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Abstract—Power sector restructuring has prompted the 

application of modern portfolio theory among market 
participants. Much research has been devoted to power portfolio 
optimization problems. However, the portfolio composition 
adopted in literature is rather hypothetical than realistic. From 
an engineering perspective, it is necessary to use real traded 
contract products to construct the portfolio. In this paper, 
clarification is made on commonly traded power contracts in the 
market, followed by a discussion of their pricing schemes.  It is 
emphasized that actively traded electricity futures/forwards and 
options actually belong to commodity swaps and swaptions 
respectively. A power portfolio is then constructed for a 
generation company with these basic power contracts and the 
spot transaction as well. An optimization model is formulated to 
solve the asset allocation with Conditional Value at Risk (CVaR) 
as the risk measure. The viability of the model is tested through a 
numerical study.  

 
 

Index Terms—Power portfolio, electricity futures, electricity 
options, commodity swaps, Value at Risk 

I.  INTRODUCTION 
Power sector restructuring prompts the industry to operate 

in a more efficient way, but meanwhile it also brings more 
risk factors to investors compared with the conventional 
regulated regime. In order to deal with increased uncertainty, 
it is necessary for management to apply modern portfolio 
theory which tells about the method to combine assets and the 
principle of diversification into their daily operational 
decisions [1]. In addition, market participants differ in both of 
their strategic goals and planning horizon, so they need to 
form tailor-made optimization models for their own portfolio 
needs.  

Power portfolio management considered by a generation 
company involves optimization at two stages. One is at the 
capacity planning stage, which aims to optimize the 
generation mix portfolio. This optimization problem could be 
solved either at a corporate level or at a country level. The 
other is at the production stage, which devotes to allocating 
generation capability among various power supply 
instruments.  
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A power portfolio optimization problem possesses its 
distinct features compared with optimizing other financial 
portfolios [2]. Firstly, in terms of decision variables, discrete 
values appear in a power portfolio. This could result from the 
on/off decisions of generation units, the power amount 
specified in supply contracts, and pumping levels of pumped-
storage units. Secondly, with respect to constraints, the real 
time load obligation constraint governs the coordination 
among different power supply instruments.  

Research contributions to the power portfolio optimization 
problem mainly focus on three aspects including portfolio 
composition, risk constraints, and computation algorithms. In 
terms of portfolio composition, various derivative contracts 
are included into the portfolio [2] [3], and hydro pumped 
storage plant and combined heat and power (CHP) plant are 
also added to improve operational flexibility [4] [5]. In terms 
of risk constraints, the modeling is becoming more 
sophisticated. Firstly, in order to better identify the price risk, 
the model for spot price process requires more thoroughness, 
e.g. price spikes are considered. Secondly, since the planning 
horizon is relatively long in the power industry, the single 
period risk management model is doubted for underestimating 
intermediate risks. Thirdly, normality is gradually recognized 
as not satisfied with electricity, so people are trying to find 
substitutes for variance that is used in the conventional 
Markowitz mean-variance approach. Measures are developed 
such as semi-variance based risk measure [2], Value at Risk 
(VaR) and Conditional Value at Risk (CVaR). Fourthly, due 
to special features of this industry, more risk factors should 
also be considered, such as the volume risk caused by demand 
fluctuation or plant outages, see [5]. In terms of computation 
algorithms, works include the adoption of the scenario tree in 
time series approximation, the use of stochastic dynamic 
programming for problem solving, and improvement made on 
the convergence speed of the solution process [2]. 

However, there is an overlooked issue with regard to 
portfolio composition. Investigating those power portfolios in 
literature, contracts used to construct the portfolio are mostly 
hypothetical rather than real traded products in the market 
place. For example, some researchers use single/instantaneous 
delivery futures/forwards, and some adopt options written on 
spot electricity or written on single/instantaneous delivery 
futures/forwards [2] [3]. However, these contracts are not 
widely traded power contracts. Different from other 
commodity markets, the futures/forwards widely traded in the 
power market are actually swaps covering a delivery period 
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rather than a single time delivery. Furthermore, because spot 
electricity is not proper to serve as the underlying of options 
due to its non-storability, traded electricity options are options 
written on swaps, i.e. they are swaptions. From an engineering 
point of view, it is necessary to substitute those unrealistic 
power contracts with real traded ones in constructing 
portfolios.  

