional data leading to a valid pseudo-likelihood test.

The rest of the paper is organized as following. Preliminary and useful RMT
results are recalled in Section 2. In Sections 3 and 4, we introduce our results for
the two tests above. A selected set of proofs and technical derivations is postponed
to the last section.

2. Useful results from the random matrix theory. We first recall several
results from RMT, which will be useful for our corrections to tests. For any p × p

square matrix M with real eigenvalues (λM
i ), FM

n denotes the empirical spectral
distribution (ESD) of M , that is,

FM
n (x) = 1

p

p∑
i=1

1λM
i ≤x, x ∈ R.

We will consider random matrix M whose ESD FM
n converges (in a sense to be

more precise) to a limiting spectral distribution (LSD) FM . To make statistical
inference about a parameter θ = ∫

f (x) dFM(x), it is natural to use the estimator

θ̂ =
∫

f (x) dFM
n (x) = 1

p

p∑
i=1

f (λM
i ),

which is a so-called linear spectral statistic (LSS) of the random matrix M .

2.1. CLT for LSS of a high-dimensional sample covariance matrix. Let {ξki ∈
C, i, k = 1,2, . . .} be a double array of i.i.d. complex variables with mean 0 and
variance 1. Set ξi = (ξ1i , ξ2i , . . . , ξpi)

T , the vectors ξ1, . . . , ξn are considered as an
i.i.d. sample from some p-dimensional distribution with mean 0p and covariance
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matrix Ip . Therefore, the sample covariance matrix is

Sn = 1

n

n∑
i=1

ξiξ
∗
i .(2.1)

For 0 < θ ≤ 1, let a(θ) = (1 − √
θ)2 and b(θ) = (1 + √

θ)2. The Marčenko–
Pastur distribution of index θ , denoted as Fθ , is the distribution on [a(θ), b(θ)]
with the following density function

gθ (x) = 1

2πθx

√[b(θ) − x][x − a(θ)], a(θ) ≤ x ≤ b(θ).

Let

yn = p

n
→ y ∈ (0,1)

and Fy,F yn be the Marčenko–Pastur law of index y and yn, respectively. Let
U be an open set of the complex plane, including [I(0,1)(y)a(y), b(y)], and A
be the set of analytic functions f : U 
→ C. We consider the empirical process
Gn := {Gn(f )} indexed by A,

Gn(f ) = p ·
∫ +∞
−∞

f (x)[Fn − Fyn](dx), f ∈ A,(2.2)

where Fn is the ESD of Sn. The following theorem will play a fundamental role
in next derivations, which is a specialization of a general theorem from Bai and
Silverstein [3] (Theorem 1.1).

THEOREM 2.1. Assume that f1, . . . , fk ∈ A, and {ξij } are i.i.d. random vari-
ables, such that Eξ11 = 0,E|ξ11|2 = 1,E|ξ11|4 < ∞. Moreover, p

n
→ y ∈ (0,1)

as n,p → ∞.

We then get the following cases.

(i) Real case. Assume {ξij } are real and E(ξ4
11) = 3. Then the random vector

(Gn(f1), . . . ,Gn(fk)) weakly converges to a k-dimensional Gaussian vector with
mean vector,

m(fj ) = fj (a(y)) + fj (b(y))

4
(2.3)

− 1

2π

∫ b(y)

a(y)

fj (x)√
4y − (x − 1 − y)2

dx, j = 1, . . . , k,

and covariance function

υ(fj , f	) = − 1

2π2

∮ ∮
fj (z1)f	(z2)

(m(z1) − m(z2))2 dm(z1) dm(z2),

(2.4)
j, 	 ∈ {1, . . . , k},

where m(z) ≡ mFy (z) is the Stieltjes Transform of Fy ≡ (1−y)I[0,∞) +yFy . The
contours in (2.4) are nonoverlapping and both contain the support of Fy .
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(ii) Complex case. Assume {ξij } are complex and Eξ2
11 = 0, E(|ξ11|4) = 2.

Then the conclusion of (i) also holds, except the mean vector is zero and the co-
variance function is half of the function given in (2.4).

