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Chemical-Reaction-Inspired Metaheuristic
for Optimization

Albert Y.S. Lam, Student Member, IEEE, and Victor O.K. Li, Fellow, IEEE

Abstract—We encounter optimization problems in our daily
lives and in various research domains. Some of them are so hard
that we can, at best, approximate the best solutions with (meta-)
heuristic methods. However, the huge number of optimization
problems and the small number of generally acknowledged
methods mean that more metaheuristics are needed to fill the
gap. We propose a new metaheuristic, called chemical reaction
optimization (CRO), to solve optimization problems. It mimics
the interactions of molecules in a chemical reaction to reach
a low energy stable state. We tested the performance of CRO
with three nondeterministic polynomial-time hard combinatorial
optimization problems. Two of them were traditional benchmark
problems and the other was a real-world problem. Simulation
results showed that CRO is very competitive with the few existing
successful metaheuristics, having outperformed them in some
cases, and CRO achieved the best performance in the real-
world problem. Moreover, with the No-Free-Lunch theorem,
CRO must have equal performance as the others on average,
but it can outperform all other metaheuristics when matched to
the right problem type. Therefore, it provides a new approach
for solving optimization problems. CRO may potentially solve
those problems which may not be solvable with the few generally
acknowledged approaches.

Index Terms—Chemical reaction, metaheuristics, nature-
inspired algorithms, optimization methods.

I. Introduction

OPTIMIZATION is prevalent in almost every field of sci-
ence and engineering, ranging from profit maximization

in economics to signal interference minimization in electrical
engineering. In our daily lives, we also encounter various
optimization problems, such as finding the quickest route from
one place to another, at minimum cost, and minimizing the
construction costs of building facilities in a city, while, at
the same time, avoiding congestion of human flow among
such facilities. Optimization refers to the study of problems in
which one seeks to optimize (either minimize or maximize) the
result by systematically choosing the values of the variables in
feasible regions. We normally define an optimization problem
with several components: an objective function f, a vector of
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variables X = {x1, x2, . . . , xn}, and a vector of constraints
C = {c1, c1, . . . , cm} which limit the values assigned to X,
where n and m correspond to the problem dimensions and
the total number of constraints, respectively. We define a
solution s as the set of values assigned to X confined by C,
and the solution space S as the set of all possible solutions.
For minimization problems, our goal is to find the minimum
solution s∗ ∈ S where f (s∗) ≤ f (s) for all s. We can write

min
X∈Rn

f (X) subject to

{
ci(X) = 0, i ∈ E

ci(X) ≤ 0, i ∈ I
(1)

where R, E, and I represent the real number set, the index set
for equalities, and the index set for inequalities, respectively.
Equation (1) represents the generic form for every type of
optimization. Without loss of generality, we consider mini-
mization problems throughout this paper.1 What we need to
do is to search the solution space and pick out solution points
sequentially. Then one evaluates the objective function value of
each solution point. An optimization method (i.e., algorithm)
tells us which point should be picked from the current solution.
We can get one, or multiple, points in an instance, depending
on how the algorithm operates.

We can formulate many problems into this generic form,
i.e., (1), and then apply the existing methods to obtain
the optimal solutions, with the help of the computer. How-
ever, in computation complexity theory [1], there is a class
of problems, namely, nondeterministic polynomial-time hard
(NP-hard) problems, with no known algorithms in finding the
optimal solutions in polynomial time, unless P = NP. In other
words, for such problems, the computational effort required to
obtain the best solutions grows exponentially with the problem
size. They are normally not solvable by any optimization
algorithms in a reasonable amount of time or we cannot
guarantee that the computed results are of high quality. Most
of the time, the formulated problems are of huge dimensions
and examining every possible solution (i.e., the brute-force
method) becomes impossible. It may take several years of
CPU time to obtain the solutions, in spite of using the most
powerful supercomputer. We often cannot tolerate such long
computational time and sacrifice optimality for near-optimal
solutions if the processing time is limited. Thus, we always
adopt approximate algorithms, which can compute “good”
solutions efficiently, to tackle the NP-hard problems.

1Maximization problems work similarly, by simply adding a negative sign
to f .
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Fig. 1. Potential energy surface of a chemical reactive system.

In quantum mechanics and statistical mechanics, we can
model chemical reactions and molecular interactions with
potential energy surface (PES) (Fig. 1), which is subject to
the Born–Oppenheimer separation of nuclear and electronic
motion [2]. Fig. 1 depicts the potential energy (PE) changes
of the atom arrangements in a chemical system. The z-axis
represents the PE while the x and y-axes capture the molecular
structures of the chemical substances, which correspond to
the atomic positions and every possible orientation of all
the involved atomic nuclei. PES can be a two, three, or
multi-dimensional (hyper)surface, depending on how com-
plicated the chemical system is. In any chemical reaction,
the initial species (i.e., reactants) change to the products by
the formation and destruction of chemical bonds. Before the
formation of products, the reactants normally change to a
series of intermediate species. These small chemical changes
are called elementary steps. During each step, the chemicals
are in the transition states. Fig. 1 shows a simple example
of a chemical reaction involving three elementary steps. The
solid line gives the reaction pathway from the reactants
to products, via several transition states and intermediate
species.

There is a rule of thumb for this natural tendency—“Every
reacting system seeks to achieve a minimum of free energy”2

[3]. That means chemical reactions tend to release energy, and
thus, products generally have less energy than reactants. In
terms of stability, the lower the energy of the substance, the
more stable it is. Therefore, products are always more stable
than reactants.

It is not difficult to discover the correspondence between
optimization and chemical reaction. Both of them aim to seek
the global minimum (but with respect to different objectives)
and the process evolves in a stepwise fashion. With this discov-
ery, we develop a chemical-reaction-inspired metaheuristic for
solving optimization problems by mimicking what happens to
molecules in chemical reactions. We name it chemical reaction

2Free energy is also known as Gibbs free energy, which indicates the amount
of energy needed for a system to do useful work at constant temperature and
pressure. In a chemical reaction, the reactants have higher free energy, and
thus, they can do useful work (i.e., react with the others). At equilibrium (i.e.,
final stage of the reaction), the products have a minimum of free energy so
they can no longer react.

optimization (CRO). It is a multidisciplinary design which
loosely couples computation with chemistry.