This work tries to optimize a power contract portfolio 
which is composed of spot electricity, swaps contracts and 
swaptions contracts. Contents are organized as following: II. 
Clarification is made on traded electricity contracts and their 
pricing schemes. III. The portfolio optimization model is 
formulated. IV. Numerical example is studied with 
implication explained.  
 

II.  CLARIFICATION ON TRADED CONTRACTS 

A.  Electricity futures/forwards contracts 
Clarification is necessary to be made in the first place on 

electricity futures/forwards contracts. On one hand, electricity 
futures/forwards contracts are critical risk hedging instruments 
in a power portfolio. On the other hand, they serve as the 
underlying of option contracts in the electricity market where 
spot electricity is not suitable for options being written on.  

In equity markets, single/instantaneous delivery 
forwards/futures contracts are widely traded. The forward 
price F is the compounded value of the spot price S under the 
risk-neutral measure according to the no-arbitrage principle, 
i.e. ( )r T tF Se −= , where r is the risk-free interest rate and T is 
the maturity of the forwards/futures contract. In commodity 
markets where storable goods are traded, researchers have 
developed a concept of convenience yield to valid the above 
no-arbitrage relationship between spot price and forward 
price. As with oil, this holds as ( )( )r y T tF Se − −= , where y is 
the convenience yield net of storage cost. This convenience 
yield accounts for the benefit of owning the physical 
commodity rather than a futures contract written on it. Both of 
the above relationships lead to the convergence of the forward 
price to the spot price at the maturity of the contract, e.g. 

( )r T TF Se S−= = . However, there is no such convergence 
of forward prices in the power market.  

In the power market, there is no trade on 
single/instantaneous delivery futures/forwards contracts. In 
fact, electricity futures/forwards contracts cover different 
delivery periods, and they are more suitably called electricity 
swaps. An electricity swap contract is normally settled daily as 
the difference between the price specified in the swap contract 
and the daily spot price. It might help make a clearer 
clarification by looking at the traded products in the market 
place1. At Nord Pool, day and week futures contracts are listed 

                                                           
1 Contracts specifications described in this paper are based on the information 
provided on the websites of corresponding markets. Further details could be 
found at www.nordpool.com, www.nymex.com, www.eex.com, and   
www.aemo.com.au. 

with horizon of 6 weeks. Settlement of these futures contracts 
involves both daily mark-to-market settlement in the trading 
period and a final spot reference settlement in the delivery 
period. Forward contracts are also listed by Nord Pool 
covering each calendar month, quarter and year. These 
forward contracts have no mark-to-market settlement, so 
settlement is accumulated and realized in the delivery period. 
See Figure 1 for the trading data of the April-2007 monthly 
swap at Nord Pool within the two months right before 
delivery. In the US, PJM daily and monthly futures contracts 
are listed at New York Mercantile Exchange (NYMEX) for 
trading, and financial settlement is based on the arithmetic 
average of the PJM western hub real-time hourly locational 
marginal price (LMP) provided by PJM Interconnection LLC. 
In Germany, monthly swaps have the highest liquidity in the 
European Energy Exchange (EEX) market. At the Australian 
Energy Market (AEM, the former National Electricity Market) 
in Australia, forward contracts are called swaps in the over-
the-counter (OTC) market and called futures at the Sydney 
Futures Exchange (SFE). Because of the flow feature of 
electricity, electricity forward price converges toward the 
average spot price through the delivery period rather than the 
spot price at maturity. More specifically, the electricity 
forward price converges to the risk-adjusted market 
expectation of the average spot price of the delivery period. It 
could also be understood as that the underlying asset (price) of 
electricity forwards is the average spot price of the delivery 
period. To eliminate ambiguity, we will use the word 
electricity swaps to represent electricity futures/forwards in 
the rest part of this paper.  