It is worth noticing that Theorem 1.1 in Bai and Silverstein [3] covers more gen-
eral sample covariance matrices of form S′

n = T
1/2
n SnT

1/2
n where (Tn) is a given

sequence of positive-definite Hermitian matrices. In the “white” case, Tn ≡ I as
considered here, in a recent preprint Pastur and Lytova [7], the authors offer a new
extension of the CLT where the constraints E|ξ11|4 = 3 or 2, as stated above, are
removed.

2.2. CLT for LSS of high-dimensional F matrix. Let {ξki ∈ C, i, k = 1,2, . . .}
and {ηkj ∈ C, j, k = 1,2, . . .} are two independent double arrays of i.i.d. com-
plex variables with mean 0 and variance 1. Write ξi = (ξ1i , ξ2i , . . . , ξpi)

T and
ηj = (η1j , η2j , . . . , ηpj )

T . Also, for any positive integers n1, n2, the vectors
(ξ1, . . . , ξn1) and (η1, . . . , ηn2) can be thought as independent samples of size n1
and n2, respectively, from some p-dimensional distributions. Let S1 and S2 be the
associated sample covariance matrices, that is,

S1 = 1

n1

n1∑
i=1

ξiξ
∗
i and S2 = 1

n2

n2∑
j=1

ηjη
∗
j .

Then the following so-called F -matrix generalizes the classical Fisher statistics
for the present p-dimensional case,

Vn = S1S
−1
2 ,(2.5)

where n2 > p. Here, we use the notation n = (n1, n2).
Let

yn1 = p

n1
→ y1 ∈ (0,1), yn2 = p

n2
→ y2 ∈ (0,1).(2.6)

Under suitable moment conditions, the ESD F
Vn
n of Vn has a LSD Fy1,y2 , which

has a density (see page 72 of [4]), given by

	(x) =
⎧⎨
⎩

(1 − y2)
√

(b − x)(x − a)

2πx(y1 + y2x)
, a ≤ x ≤ b,

0, otherwise,
(2.7)

where a = (1 − y2)
−2(1 − √

y1 + y2 − y1y2)
2 and b = (1 − y2)

−2(1 +√
y1 + y2 − y1y2)

2.

Similar to previously, let Ũ be an open set of the complex plane, including the
interval [

I(0,1)(y1)
(1 − √

y1)
2

(1 + √
y2)2 ,

(1 + √
y1)

2

(1 − √
y2)2

]
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and Ã be the set of analytic functions f : Ũ 
→ C. Define the empirical process
G̃n := {G̃n(f )} indexed by Ã

G̃n(f ) = p ·
∫ +∞
−∞

f (x)[FVn
n − Fyn1 ,yn2

](dx), f ∈ Ã.(2.8)

Here, Fyn1 ,yn2
is the limiting distribution in (2.7), but with ynk

instead of yk, k =
1,2.

Recently, Zheng [10] establishes a general CLT for LSS of large-dimensional
F matrix. The following theorem is a simplified one quoted from it, which will
play an important role.

THEOREM 2.2. Let f1, . . . , fk ∈ Ã, and assume the following: for each p,
(ξij1) and (ηij2) variables are i.i.d., 1 ≤ i ≤ p,1 ≤ j1 ≤ n1,1 ≤ j2 ≤ n2. Eξ11 =
Eη11 = 0, E|ξ11|4 = E|η11|4 < ∞, yn1 = p

n1
→ y1 ∈ (0,1), yn2 = p

n2
→ y2 ∈

(0,1). Then:

(i) Real case. Assume (ξij ) and (ηij ) are real, E|ξ11|2 = E|η11|2 = 1, then
the random vector (G̃n(f1), . . . , G̃n(fk)) weakly converges to a k-dimensional
Gaussian vector with the mean vector

m(fj ) = lim
r→1+

[(2.9) + (2.10) + (2.11)],
1

4πi

∮
|ζ |=1

fj (z(ζ ))

[
1

ζ − 1/r
+ 1

ζ + 1/r
− 2

ζ + y2/(hr)

]
dζ(2.9)

+ β · y1(1 − y2)
2

2πi · h2

∮
|ζ |=1

fj (z(ζ ))
1

(ζ + y2/(hr))3 dζ(2.10)

+ β · y2(1 − y2)