The rest of this paper is organized as follows. Section II
briefly describes some basic concepts of optimization and
related work. In Section III, we give the design framework of
CRO and show how the concept of chemical reaction is im-
plemented in our algorithm. We show the workability of CRO
with evaluations using computer simulations in Section IV.
We conclude this paper and give some potential future work
in Section V.

II. Background

Metaheuristics are collections of ideas aiming to solve
general computational problems. A metaheuristic is usually in
the form of a procedure framework which instructs computers
how to search for solutions in the solution space. Each
metaheuristic consists of several building blocks and control
parameters for fine tuning. We can replace these components
and/or change the parameter values in order to suit our
purposes. From this, we can see metaheuristics contain a
high degree of flexibility. Most of the metaheuristics involve
randomization in the calculation, and thus, the outputs may
vary in different runs of the computation. Since exact optimal
solutions are not guaranteed, they belong to the group of
approximate algorithms. We adopt them to solve NP-hard
optimization problems because they can locate good solutions
efficiently most of the time.

This paper is motivated by other efforts to apply natural
phenomena to metaheuristics. Among the most famous ones
are simulated annealing (SA) [4], genetic algorithm (GA)
[5]–[7], and ant colony optimization (ACO) [8], [9]. Other
proposed metaheuristics include particle swarm optimization
(inspired by the social behavior of bird flocking) [10], bees
algorithm (inspired by the behavior of honey bees in collecting
nectar) [11], harmony algorithm (inspired by the improvisation
process of musicians) [12], etc. There are non-nature-inspired
metaheuristics also, like tabu search (TS) [13]. We will briefly
introduce SA, GA, ACO, and TS in the following sections.

A. Simulated Annealing

SA is inspired by annealing in metallurgy. Annealing is the
physical process of increasing the crystal size of a material
and reducing the defects through a controllable cooling pro-
cedure. SA picks a solution in each iteration. By employing
the Metropolis algorithm [14] from statistical mechanics, SA
always allows downhill movements, while uphill movements
are allowed with a probability whose distribution is controlled
by a so-called temperature parameter. Therefore, it does not
always get stuck at local minima. As the temperature drops, the
ability to jump out of local minima decreases and the system
converges to the final solution.

B. Genetic Algorithm

Holland [5] created GAs based on the idea of natural
selection, which is the phenomenon that organisms with
favorable characteristics have higher probability to survive
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and reproduce than those with unfavorable traits. GA is a
population-based metaheuristic and simulates this biologi-
cal process through producing generations of chromosomes,
which represent possible solutions of the optimization prob-
lems. Through inheritance, selection, and crossover, those
chromosomes which are favored by the objective functions,
and which satisfy the constraints, can survive and reproduce
the next generation of chromosomes with higher quality. It can
escape from local optima through mutation.

C. Ant Colony Optimization

ACO is also population-based and mimics the ecological
behavior of ants in finding food. Food paths represent solu-
tions. When ants discover paths to the food locations from their
colony, they lay down a chemical, called pheromone, along the
paths to remind other ants about the food trails. Shorter paths
have more pheromone as more ants shuttle around. It employs
the effect of evaporation of pheromone to prevent getting stuck
with local optima. We can obtain the best solution by checking
the route with the greatest amount of pheromone.

D. Tabu Search

TS is introduced by Glover [13] and it is a non-nature-
inspired metaheuristic. The core is local search together with
a tabu mechanism. In each iteration, the algorithm searches the
neighborhood of the current solution to get a new one with
an improved functional value. At the same time, it maintains
a tabu list, which contains the solutions obtained in the recent
iterations. The purpose is to prevent looping in the recent
solutions and to diversify the search to an unexplored region
of the search space. Sometimes the tabu mechanism may be
too restrictive and forbid some attractive moves. TS allows
overriding the tabu list if the newly picked solution meets
certain aspiration criteria.

E. Development of Optimization Algorithms

Generally, we can classify optimization algorithms into
heuristics and metaheuristics. Heuristics are different from
metaheuristics in that the former are tailor-made for specific
problems. They may be able to solve some problems very well
but may give poor solutions to others. On the other hand, (well-
designed) metaheuristics can be applied to a broader range
of problems and results in good performance. For a specific
problem, a tailor-made heuristic normally performs better than
a metaheuristic, but the heuristic may not be readily available.
If the heuristic does not exist, we may utilize a metaheuristic
to solve the problem. The relationship between heuristics and
metaheuristics is an accuracy-flexibility tradeoff.

When we encounter a new problem with no polynomial-
time algorithm available, we consider metaheuristics. If a
metaheuristic seems to work well on the problem, greedy and
heuristic components may be added in order to “maximize” its
performance. Although the resultant algorithm may have better
performance on this problem, it becomes more heuristic-like
and may not be able to solve other problems well. In this
way, we sacrifice flexibility for accuracy. We can take SA as
an example. SA was firstly introduced in [4] and then applied

Fig. 2. Comparison of performance for different problem types.

to quadratic assignment problem (QAP) in [15]. Afterward
modified versions were proposed sequentially in [16]–[19]
with better performance, and they became more heuristic-like.
Hybrid algorithms with SA and TS are also possible [20].

F. No-Free-Lunch (NFL) Theorem

We will never be satisfied with the existing metaheuristics,
such as those mentioned above, even though they enjoy great
success in solving many optimization problems, e.g., [21]–
[23]. According to the NFL theorem [24], all metaheuristics
which search for extrema are exactly the same in perfor-
mance when averaged over all possible objective functions.
All metaheuristics perform statistically identically on solving
computational problems. Ho and Pepyne [25] further elaborate
upon the idea, showing that it is theoretically impossible to
have a best general-purpose universal optimization strategy,
and the only way for one strategy to be superior to the others
is when we focus on a particular class of problems only.
With prior knowledge on the problem under consideration, a
metaheuristic can be modified and, thus, may become more
suited to the problem. However, this kind of modification
may not always be successful. For example, it is natural to
apply ACO to routing-related problems [26]. The performance
may be worse with other methods, say SA [27]. One can
deduce that a particular metaheuristic is, by nature, more easily
transformed to suit specific classes of optimization problems
than others.