 
Figure 1 Daily trading data of the April-2007 monthly swap at Nord Pool  
(Source: Nord Pool, unit: per MWh) 
 

With regard to power swaps pricing, the proposed 
methodologies in literature fall into two categories, the 
indirect approach and the direct approach. The indirect 
approach involves two steps. The first step is to model a 
forward curve describing the prices of artificial single-
delivery forwards over the delivery period. The second step is 
to model swaps as integrals of such single-delivery forwards. 
There are two methods to accomplish the first step. One is to 
start with a spot price model, and then the forward curve is 
built based on the spot dynamics, see for example [6], [7]. The 
other is to define the forward curve dynamics as an exogenous 
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process, for example using the Heath-Jarrow-Morton (HJM) 
approach originated in [11], [12]. But these two methods both 
require smoothing techniques when fitting the model to 
trading data, see for example [8]. Some researchers try to 
work out a more realistic forward curve, and their works are 
also capable to be served as the first step of the indirect 
approach [9], [10]. In contrary, the direct approach models 
swap dynamics directly as a stochastic process instead of 
going via the non-existing single-delivery forwards.. It is 
inspired from the Brace-Gatarek-Musiela (BGM) market 
mode [13] which models only the traded contracts. The BGM 
model is also developed under the HJM framework. It is also 
convenient to use the swap prices quoted in the market for 
model calibration. The key to the techniques developed under 
the HJM framework is that the drift term of the forward rates 
(or prices) under the risk-neutral measure is uniquely 
determined by the volatility functions when a number of 
regularity conditions and the standard no-arbitrage condition 
are satisfied. In this paper, we adopt the market model 
proposed by [14].  

Considering a swap contract which covers a delivery 
period 1 2[ , ]T T , the dynamics of trading prices 1 2( , , )F t T T could 
be defined as  

1 2 1 2 1 2 1 2 1 2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( )dF t T T t T T F t T T dt t T T F t T T dW tλσ σ= +
where 1 2( , , )t T Tσ is the volatility function, λ  takes account of 
the drift term under the physical probability measure, ( )W t is a 
standard Brownian motion. The volatility function should 
capture both the maturity effect and the seasonal effect. 
 

B.  Electricity Options Contracts 
The widely traded electricity options contracts are options 

written on the above discussed electricity swaps contracts 
rather than plain vanilla options written on spot electricity. 
Electricity options belong to average type path-dependent 
derivatives and are more suitably called electricity swaptions. 
Like the way we discuss electricity swaps, the market reality 
is worth to be investigated. At Nord Pool, European style 
swaptions are the most actively traded electricity options 
contracts. They are written on the nearest 2 quarters and 2 
years swap contracts. The trading period is half a year for 
options written on quarter-swaps and two-year for options 
written on year-swaps. The expiry day of the option is the 
third Thursday in the month before delivery. Five strikes are 
set when an option series is initially listed for trade. In the US, 
PJM European style electricity swaptions are traded on 
NYMEX and the trading unit is one (NYMEX Division) PJM 
monthly electricity swap contracts. The trading period is the 
current year plus the next five calendar years. The expiry day 
is set as two business days prior to the underlying futures 
month. There are total of at least 61 strike prices for the same 
underlying monthly swap. The at-the-money strike price is 
nearest to the previous day’s close of the underlying swap 
contract. Strike price boundaries are adjusted according to the 
futures price movements. At AEM in Australia, swaptions are 

traded both through OTC and also on SFE as quarterly 
contracts, up to 4 years in the future. Besides swaptions, caps2, 
floors, and collars are also commonly traded options at AEM. 

We argue that a swaption written on an electricity swap is 
not equivalent to a portfolio of options written on 
single/instantaneous futures/forwards or written on spot 
electricity. This is because the decision made on whether to 
exercise a swaption is a one-time decision before the delivery 
of the underlying swap, while a portfolio of options implies a 
series of decisions made during the delivery period. The 
information sets available to option holders are different in 
these two scenarios.  

The complexity of pricing models for electricity swaptions 
depends on the models used for underlying swaps. For a swap 
model using the indirect approach, the corresponding 
swaption model becomes complex. However, a swap model 
adopting the direct approach can lead to a tractable swaption 
model with a Black-Scholes type of formula as shown in [14].  

 

III.  A GENERAL POWER CONTRACT PORTFOLIO 
OPTIMIZATION PROBLEM 

In a deregulated power market, individual generation 
company strives to optimize its portfolio to achieve profit 
maximization. At the same time, managing a power portfolio 
becomes a risky business because deregulation brings in 
market uncertainty as well. In order to hedge against market 
risks, various power derivative contracts have been developed, 
such as swaps and swaptions which are discussed in the 
previous section. Although the optimization objective remains 
unchanged, the innovation of supply instruments should be 
accommodated in portfolio components, and more 
sophisticated risk measures should be catered.  