2πi · h
∮
|ζ |=1

fj (z(ζ ))
ζ + 1/(hr)

(ζ + y2/(hr))3 dζ,

(2.11)
j = 1, . . . , k,

where z(ζ ) = (1 −y2)
−2[1 +h2 + 2hR(ζ )], h = √

y1 + y2 − y1y2, β = E|ξ11|4 −
3, and the covariance function as 1 < r1 < r2 ↓ 1

υ(fj , f	) = lim
1<r1<r2→1+

[(2.12) + (2.13)],

− 1

2π2

∮
|ζ2|=1

∮
|ζ1|=1

fj (z(r1ζ1))f	(z(r2ζ2))r1r2

(r2ζ2 − r1ζ1)2 dζ1 dζ2,(2.12)

−β · (y1 + y2)(1 − y2)
2

4π2h2

∮
|ζ1|=1

fj (z(ζ1))

(ζ1 + y2/(hr1))2 dζ1

(2.13)

×
∮
|ζ2|=1

f	(z(ζ2))

(ζ2 + y2/(hr2))2 dζ2, j, 	 ∈ {1, . . . , k}.
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(ii) Complex case. Assume (ξij ) and (ηij ) are complex, E(ξ2
11) = E(η2

11) =
0, then the conclusion of (i) also holds, except the means are limr→1+[(2.10) +
(2.11)] and the covariance function is lim1<r1<r2→1+[1

2 · (2.12) + (2.13)], where
β = E|ξ11|4 − 2.

We should point out that Zheng’s CLT for F -matrices covers more general sit-
uations then those cited in Theorem 2.2. In particular, the fourth-moments E|ξ11|4
and E|η11|4 can be different.

The following lemma will be used in Section 4 for an application of Theo-
rem 2.2 to obtain the formulas (4.5) and (4.6).

LEMMA 2.1. For the function f (x) = log(a + bx), x ∈ R, a, b > 0, let (c, d)

be the unique solution to the equations⎧⎨
⎩

c2 + d2 = a(1 − y2)
2 + b(1 + h2),

cd = bh,

0 < d < c.

Analogously, let γ, η be the constants similar to (c, d) but for the function g(x) =
log(α + βx),α > 0, β > 0. Then the mean and covariance functions in (2.9) and
(2.12) equal to

m(f ) = 1

2
log

(c2 − d2)h2

(ch − y2d)2 ,

υ(f, g) = 2bhd−1c−1 log
cγ

cγ − dη
.

3. Testing the hypothesis that a high-dimensional covariance matrix is
equal to a given matrix. To test the hypothesis H0 :�p = Ip , let be the sample
covariance matrix S and likelihood ratio statistic Tn as defined in (1.2) and (1.4),
respectively. For ξi = xi − μp, the array {ξi}i=1,...,n contains p-dimensional stan-
dard normal variables under H0. Let

Sn = 1

n

n∑
i=1

ξiξ
∗
i

and

L̃∗ = tr Sn − log |Sn| − p.

THEOREM 3.1. Assuming that the conditions of Theorem 2.1 hold, L∗ is de-
fined as (1.3) and g(x) = x − logx − 1. Then under H0 and when n → ∞

T̃n = υ(g)−1/2[L∗ − p · Fyn(g) − m(g)] ⇒ N(0,1),(3.1)

where Fyn is the Marčenko–Pastur law of index yn.
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PROOF. Because the difference between S and Sn is a rank-1 matrix, S and
Sn have the same LSD. So, L∗ and L̃∗ have the same asymptotic distribution. We
also have

L̃∗ = tr Sn − log |Sn| − p

=
p∑

i=1

(λ
sn
i − logλ

sn
i − 1) = p ·

∫
(x − logx − 1) dFn(x)

= p ·
∫

g(x) d
(
Fn(x) − Fyn(x)

) + p · Fyn(g),

so that

Gn(g) = L̃∗ − p · Fyn(g).(3.2)

By Theorem 2.1, Gn(g) weakly converges to a Gaussian vector with the mean

m(g) = − log (1 − y)

2
(3.3)

and variance

υ(g) = −2 log (1 − y) − 2y(3.4)

for the real case, which are calculated in Section 5. For the complex case, the mean
m(g) is zero and the variance is half of υ(g). Then by (3.2), we arrive at