G. Summary

No one algorithm can always, on average, surpass the oth-
ers in all possible optimization problems. However, superior
performance is still possible in a particular problem. Fig. 2
shows the comparison of performance for different problem
types. Every metaheuristic has equal performance on the
average. One may have superior performance for some types of
problems but becomes inferior on other problems. At point (a),
metaheuristic 1 outperforms metaheuristic 2, but at point (b),
metaheuristic 2 outperforms metaheuristic 1. Hereafter suc-
cessful metaheuristics refer to those which are governed by
the NFL theorem, and which is successful in solving some
problems. However, the “spectrum” of problems is so huge
that we cannot find the best match for each of them. Thus, it is
worthwhile to bring forth a new optimization search strategy if
we can prove it works well in some problems. This helps open
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Fig. 3. Profile of a molecule. The first column contains the properties of a
molecule used in CRO. The second column shows the corresponding meanings
in the metaheuristic.

up new territory for optimization; new optimization methods
may resolve the “unsolved” problems well. That is the reason
why we propose CRO for solving optimization problems.

III. Design Framework

CRO loosely mimics what happens to molecules in a
chemical reaction system microscopically. It tries to capture
the phenomenon that reactions give products with the lowest
energy on the PES. In the following sections, we will first
describe the major components of the design, i.e., molecules
and elementary reactions. Then we will give the basic idea
of the design. Next, we will explain how to bring the idea
into reality, i.e., how to do computation with the idea in terms
of an algorithm. Finally, we discuss CRO from the angle of
optimization and highlight its unique features.

A. Molecules

The manipulated agents are molecules and each has a profile
containing some properties (Fig. 3). A molecule is composed
of several atoms and characterized by the atom type, bond
length, angle, and torsion. One molecule is distinct from
another when they contain different atoms and/or different
number of atoms. If two molecules have exactly the same
set of atoms but with different molecular attributes (i.e., bond
length, angle, and torsion), we will consider them distinct
molecules. We utilize the term “molecular structure” to sum-
marize all these characteristics and it corresponds to a solution
in the mathematical domain. The presentation of a molecular
structure depends on the problem we are solving, provided
that it can express a feasible solution of the problem.3 For
example, if a problem defines the feasible solution set as
the set of n-dimensional positive real numbers Rn

+, then any
vector with n elements whose values are positive real numbers
is a valid molecular structure, and no molecule structure
can contain numbers with non-positive values.4 A change
in molecular structure is tantamount to switching to another
feasible solution. A molecule possesses two kinds of energies,
i.e., PE and kinetic energy (KE). The former quantifies the
molecular structure in terms of energy and we model it as the

3All molecular structures corresponding to a problem are of the same
solution format. They vary only with the values assigned to them and do
not represent partial solutions.

4In Section IV, CRO is applied to the quadratic assignment problem. Assume
the problem dimension is n. The feasible solution set is the set of permutations
of n numbers. Then the molecular structure of a molecule can be a permutation
of n numbers.

objective function value when evaluating the corresponding
solution. Let ω and f denote a molecular structure (or a
solution) and an objective function. Then

PEω = f (ω). (2)

The latter does not have such a direct analogy. We use
it as a measure of tolerance for the molecule changing to a
less favorable structure (i.e., a solution with higher functional
value). For example, a molecule intends to change from ω to
ω′. The change is always possible if PEω ≥ PEω′ . Otherwise,
we allow the change only when PEω + KEω ≥ PEω′ .5 Thus,
the higher the KE of the molecule, the higher the possibility
it can possess a new molecular structure with higher PE.
Recall that the molecules involved in a reaction attempt to
reach the lowest possible potential state, but blindly seeking
more favorable structures (i.e., a solution with lower functional
value) will result in metastable states (i.e., getting stuck in
local minima). KE allows the molecules to move to a higher
potential state, and hence a chance of having a more favorable
structure in a future change. Therefore, KE of a molecule
symbolizes its ability of escaping from a local minimum.
With the conservation of energy, energy cannot be created
or destroyed. We cannot intentionally add or remove KE to
a molecule. Nevertheless, we allow the conversion between
PE and KE, within a molecule or among molecules, through
some elementary reactions (or steps). As will be explained
in the next section, we intend to draw KE of the molecules
to a central energy buffer (buffer), and thus, the molecules
are getting less KE as the algorithm evolves. In other words,
we drive them to possess molecular structures with lower and
lower PE in the subsequent changes. This phenomenon is the
driving force in CRO to ensure convergence to lower energy
state. The rest of the properties listed in Fig. 3, i.e., number
of hits, minimum structure, minimum value and minimum hit
number, are used in an implementation of the algorithm. Their
uses will be discussed in Section IV-A.

B. Elementary Reactions

In a chemical reaction process, a sequence of collisions
among molecules occurs. Molecules collide either with each
other or with the walls of the container. Collisions under
different conditions provoke distinct elementary reactions,
each of which may have a different way of manipulating the
energies of the involved molecule(s). There are four types of
elementary reactions implemented in CRO (Fig. 4), namely,
on-wall ineffective collision, decomposition, inter-molecular
ineffective collision, and synthesis. These elementary reac-
tions may be categorized in terms of molecularity and extent
of change of the molecular structure. By molecularity, on-
wall ineffective collision and decomposition are unimolec-
ular reactions triggered when the molecule hits a wall of
the container, while inter-molecular ineffective collision and
synthesis involve more than one molecule. They take place
when molecules collide with each other. By the extent of

5Note that the change is not restricted to a single molecule. It can involve
more than one molecule simultaneously. This will be explained in the next
section.
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Fig. 4. Four elementary reactions implemented in CRO. (a) On-wall inef-
fective collision. (b) Decomposition. (c) Inter-molecular ineffective collision.
(d) Synthesis.

change in the molecular structure of the resultant molecule(s),
on-wall and inter-molecular ineffective collisions react much
less vigorously than decomposition and synthesis. Ineffective
collisions correspond to those cases in which the molecules get
new molecular structures in their own neighborhoods on PES
(i.e., they pick new solutions close to the original ones). Thus,
the PE of the resultant molecules tends to be close to those
of the original ones. Conversely, decomposition and synthesis
tend to obtain new molecular structures which may be far away
from their immediate neighborhoods on PES. When compared
with ineffective collisions, the resultant molecules are apt to
have greater change in PE than the original ones.