With regard to risk measures, variance is incapable of 
dealing with the asymmetrical profit/loss distribution of a 
power portfolio as recognized among researchers. VaR is a 
breakthrough to aggregate risk across an institution, which 
summarizes the worst loss over a target horizon that will not 
be exceeded with a given level of confidence [15]. However, 
VaR suffers the criticism that it is not subadditive. A coherent 
risk measure CVaR which is derived from VaR is adopted 
here to form the risk constraint. 

We argue the horizon for a single period optimization 
problem should be chosen as one month. This is because 
monthly swaps and their corresponding swaptions are widely 
traded, and it is more critical for the generation company to 
consider monthly rather than yearly profit/loss in order to 
reserve enough capital to cover the exposed intermediate 
risks.  

The case here is a power portfolio considered by a 
generation company, and this portfolio consists of various 
power supply contracts. The loss function of the portfolio is 
defined as ( , ) Tf y yω ω= − , where ω is the decision vector 

                                                           
2 The most widely traded options at AEM are not swaptions but caps. 
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1 2( , ,..., )mω ω ω representing the percentage of generation 
asset allocated among m supply contracts. The random vector 
y is the expected profit in each of these contracts. Let the 
density function of y be ( )p ⋅ . Given a decision ω , the 

probability of ( , )f yω not exceeding a threshold α is 

represented as
( , )

( , ) ( )
f y

p y dy
ω α

ω α
≤

Ψ = ∫ . 

Given a confidence level β  and a fixed ω , the portfolio 
VaR is defined as 

( ) min{ : ( , ) }VaR Rβ ω α ω α β= ∈ Ψ ≥  

The ( )CVaRβ ω is defined as the expected value of loss 

that exceeds ( )VaRβ ω  

( , ) ( )

1( ) ( , ) ( )
1 f y VaR

CVaR f y p y dy
β

β ω ω
ω ω

β ≥
=

− ∫  

Rockafellar and Uryasev in [16], [17] defined a 
function ( , )Fβ ω α to solve the above CVaR 

1( , ) [ ( , ) ] ( )
1 my R

F f y p y dyβ ω α α ω α
β

+

∈
= + −

− ∫  

where [ ] max{ ,0}t t+ = . 

Then, we have ( ) min ( , )CVaR Fβ βα
ω ω α=  

The discrete version to approximate ( , )Fβ ω α with totally 

N samples could be chosen as 

1

1( , ) [ ( , ) ]
(1 )

N

k
k

F f y
Nβ ω α α ω α

β
+

=

+ −
− ∑  

By introducing an auxiliary variable kz for k=1, 2, ..., N, 

the above ( , )Fβ ω α could be written as  

1

1( , )
(1 )

0, 0

N

k
k

T
k k k

F z
N

z and y z

β ω α α
β

ω α
=

⎧ = +⎪ −⎨
⎪ ≥ + + ≥⎩

∑
 

 
The optimization problem is formed as maximizing profit 

with risk as the constraint. Recall the way that CVaR is 
defined, i.e. ( ) min ( , )CVaR Fβ βα

ω ω α= , this optimization 

problem is a bi-level optimization problem as  
 
max ( , )

. . min ( , )

f y

s t F V
ω

βα

ω

ω α

−

≤
 

where V is the risk tolerance level specified by the GenCo.  
 
This in our case could be further written as 

1

1

* * * *

, 1

2

1

1max ( ( ) )

. . 1

0, 1, 2,...,

( , ) , ( , )
1min ( , )

(1 )

. . 0, ( ) 0, 1,2,...,

N

i i k
k

m

i
i

i

N

kz k

k i i k k
i

y
N

s t

i m

F z V where z is the solution of

F z
N

s t z y z k N

ω

βα

ω

ω

ω
α α

ω α α
β

ω α

=

=

=

=

=

≥ =

≤

⎧ = +⎪ −⎪
⎨
⎪ ≥ + + ≥ =⎪⎩

∑

∑

∑

∑

 

As proved in [18], if the above constraint 

1

1
(1 )

N

k
k

z V
N

α
β =

+ ≤
− ∑ is active and the corresponding 

multiplier of the constraint is not equal to zero, the above bi-
level optimization model is equivalent to a single layer linear 
optimization model as below: 

   
( , , ) 1

1min [ ]
N

T
kz kNα ω

ω
=

− ∑ y  

 s.t.       