L̃∗ − p · Fyn(g) ⇒ N(m(g),υ(g)),(3.5)

where

Fyn(g) = 1 − yn − 1

yn

log (1 − yn)(3.6)

can be calculated by the density of LSD of sample covariance matrix in Section 5.
Because L̃∗ and L∗ have the same asymptotic distribution and (3.5), finally we get

T̃n = υ(g)−1/2[L∗ − p · Fyn(g) − m(g)] ⇒ N(0,1). �

3.1. Simulation study I. For different values of (p,n), we compute the real-
ized sizes of traditional likelihood ratio test (LRT) and the corrected likelihood ra-
tio test (CLRT) proposed previously. The nominal test level is set to be α = 0.05,
and for each (p,n), we run 10,000 independent replications with real Gaussian
variables. Results are given in Table 1 and Figure 1 below.

As seen in Table 1, the traditional LRT always rejects H0 when p is large, like
p = 100 or 300, while the sizes produced by the corrected LRT perfectly matches
the nominal level. For moderate dimensions like p = 50, the corrected LRT still
performs correctly while the traditional LRT has a size much higher than 5%.
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FIG. 1. Realized sizes of the traditional LRT and the corrected LRT for different dimensions p with
real Gaussian variables. 10,000 independent runs with 5% nominal level and sample size n = 500.

4. Testing the equality of two high-dimensional covariance matrices. Let
(xi ), i = 1, . . . , n1 and (yj ), j = 1, . . . , n2 be observations from two normal pop-
ulations N(μk,�k), k = 1,2, respectively. We examine the test defined in (1.5)
and (1.6). The aim is to find a good scaling of the LR statistic TN , such that the
scaled statistic weakly converges to some limiting distribution. Let

ξi = �−1/2(xi − μ1), ηi = �−1/2(yi − μ2),

where � = �1 = �2 denotes the common covariance matrix under H0. Note that
in a strict sense, the vectors (xi ), (yi) and the matrices �,�1,�2 depend on p.
However, we do not signify this dependence in notation for ease of statements.
Due to Gaussian assumption, the arrays (ξi)i=1,...,n1 and (ηj )j=1,...,n2 contain i.i.d.
N(0,1) variables, for which we can apply Theorem 2.2.

Let

S1 = 1

n1

n1∑
i=1

ξiξ
∗
i = �−1/2C�−1/2,

S2 = 1

n2

n2∑
j=1

ηjη
∗
j = �−1/2D�−1/2,

where

C = 1

n1

n1∑
i=1

(xi − μ1)(xi − μ1)
∗,
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D = 1

n2

n2∑
j=1

(yj − μ2)(yj − μ2)
∗.

Note that

Vn = S1S
−1
2

forms a random F -matrix and we have

L̃1 = |S1|n1/2 · |S2|n2/2

|c1S1 + c2S2|N/2 = |C|n1/2 · |D|n2/2

|c1C + c2D|N/2 .(4.1)

THEOREM 4.1. Assuming that the conditions of Theorem 2.2 hold under H0,
L1 as defined in (1.6) and

f (x) = log(yn1 + yn2x) − yn2

yn1 + yn2

logx − log(yn1 + yn2).

Then under H0 and as n1 ∧ n2 → ∞,

T̃N = υ(f )−1/2
[
−2 logL1

N
− p · Fyn1 ,yn2

(f ) − m(f )

]
⇒ N(0,1).(4.2)

PROOF. As A − C and B − D are rank-1 random matrices, AB−1 and CD−1

have the same LSD. Also by (4.1), L̃1 and L1 have the same asymptotic distribu-
tion. Because

− 2

N
log L̃1 = − 2

N
log

( |S1|n1/2 · |S2|n2/2

|c1S1 + c2S2|N/2

)

= log |c1V
−1
n + c2| − c1 · log |V −1

n |

=
p∑

i=1

log(c1λ
Vn

i + c2) − c1 · log(λ
Vn

i )

= p ·
∫

[log(c1x + c2) − c1 · log(x)]dFVn
n (x).