1) On-wall Ineffective Collision: An on-wall ineffective
collision [Fig. 4(a)] occurs when a molecule hits the wall and
then bounces back. Some molecular attributes change in this
collision, and thus, the molecular structure varies accordingly.
As the collision is not so vigorous, the resultant molecular
structure should not be too different from the original one.
Suppose the current molecular structure is ω. The molecule
intends to obtain a new structure ω′ = Neighbor(ω) (Table I)
in its neighborhood6 on the PES in this collision. The change
is allowed only if

PEω + KEω ≥ PEω′ . (3)

6The neighborhood structure is problem-dependent. Normally, ω and its
neighbors have similar PE.

We get

KEω′ = (PEω + KEω − PEω′ ) × q

where q ∈ [KELossRate, 1], and (1 − q) represents the
fraction of KE lost to the environment when it hits the wall.
KELossRate is a system parameter which limits the maximum
percentage of KE lost at a time. The lost energy is stored
in the central energy buffer.7 The stored energy can be used
to support decomposition. If (3) does not hold, the change
is prohibited and the molecule retains its original ω, PE and
KE. The pseudocode of the on-wall ineffective collision is as
follows:

ineff coll on wall(M, buffer)

Input: A molecule M with its profile and the central energy
buffer buffer.
1. Obtain ω′ = Neighbor(ω)
2. Calculate PEω′

3. if PEω + KEω ≥ PEω′ then
4. Get q randomly in interval [KELossRate, 1]
5. KEω′ = (PEω + KEω − PEω′ ) × q

6. Update buffer = buffer + (PEω + KEω − PEω′ )×
(1 − q)

7. Update the profile of M by ω = ω′, PEω = PEω′ and
KEω = KEω′

8. end if
9. Output M and buffer

2) Decomposition: A decomposition [Fig. 4(b)] means that
a molecule hits the wall and then decomposes into two or
more (assume two in this framework) pieces. The collision is
vigorous and leads the molecule to break into two pieces. The
resultant molecular structures should be very different from the
original one. Suppose the molecular structure of the original
molecule is ω and those of the resultant molecules are ω′

1 and
ω′

2. If the original molecule has sufficient energy (PE and KE)
to endow the PE of the resultant ones, that is

PEω + KEω ≥ PEω′
1

+ PEω′
2
, (4)

the change is allowed. Let temp1 = PEω+KEω−PEω′
1
−PEω′

2
.

We get

KEω′
1

= temp1 × k

and
KEω′

2
= temp1 × (1 − k)

where k is a random number uniformly generated from the
interval [0, 1]. However, it is rather unusual for (4) to hold. In
normal cases, PEω, PEω′

1
and PEω′

2
are of similar values (but

much larger than those in the same neighborhood), (4) holds
only when KEω is large enough. However, KE of molecules
tends to decrease in a sequence of on-wall ineffective colli-
sions as the chemical process evolves. Thus, (4) is not likely

7The conservation of energy also prevents us from intentionally adding
or removing energy from the energy buffer. The change of energy here is
governed only by the mechanisms of the relevant elementary reactions.
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TABLE I

Symbols Used in the Algorithm

Type Symbol Algorithmic Meaning Chemical Meaning
Function f Objective function Function defining PES

Neighbor Neighbor candidate generator Neighborhood structure on PES
Variable NVars Number of variables representing a solution; dimensions of the

problem
Total number of characteristic of molecule

Pop Set of solution; 2-D matrix where each row carries the values
of a solution

Set of molecules

PE Vector of objective function values; PE = f (Pop) Potential energy of all the molecules
KE Vector of number measuring the tolerance of the solutions to

have worse objective function values afterward
Kinetic energy of all the molecules

Parameter PopSize Initial number of solutions maintained; number of rows in Pop Initial number of molecules in the container
KELossRate Percentage upper limit of reduction of KE in on-wall ineffective

collisions
Percentage upper limit of KE lost to the environment in
on-wall ineffective collisions

MoleColl Fraction of all elementary reactions corresponding to inter-
molecular reactions

Same as the algorithmic meaning

InitialKE Initial value assigned t each element of KE in the initialization
stage

KE of the initial set molecules

to hold in normal cases. To encourage decomposition, we use
the energy stored in the central buffer (buffer) to sustain PEω′

1

and PEω′
2
. In other words, if (4) does not hold, we consider

PEω + KEω + buffer ≥ PEω′
1

+ PEω′
2
. (5)

If (5) holds, the change is allowed and we calculate

KEω′
1

= (temp1 + buffer) × m1 × m2 (6)

and

KEω′
2

= (temp1 + buffer − KEω′
1
) × m3 × m4 (7)

where m1, m2, m3 and m4 are random numbers independently
uniformly generated from the interval [0, 1]. Multiplication
by the two random numbers in both (6) and (7) ensure that
the values assigned to KEω′

1
and KEω′

2
are not too large, as

buffer is usually large. Then buffer is updated by temp1 +
buffer − KEω′

1
− KEω′

2
. If both (4) and (5) do not hold, the

decomposition fails and the molecule retains its original ω,
PE and KE.