1

1

0,  and ( ) 0,   1,...,   

1  

1
(1 )

T
k k k
m

i
i

N

k
k

z z k N

z V
N

ω α

ω

α
β

=

=

≥ + + ≥ =

=

+ ≤
−

∑

∑

y

 

 

IV.  NUMERICAL EXAMPLE 
A generation company normally holds the short position of 

European call swaptions and the long position of European 
put swaptions. Whether the option will be exercised depends 
primarily on the trading price of the underlying swap on the 
expiry day of the option. Take the European call swaption as 
an example. If it is exercised by the counterparty, the 
generation company will have the obligation to sell a swap 
contract to this counterparty with the strike price and the 
amount of power specified in this swaption. If it is abandoned, 
the generation company will need to either sell this amount of 
power as swaps in the days left before the delivery month or 
sell this amount in the spot market in the delivery period. 
Compared with the power volume traded in the spot market 
and the swap market, the amount of power covered by power 
swaptions is relatively small. In addition, the decision made 
on a swaption will lead to the transformation of the power 
covered in this swaption either to the monthly swap contract 
or to the spot market. Hence, the primary decision of portfolio 
asset allocation should be between the swap contract and the 
spot market.  

In order to emphasize the core issue, the following 
numerical study assumes the decision has been made on the 
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swaption. Data are referenced to the Nord Pool database. The 
model adopted for swaps pricing is a market model from [14], 
and the model for spot pricing is a Geometric Mean Reversion 
(GMR) model from [19]. For the spot price model, the long-
term mean of the hourly price is set as the average of Nord 
Pool system prices of April in recent years. The generation 
variable cost is set as 20 EUR/MWh, and the depreciated 
monthly fixed cost is 8500 EUR/MW-month. The volatility 
factor is set as 2 according the real trading data. Other settings 
follow [19]. Figure 2 shows the histogram of a monthly profit 
in the spot market obtained through a 90-time Monte-Carlo 
simulation. The swap model and corresponding parameter 
settings follow [14]. The costs are set the same as in the spot 
profit model, and the initial value of the price process is set as 
30 EUR/MWh. We consider the uncertainty stem from the 
possibility to enter the swap contract at different time. Figure 
3 shows the histogram of the monthly profit from the swap 
contract with the same number of samples as in the histogram 
of spot market.  
 

 
Figure 2 Histogram of monthly profit in the spot market 
 

 
Figure 3 Histogram of monthly profit in the swap market 
 

Through the above two histograms, we could see the spot 
market shows higher profitability and higher risk as well. In 
reality, a generation company secures certain amount of its 
revenue in the less volatile swap market, and speculate the rest 
of its capacity in the spot market. 

The linear programming optimization model discussed in 
the previous section is used to solve this allocation problem. 

Figure 4 shows the allocation percentage between these two 
markets as a function of CVaR risk levels set in the model. 
Figure 5 shows the optimized profit also as a function of risk 
values with a 95% confidence level. 

 

 
Figure 4 Percentage allocations between spot and swap 

 

 
Figure 5 Optimized profit at different risk levels with 95% confidence 
 

The results are consistent with intuition. With looser risk 
constraints, the allocation gives more weight to the spot 
market, and the expected profit also increases. 

V.  CONCLUSION 
An engineering thought has driven us to substitute those 

hypothetical contracts in a conventional power portfolio with 
most liquidly traded contract products. Through investigation, 
we clarify that electricity forwards/futures contracts are swaps 
covering various delivery periods, and these swaps serve as 
the underlying of electricity options. Both the trading reality 
and the proposed pricing models of these contracts are also 
discussed. Taking the perspective from a generation company, 
a portfolio optimization problem is formulated with profit 
maximization as its objective and CVaR as risk constraint. 
The risk hedging role provided by these path-dependent 
power derivatives is unique compared with in other financial 
markets. Last but not least, in order to cope with the 
complexity brought by multiple exotic contracts and by 
market uncertainties, the state-of-art development of modern 
portfolio theory should be effectively applied. 
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