Define f (x) = log(c1x + c2) − c1 · log(x), with c1 = n1
N

= yn2
yn1+yn2

and c2 = n2
N

=
yn1

yn1+yn2
; f (x) can also be written as

f (x) = log(yn1 + yn2x) − yn2

yn1 + yn2

logx − log(yn1 + yn2).(4.3)

From

−2 log L̃1

N
= p ·

∫
f (x) dFVn

n (x)

= p ·
∫

f (x) d
(
FVn

n (x) − Fyn1 ,yn2
(x)

) + p · Fyn1 ,yn2
(f ),
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we get

G̃n(f ) = −2 log L̃1

N
− p · Fyn1 ,yn2

(f ).(4.4)

By Theorem 2.2, G̃n(f ) weakly converges to a Gaussian vector with mean

m(f ) = 1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2)

(4.5)

− y2

y1 + y2
log(1 − y1)

]

and variance

υ(f ) = − 2y2
2

(y1 + y2)2 log(1 − y1) − 2y2
1

(y1 + y2)2 log(1 − y2)

(4.6)
− 2 log

y1 + y2

y1 + y2 − y1y2

for the real case. For the complex case, the mean m(f ) is zero and the variance is
half of υ(f ). In other words,

−2 log L̃1

N
− p · Fyn1 ,yn2

(f ) ⇒ N(m(f ),υ(f )),(4.7)

where

Fyn1 ,yn2
(f ) = −(yn1 + yn2 − yn1yn2)

yn1yn2

log (yn1 + yn2 − yn1yn2)

+ (yn1 + yn2 − yn1yn2)

yn1yn2

log (yn1 + yn2)

+ yn1(1 − yn2)

yn2(yn1 + yn2)
log (1 − yn2)

+ yn2(1 − yn1)

yn1(yn1 + yn2)
log (1 − yn1).

Because L̃1 and L1 have the same asymptotic distribution and by (4.7), we get by
letting n1 ∧ n2 → ∞,

T̃N = υ(f )−1/2
[
−2 logL1

N
− p · Fyn1 ,yn2

(f ) − m(f )

]
⇒ N(0,1). �

4.1. Simulation study II. For different values of (p,n1, n2), we compute the
realized sizes of the traditional LRT and the corrected LRT with 10,000 indepen-
dent replications. The nominal test level is α = 0.05 and we use real Gaussian
variables. Results are summarized in Table 2 and Figure 2.
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TABLE 2
Sizes and powers of the traditional LRT and the corrected LRT based on 10,000 independent

replications using real Gaussian variables. Powers are estimated under the alternative
�1�−1

2 = diag(3,1,1,1, . . .). Upper: y1 = y2 = 0.05. Bottom: y1 = 0.05, y2 = 0.1

CLRT LRT

(p,n1,n2) Size Difference with 5% Power Size Power

(y1, y2) = (0.05,0.05)

(5, 100, 100) 0.0770 0.0270 1 0.0582 1
(10, 200, 200) 0.0680 0.0180 1 0.0684 1
(20, 400, 400) 0.0593 0.0093 1 0.0872 1
(40, 800, 800) 0.0526 0.0026 1 0.1339 1
(80, 1600, 1600) 0.0501 0.0001 1 0.2687 1
(160, 3200, 3200) 0.0491 −0.0009 1 0.6488 1
(320, 6400, 6400) 0.0447 −0.0053 0.9671 1 1

(y1, y2) = (0.05,0.1)

(5, 100, 50) 0.0781 0.0281 0.9925 0.0640 0.9849
(10, 200, 100) 0.0617 0.0117 0.9847 0.0752 0.9904
(20, 400, 200) 0.0573 0.0073 0.9775 0.1104 0.9938
(40, 800, 400) 0.0561 0.0061 0.9765 0.2115 0.9975
(80, 1600, 800) 0.0521 0.0021 0.9702 0.4954 0.9998
(160, 3200, 1600) 0.0520 0.0020 0.9702 0.9433 1
(320, 6400, 3200) 0.0510 0.0010 1 0.9939 1

As we can see, when the dimension p increases, the traditional LRT leads to
a dramatically high test size while the corrected LRT remains accurate. Further-
more, for moderate dimensions like p = 20 or 40, the sizes of the traditional LRT
are much higher than 5%, whereas the ones of corrected LRT are very close. By a
closer look at the column showing the difference with 5%, we note that this differ-
ence rapidly decreases as p increases for the corrected test. Figure 2 gives a vivid
sight of these comparisons between the traditional LRT and the corrected LRT in
term of test sizes.