In the design framework, we do not specify how to generate
ω′

1 and ω′
2 from ω. Any mechanism, resulting in ω′

1 and ω′
2

that are quite different from ω, is reasonable. An example of
this mechanism (circular shift) will be given in Section IV.
The pseudocode of the decomposition is as follows:

decompose(M, buffer)

Input: A molecule M with its profile and the central energy
buffer buffer.
1. Obtain ω′

1 and ω′
2 from ω

2. Calculate PEω′
1

and PEω′
2

3. Let temp1 = PEω + KEω − PEω′
1
− PEω′

2

4. Create a Boolean variable Success
5. if temp1 ≥ 0 then
6. Success = TRUE
7. Get k randomly in interval [0, 1]
8. KEω′

1
= temp1 × k

9. KEω′
2

= temp1 × (1 − k)
10. Create new molecules M ′

1 and M ′
2

11. Assign ω′
1, PEω′

1
and KEω′

1
to the profile of M ′

1,
and ω′

2, PEω′
2

and KEω′
2

to the profile of M ′
2

12. else if temp1 + buffer ≥ 0 then
13. Success = TRUE
14. Get m1, m2, m3, and m4 independently randomly in

interval [0, 1]
15. KEω′

1
= (temp1 + buffer) × m1 × m2

16. KEω′
2

= (temp1 + buffer − KEω′
1
) × m3 × m4

17. Update buffer = temp1 + buffer − KEω′
1
− KEω′

2

18. Assign ω′
1, PEω′

1
and KEω′

1
to the profile of M ′

1,
and ω′

2, PEω′
2

and KEω′
2

to the profile of M ′
2

19. else
20. Success = FALSE
21. end if
22. Output M ′

1 and M ′
2, Success and buffer

3) Inter-Molecular Ineffective Collision: An inter-
molecular ineffective collision [Fig. 4(c)] describes the sit-
uation when two molecules collide with each other and then
bounce away. The effect of energy change of the molecules
is similar to that in an on-wall ineffective collision, but this
elementary reaction involves more than one molecule (assume
two molecules in this framework) and no KE is drawn to
the central energy buffer. Suppose the original molecular
structures are ω1 and ω2. We obtain two new molecular
structures ω′

1 and ω′
2 from the neighborhoods of ω1 and ω2,

respectively. We accept the changes to the molecules only if

PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′
1
+PEω′

2
. (8)

Let temp2 = (PEω1 + PEω2 + KEω1 + KEω2 ) − (PEω′
1
+PEω′

2
).

We get

KEω′
1

= temp2 × p

and

KEω′
2

= temp2 × (1 − p)

where p is a random number uniformly generated from the
interval [0, 1]. The molecules maintain the original ω1, ω2,
PEω1 , PEω2 , KEω1 , and KEω2 if (8) fails. Inter-molecular
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ineffective collision allows the molecular structure to change
in a larger extent, as two molecules are involved and so the
sum of the possessed KE is larger. The pseudocode of the
inter-molecular ineffective collision is as follows:

inter ineff coll(M1, M2)

Input: molecules M1, M2 with their profiles.
1. Obtain ω′

1 = Neighbor(ω1) and ω′
2 = Neighbor(ω2)

2. Calculate PEω′
1

and PEω′
2

3. Let temp2 = (PEω1 + PEω2 + KEω1 + KEω2 )−(PEω′
1

+PEω′
2
)

4. if temp2 ≥ 0 then
5. Get p randomly in interval [0, 1]
6. KEω′

1
= temp2 × p

7. KEω′
2

= temp2 × (1 − p)
8. Update the profile of M1 by ω1 = ω′

1, PEω1 = PEω′
1

and KEω1 = KEω′
1
, and the profile of M2 by ω2 = ω′

2,
PEω2 = PEω′

2
and KEω2 = KEω′

2

9. end if
10. Output M1 and M2

4) Synthesis: A synthesis [Fig. 4(d)] depicts more than
one molecule (assume two molecules) which collide and
combine together. Suppose the molecular structures of the two
original molecules are ω1 and ω2. We attempt to generate
a new molecule with molecular structure ω′ from the two
existing ω1 and ω1. Since synthesis is vigorous, ω′ should
be quite different from ω1 and ω2. As in decomposition, any
mechanism which combines ω1 and ω2 to form ω′ may be
used. We accept ω′ only if

PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′ . (9)

We get KEω′ = PEω1 +PEω2 +KEω1 +KEω2−PEω′ . We retain
ω1, ω2, PEω1 , PEω2 , KEω1 , and KEω2 , instead of ω′, PEω′ and
KEω′ , if (9) does not hold. Interestingly, KEω′ is large when
compared with KEω1 or KEω2 , because PEω′ is expected to
have similar value to PEω1 or PEω2 generally. In this way, we
give the resultant molecule with ω′ greater ability to escape
from a local minimum in subsequent elementary reactions
involving it. The pseudocode of the synthesis is as follows:

synthesis(M1, M2)

Input: molecules M1, M2 with their profiles.
1. Obtain ω′ from ω1 and ω2

2. Calculate PEω′

3. Create a Boolean variable Success
4. Create a new molecule M ′

5. if PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′ then
6. Success = TRUE
7. KEω′ = PEω1 + PEω2 + KEω1 + KEω2 − PEω′

8. Assign ω′, PEω′ and KEω′ to the profile of M ′

9. else
10. Success = FALSE
11. end if
12. Output M ′ and Success

C. The Basic Idea

We try to explore different parts of PES as much as possible
to locate the lowest PE point, but normally, the PES is so
large that it is impossible to examine every point within a
reasonable period of time. Therefore, we have to intelligently
explore only those parts of PES, where the minimum may re-
side with high possibility. We implement the exploration with
collisions among molecules, bringing them toward the lowest
possible energy state through several types of elementary reac-
tions. Generally, there are two approaches to do the search, i.e.,
intensification and diversification.8 For each molecule starting
at a point on the PES, intensification explores the immediately
surrounding area. Whenever we fail to find an even lower
energy state in this area for some time, diversification allows
us to jump to a relatively distant area to continue the search.
In CRO, intensification is mainly contributed by on-wall
ineffective collision and inter-molecular ineffective collision,
while decomposition and synthesis perform diversification. At
the same time, the system tries to redistribute the energies
among the molecules by interchanging the energies from one
to another in different ways.

Suppose we decide to perform a chemical reaction. We
initialize a set of reactant molecules by assigning molecular
structures randomly and other properties according to the
problem type (see the next section). Thus, we distribute the
molecules over the whole PES evenly to reduce the chance
of missing some important areas. We then put the reactant
molecules in a closed container. The molecules collide ran-
domly. Assuming we have powerful eyes which allow us to
see things microscopically, we can observe a series of events,
i.e., collisions, after the reaction process starts. Collisions
trigger different types of elementary reactions depending on
the underlying conditions.9 We do not care about the inter-
event time, but will focus on change of energy in each of the
events. With time, molecules “explore” different parts of the
PES and the elementary reactions bring them toward the least
energy state. Whenever a molecule assumes a new molecular
structure with lower PE than those checked before, we record
it. The process stops once a stopping criterion is reached. We
can decide on the appropriate stopping criteria, depending on
the problem type. The final solution obtained in each run of
CRO is the structure, whose PE is the lowest, during the whole
course of the reaction.

D. Algorithm

Here, we demonstrate the above chemical reaction idea in
terms of an algorithm. There are three stages in CRO: initial-
ization, iteration, and the final stage. The computer implements
CRO by following these three stages sequentially. Fig. 5 shows
its flow chart. START and END indicate the beginning and
termination of each run of CRO. In each run, we start with
the initialization, perform a certain number of iterations, and

8Intensification and diversification are two fundamental approaches to
performing a search in a metaheuristic. Different metaheuristics implement
these approaches differently, and hence perform differently.

9The underlying conditions are subject to the optimization problems. This
framework does not fix the conditions, and examples of the conditions are
given in Section IV-A.
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Fig. 5. Flow chart of CRO.

terminate at the final stage. In initialization, we need to define
the solution space and some algorithmic functions, and assign
values to several variables and control parameters. CRO is a
population-based metaheuristic, but the number of solutions
held in memory is subject to change, depending on the effects
of decomposition and synthesis. Table I shows the symbols
used in CRO. We first produce Pop by generating the PopSize
number of solutions randomly in the solution space. This
increases the scope of searching over f. In the iteration stage,
a number of iterations are performed. In each iteration, we
choose a collision. We first decide whether it is a unimolecular
or an inter-molecular collision. To do this, we generate a
random number t, in the interval of [0, 1]. If t is larger than
MoleColl, it will result in an event of unimolecular collision.
Otherwise, an inter-molecular collision will take place. (Note
that we will always have unimolecular collision when there
remains only one molecule in Pop.) Then we randomly select
a suitable number of molecules from Pop, according to the
just-decided collision type (left or right side of Fig. 5). In fact,
the molecules involved in a collision highly depend on their
physical locations in the container. Nevertheless, this fact does
not bear any importance to the algorithm and so we ignore it
for simplicity. Next, we examine the criteria of decomposition
or synthesis to decide which type of collision (left: on-wall
ineffective collision or decomposition; right: inter-molecular
ineffective collision or synthesis) it is. After that, we check
for any new minimum point found and record it. This iteration

stage repeats until any one of the stopping criteria is matched.
A stopping criterion may be defined based on the maximum
amount of CPU time used, the maximum number of iterations
performed, an objective function value less than a predefined
threshold obtained, the maximum number of iterations per-
formed without improvements or any other appropriate criteria.
In the final state, we output the solution with the lowest value
found over f. The pseudocode of CRO is as follows:

CRO(f, NVars)

Input: Problem-specific information (the objective function
f, constraints, and the dimensions of the problem NVars)
1. Assign parameter values to PopSize, KELossRate,

MoleColl and InitialKE
2. Let Pop be the set of molecule 1, 2, . . .,

PopSize
3. for each of the molecules do
4. Assign a random solution to the molecular

structure ω

5. Calculate the PE by f (ω)
6. Assign the KE with InitialKE
7. end for
8. Let the central energy buffer be buffer and assign

buffer = 0
9. while the stopping criteria not met do
10. Get t randomly in interval [0, 1]
11. if t > MoleColl then
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12. Select a molecule M from Pop randomly
13. if decomposition criterion met then
14. (M ′

1, M ′
2, Success )=decompose(M, buffer)

15. if Success then
16. Remove M from Pop
17. Add M ′

1 and M ′
2 to Pop

18. end if
19. else
20. ineff coll on wall(M, buffer)
21. end if
22. else
23. Select molecules M1 and M2 from Pop randomly
24. if synthesis criterion met then
25. (M ′, Success)=synthesis(M1, M2)
26. if Success then
27. Remove M1 and M2 from Pop
28. Add M ′ to Pop
29. end if
30. else
31. inter ineff coll(M1, M2)
32. end if
33. end if
34. Check for any new minimum solution
35. end while
36. Output the overall minimum solution and its function

value

E. Relationship to Optimization

We are going to discuss CRO from the perspective of
optimization. In the initial stage, we define the PopSize and
InitialKE. The total energy (TE) of the system is given by

TE =
PopSize∑

i=1

PEωi
+KEωi

=
PopSize∑

i=1

f (ωi)+InitialKE×PopSize.

(10)
We assign random solutions to the molecules at initialization

and this is tantamount to the placement of “solution seeds”
evenly over the whole solution space.

In iterations, the molecules undergo a series of on-wall
and inter-molecular ineffective collisions. In any one of these
events, they search around their own neighborhoods for (local)
minimum solutions. Suppose a molecule corresponding to
solution ω attempts to change to one corresponding to a new
solution ω′. The change is allowed with probability one when
�PE = f (ω) − f (ω′) ≥ 0. If �PE < 0, the change is
only allowed when KE is large enough to compensate �PE.
One difference between the two ineffective collisions is that
an inter-molecular ineffective collision involves two or more
molecules, i.e., their KE can be shared among the molecules.
So the possibility of a molecule having a larger value of f (ω′)
is higher in an inter-molecular ineffective collision than in
an on-wall one. Recall that in the latter, a part of the KE is
transferred to buffer (whose initial value is 0), and thus

TE =
PopSize∑

i=1

PEωi
+ KEωi

+ buffer.

When a series of on-wall ineffective collisions happen, the
molecules tend to have lower KE and result in subsequent
solutions ω with lower f (ω). The local minimums can then
be reached.

When it is estimated that the solution corresponding to a
molecule is a local minimum, the molecule tries to jump to a
new region of the search space through decomposition. One
may decide if a local minimum has been reached based on the
number of collisions which have occurred without resulting in
a lower function value. This is known as the decomposition
criterion. To increase the scope of searching in other regions,
the molecule splits into two (or more) molecules.