4.2. A pseudo-likelihood test for high-dimensional non-Gaussian data. As
said in the introduction, previous related works as Ledoit and Wolf [6], Srivas-
tava [9] or Schott [8] all assume Gaussian variables. In contrast, Theorem 4.1 ap-
plies for general distributions having a fourth moment. For these non-Gaussian
data, we consider the corrected LRT as generalized pseudo-likelihood ratio test (or
Gaussian LRT).

Moreover, the methods proposed by these authors all rely on an appropriate
normalization of the trace of squared difference between two sample covariances
following the idea of Bai and Saranadasa [1]. We believe that their method would
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FIG. 2. Sizes of the traditional LRT and the corrected LRT based on 10,000 independent replica-
tions using real Gaussian variables. Left: y1 = y2 = 0.05. Right: y1 = 0.05, y2 = 0.1.

strongly depend on the normality assumption (what will be supported by simula-
tion results below). On the other hand, based on general understanding, the LRT
contains much higher information from data and its poor performance observed
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TABLE 3
Sizes of the corrected pseudo-likelihood ration test and Schott’s test for the case of

y1 = 0.1, y2 = 0.05, based on 1000 independent replications with normalized
t-distributed variables with 5 degrees of freedom

(p,n1,n2) CLRT size Schott’s size

(y1, y2) = (0.05,0.1)

(10, 100, 200) 0.067 0.517
(20, 200, 400) 0.065 0.603
(40, 400, 800) 0.054 0.703
(80, 800, 1600) 0.048 0.764
(160, 1600, 3200) 0.045 0.826
(320, 3200, 6400) 0.051 0.854

up to now is just caused by its large bias when dimension is large. Thus, from the
intuitive understanding, we are confined ourselves to modify the LRT.

Let us develop an example in more detail. Assume that x follows a normalized

t-distribution with 5 degree of freedom, that is, x =
√

3
5 t (5), x and y are i.i.d.,

hence, Ex = Ey = 0, E|x|2 = E|y|2 = 1 and E|x|4 = E|y|4 = 9. We still employ
the result in Theorem 4.1 for the test of equality between two covariance matrices,
where

m1(f ) = 1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2)

(4.8)

− y2

y1 + y2
log(1 − y1) + 6y2

1y2

(y1 + y2)2 + 6y1y
2
2

(y1 + y2)2

]

and

υ1(f ) = − 2y2
2

(y1 + y2)2 log(1 − y1) − 2y2
1

(y1 + y2)2 log(1 − y2)

(4.9)
− 2 log

y1 + y2

y1 + y2 − y1y2

instead of m(f ) and υ(f ) for real case, respectively.
Table 3 summarizes a simulation study where we compare this corrected

pseudo-LRT with the test proposed in Schott [8]. We use 1000 independent repli-
cations with the above t-distributed variables. Again, the nominal test level is
α = 0.05. As we can see, the corrected pseudo-LRT performs correctly while
Schott’s test is no more valid here since the variables are not Gaussian.

5. Selected proofs. To shorten the presentation of the paper, here we include
only a selected set of proofs. The others, namely proofs of Lemma 2.1, (4.5)
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and (4.6), of the formula of Fyn1 ,yn2
(f ), (4.8) and (4.9) are to be found in a longer

version of the paper at arXiv [2].

Proof of (3.3). By Theorem 2.1, for g(x) = x − logx −1, by using the variable
change x = 1 + y − 2

√
y cos θ,0 ≤ θ ≤ π , we have

m(g) = g(a(y)) + g(b(y))

4
− 1

2π

∫ b(y)

a(y)

g(x)√
4y − (x − 1 − y)2

dx

= y − log(1 − y)

2

− 1

2π

∫ π

0

[
1 + y − 2

√
y cos θ − log

(
1 + y − 2

√
y cos θ

) − 1
]
dθ

= y − log(1 − y)

2
− 1

4π

∫ 2π

0

[
y − 2

√
y cos θ − log

∣∣1 − √
yeiθ

∣∣2]
dθ

= − log(1 − y)

2
,

where
∫ 2π

0 log |1 − √
yeiθ |2 dθ = 0 is calculated in [3].