A molecule with too little KE lacks the ability to transform
to a new molecule with higher function value and gets stuck in
a local minimum. When two (or more) such molecules collide,
synthesis takes place and results in a single molecule with a
solution far removed from the original solutions. The resultant
molecule can have higher KE due to the combination of energy
from multiple molecules. It allows the exploration of a new
region of the solution space.

If we observe the whole “life cycle” of a molecule, it
searches a region of the solution space for a certain period
and then jumps to another region to continue the search. This
process can repeat since we “recycle” the excessive energy
of some molecules through buffer. If we do not limit the
searching time, CRO can explore every possible region of the
solution space and eventually find the global minimum.

We can see that “energy” plays a key role in obtaining new
solutions. TE is constant in the whole course of searching.
In (10), PE is solely determined by the objective function f.
We can control the size of TE with InitialKE and PopSize. A
lower TE will increase the convergence rate, but this is at the
expense of getting stuck in a local minimum. If f has a very
uneven “landscape,” large InitialKE is more favorable.

F. Characteristics

CRO is a variable population-based metaheuristic, where
the total number of solutions kept simultaneously by the
algorithm may change from time to time. Decomposition and
synthesis increases and decreases the number of molecules in
the container, respectively—decomposition breaks a molecule
into two or more, whereas synthesis combines two or more
molecules into one.

Inequalities (3)–(5), (8), and (9) capture the idea of the con-
servation of energy. The main idea is to redistribute the energy
among the molecules. The on-wall ineffective collision and the
inter-molecular ineffective collision give the effect of local
search. We weaken the ability of molecules to escape from
local minima by drawing their KE out to the central energy
buffer (through on-wall ineffective collision). To prevent the
molecules from getting stuck at local minima, decomposition
and synthesis give the molecules a way to explore other
regions of the PES.

The use of the central energy buffer and the concept of
energy exchange are the most distinguishable features of CRO.
Energy provides molecules the ability to find new solutions.
The central energy buffer allows implicit cooperation among
the molecules; the excessive energy of molecules accumulated
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through on-wall ineffective collision can be reused in de-
composition when the resultant molecules (in decomposition)
do not have adequate energy. Moreover, explicit cooperation
among molecules is realized through energy exchange due
to inter-molecular collisions (i.e., inefficient collision and
synthesis); the sum of the energy of two or more molecules
is typically larger than that of a single molecule, and thus,
the probability of getting a new solution in an inter-molecular
collision is higher than in a unimolecular collision.

The basic unit of CRO is a molecule. The events in
CRO constitute several types of elementary reactions. In each
iteration, a subset of the molecules is involved. These charac-
teristics make CRO particularly suited to be implemented in an
object-oriented programming language, e.g., C++ and Java. We
can create a class to define a molecule, with several methods
of the class corresponding to the elementary reaction types.
When a molecule is created or destroyed, we can just simply
add or remove the corresponding object in the main program.

In general, CRO may be considered an optimization frame-
work, which allows users to use their favorable heuristic com-
ponents for their own optimization problem. The changeable
components include the decomposition and synthesis criteria,
the neighborhood structure used in on-wall and inter-molecular
ineffective collisions, and the mechanisms in generating new
solutions in decomposition and synthesis. In this way, CRO
can be applied to a wide range of optimization problems.

Moreover, CRO can be made to manipulate multiple tanks
of molecules in parallel. Suppose we have a problem which
can be broken down into several modules. We implement
several CRO programs corresponding to the different modules
simultaneously. At certain moments, we may arrange certain
CRO programs to swap their molecules or to exchange infor-
mation, like the best functional value obtained. A distributed
(or parallel) version of CRO can be implemented in this way
and synchronization among different CRO programs is not
required. Therefore, CRO is best suited to those types of
problems which will benefit from parallel processing rather
than sequential processing.

Readers may have questions about the similarities between
CRO and SA. The differences are three-fold. First of all, the
inspiration of CRO is from the “first principles” of a chemical
reaction, which is different from annealing in metallurgy of
SA. CRO looks at things microscopically, while SA mimics the
system macroscopically. Secondly, the main concern of CRO
is the redistribution of energy from PE to KE (and vice versa)
among different molecules. It does not use the Metropolis
condition, which is the core of SA. Thirdly, CRO is a vari-
able population-based metaheuristic. The number of solutions
maintained by the system is more than one and subject to
change, depending on the problem we are solving. However,
SA only keeps one solution at a time. These characteristics
establish the uniqueness of CRO compared to SA, and to other
metaheuristics.

IV. Simulation

We are going to show that CRO is a successful metaheuristic
governed by the NFL theorem. To do this, we apply CRO

to the QAP [28], the resource-constrained project scheduling
problem (RCPSP) [29], [30], and the channel assignment
problem (CAP) [31].

A. Quadratic Assignment Problem

QAP is very easy to state but it is one of the most difficult
NP-hard combinatorial optimization problems.10 Mathemati-
cians and computer scientists consider instances of size larger
than 20 intractable. It has been proved [32], that it is im-
possible to find an ε-approximation algorithm for QAP. QAP
has many real-life applications [28] and we can transform it
easily to other well-known combinatorial optimization prob-
lems, e.g., traveling salesman problem [33], maximum clique
problem [34], and graph-partitioning problem [1].

QAP tries to minimize the total cost when assigning fa-
cilities to locations.11 The facilities are of different types
and the number of facilities and that of locations are equal.
Given the distance between each pair of locations and the
human flow between any two facilities,12 we define the cost
as (flow × distance), and obtain the total cost by summing the
cost of any possible pairs of facilities and locations. Each type
of facility must be built at a unique location. In other words,
we cannot assign duplicate facilities to distinct locations and
each location must have a facility assigned. In fact, this
constraint makes the problem very hard to solve. Moreover,
the number of possible solutions grows exponentially with
the problem dimensions (i.e., n).13 Most of its real world
applications have n larger than 20, i.e., beyond the size of
computational tractability, and thus, the brute force method is
fruitless. Different QAP instances have different n, flow, and
distance values.