Proof of (3.4). For g(x) = x − logx − 1, by Theorem 2.1, we have

υ(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(m(z1) − m(z2))2 dm(z1) dm(z2)

and

g(z1)g(z2) = z1z2 − z1 log z2 − z2 log z1 + log z1 log z2

− z1 + log z1 − z2 + log z2 + 1.

It is easy to see that υ(1,1) = 0, where 1 stands for the constant function equal to 1.
For Stieltjes transform of Fy , the following equation is given in [3], for z ∈ C

+:

z = − 1

m(z)
+ y

1 + m(z)
.(5.1)

Let mi = m(zi), i = 1,2. For fixed m2, we have on a contour enclosing 1, (y−1)−1

and −1, but not 0,∮ log(z(m1))

(m1 − m2)2 dm1 =
∮ 1/m2

1 − y/(1 + m1)
2

−1/m1 + y/(1 + m1)

1

(m1 − m2)
dm1

=
∮

(1 + m1)
2 − ym2

1

ym1(m1 − m2)

( −1

m1 + 1
+ 1

m1 − 1/(y − 1)

)
dm1

= 2πi ·
(

1

m2 + 1
− 1

m2 − 1/(y − 1)

)
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and ∮ −1/m1 + y/(1 + m1)

(m1 − m2)2 dm1

= y

∮ (
1

1 + m1
+ 1 − y

y

)
· [1 − (1 + m1)]−1 · (m2 + 1)−2

×
(

1 − m1 + 1

m2 + 1

)−2

dm1

= y

∮ (
1

1 + m1
+ 1 − y

y

)

×
∞∑

j=0

(1 + m1)
j (m2 + 1)−2

∞∑
	=1

	

(
m1 + 1

m2 + 1

)	−1

dm1

= 2πi · y

(m2 + 1)2 .

Then we also get υ(−z1 + log z1,1) = 0. Similarly, υ(1,−z2 + log z2) = 0. Fur-
thermore,

υ(z1, z2) = y2

πi

∮ 1

(m2 + 1)2

(
1

1 + m2
+ 1 − y

y

) ∞∑
j=0

(1 + m2)
j dm2 = 2y

and

υ(z1, log z2) = y

πi

∮ (
1

m2 + 1
− 1

m2 − 1/(y − 1)

)(
1

1 + m2
+ 1 − y

y

)

× [1 − (1 + m2)]−1 dm2

= y

πi

∮ (
1

m2 + 1
− 1

m2 − 1/(y − 1)

)(
1

1 + m2
+ 1 − y

y

)

×
∞∑

j=0

(1 + m2)
j dm2 = 2y.

By a computation in [3], we know that υ(log z1, log z2) = −2 log(1 − y). Finally,
we obtain

υ(g) = υ(z1, z2) + υ(log z1, log z2) − 2υ(z1, log z2)

+ υ(−z1 + log z1,1) + υ(1,−z2 + log z2) + υ(1,1)

= −2 log(1 − y) − 2y.
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Proof of (3.6). Since Fyn is the Marčenko–Pastur law of index yn, by using
the variable change x = 1 + yn − 2

√
yn cos θ,0 ≤ θ ≤ π we have

Fyn(g) =
∫ b(yn)

a(yn)

x − logx − 1

2πxyn

√(
b(yn) − x

)(
x − a(yn)

)
dx

= 1

2πyn

∫ π

0

[
1 − log(1 + yn − 2

√
yn cos θ) + 1

1 + yn − 2
√

yn cos θ

]
4yn sin2 θ dθ

= 1

2π

∫ 2π

0

[
2 sin2 θ − 2 sin2 θ

1 + yn − 2
√

yn cos θ

(
log

∣∣1 − √
yne

iθ
∣∣2 − 1

)]
dθ

= 1 − yn − 1

yn

log(1 − yn),

where

1

2π

∫ 2π

0

2 sin2 θ

1 + yn − 2
√

yn cos θ
log

∣∣1 − √
yne

iθ
∣∣2 dθ

= yn − 1

yn

log(1 − yn) − 1

is calculated in [3].
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