We are going to define QAP mathematically and to represent
it in the generic form of (1) from Section I. Consider a problem
of size n. We have n facilities to be assigned to n locations.
We define fij as the flow between facilities i and j, and dkl as
the distance between locations k and l. We write the objective
function and the constraints as follows:

min
n∑

i,j=1

n∑
k,l=1

fijdklxikxjl (11)

subject to
∑n

i=1 xij = 1, 1 ≤ j ≤ n∑n
j=1 xij = 1, 1 ≤ i ≤ n

xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

10Combinatorial optimization problem is a category of optimization prob-
lems whose solution space is discrete, usually large, and limited. It is important
as it represents the whole class of optimization utilizing the computer.
Nowadays, most optimization problems are solved with the computer, and the
solution space becomes discrete and limited when we describe and analyze it
in the computer.

11We use the terms locations and facilities for ease of explanation. We can
replace them with any other meaningful terms to suit our purposes.

12Human flow from facility i to facility j means the rate of people (e.g., the
number of people per hour) moving from facility i to facility j. The human
flow in the opposite direction, i.e., from facility j to facility i, can be different.
If they are identical, the flow matrix is symmetric.

13The size of the solution space is equal to n!. When n equals five, there
are 5! = 120 possible solutions. However, when n increases four times to 20,
it expands to roughly 2.43 × 1018.
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TABLE II

Values Assigned to the Control Parameters in the Simulations

Parameter Value
QAP RSPSP CAP

PopSize 25 10 10
KELossRate 0.8 0.5 0.2
MoleColl 0.2 0.2 0.2
InitialKE 1 000 000 10 000 800
αa 1300 200 300
βb 10 000 100 10

aα and bβ are thresholds defined for the conditions for decomposition and
synthesis, respectively.

Fig. 6. Example of neighbors in the two-exchange neighborhood structure.

If we examine the constraints more carefully, we find that
every possible solution is in the form of a permutation of n
elements. The positions and the values of the permutation cor-
respond to the locations and the facilities, respectively. Then
we can determine the objective function value by summing
the products of flow and distance of every possible pair in
the permutation. Consider an instance of the problem with n
equal to four. One possible solution is [2, 4, 3, 1], i.e., we
assign facility 2 to location 1, facility 4 to location 2, etc. We
evaluate this solution by computing

f22d11 + f24d12 + f23d13 + f21d14

+f42d21 + f44d22 + f43d23 + f41d24

+f32d31 + f34d32 + f33d33 + f31d34

+f12d41 + f14d42 + f13d43 + f11d44.

(12)

1) Implementation Details: This section is dedicated to
explaining how to apply CRO to solve QAP. In Section III,
the general design framework has been illustrated. To build the
actual program codes from the framework, we need to specify
the implementation details which are suitable for QAP.

The second column of Table II shows the values assigned
to the control parameters of CRO used in the simulation. A
possible solution is in the form of a permutation of the problem
dimensions. Fig. 6 shows two possible solutions when the
problem dimension is equal to six. The first solution means
that we assign the first facility to location 1, the second facility
to location 2 and so on. (Note that a solution can have a dif-
ferent form if we apply CRO to other problems.) We adopt the
two-exchange neighborhood structure (Fig. 6) since there is no
natural neighborhood structure defined for permutations, com-
pared with continuous functions. The second solution gives a
neighbor of the first. In this representation, we assign the fifth
facility to location 2 and the second facility to location 5.

Fig. 7. Two examples of the circular shift operator.

This neighborhood structure is used in the implementations
of on-wall ineffective collision and inter-molecular ineffective
collision.

We are going to explain the last four attributes in Fig. 3
which have not been discussed in Section III-A. The number of
hits indicates how many times the molecule has been involved
in a collision of any kind. Equivalently, it tells us how many
solutions the molecule has carried. The minimum structure
and the minimum value mean the best molecular structure
and the corresponding functional value that the molecule has
experienced, respectively. The minimum hit number records
when the molecule obtains its latest minimum structure, in
terms of the number of hits. For example, if the molecule gets
its latest minimum molecular structure in its tenth collision,
then the minimum hit number is set to 10. The number does
not change provided that the molecule does not experience any
new minimum molecular structure in any subsequent collision.
Naturally, when a molecule is just created, the minimum
structure and the minimum value are equal to its initial
molecular structure and PE, respectively. Both the number of
hits and minimum hit number are set to zero.

In decomposition, we obtain two solutions ω′
1 and ω′

2 from
ω. We adopt the circular shift operator (Fig. 7) to generate new
solutions. We obtain a new solution by generating an integer14

in the range of [−n, n], where n is the size of the permutation,
indicating how many steps we need to shift from the original
one. Negative and positive values mean shifting to the left and
right, respectively. In Fig. 7, we get the left permutation by
shifting to the left for one step, and the right one by shifting
to the right for two steps. On the left-hand side of Fig. 5, the
decomposition criterion determines whether a unimolecular
collision is a decomposition or an on-wall ineffective collision.
Here, we specify the decomposition criterion to test if the
selected molecule has stayed in a stable state for a certain
period of time, i.e., (number of hits − minimum hit number) >

α (Fig. 3 and Table II). It means that it has not moved to
a lower energy state for certain time in terms of number of
hits α.

In synthesis, we attempt to generate a new molecule with
solution ω′ from two existing molecules with solutions, ω1 and
ω2. We adopt the distance-preserving crossover operator [35]
to the minimum structures of the two existing molecules to
get ω′. On the right-hand side of Fig. 5, the synthesis criterion
determines whether an inter-molecular collision is a synthesis
or an inter-molecular ineffective collision. Here, we specify the
synthesis criterion to test if both molecules, at the same time,

14Here, we generate two random integers independently. Then we apply
circular shift with the two integers separately to obtain the independent
solutions.
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TABLE III

Implementation Details and Settings Used in the Simulations

Implementation Details Settings
QAP RCPSP CAP

Solution space Permutation set Permutation set Integer vector
Parameter settings Second column of Table II Third column of Table II Fourth column of Table II
Neighborhood structure Two-exchange

neighborhood structure
Same as QAP One-difference neighbor-

hood structure
Decomposition criterion (number of hits–minimum

hit number) >α

Same as QAP Same as QAP

Decomposition
mechanism

Circular shift Same as QAP Half-total-change

Synthesis criterion KEω1 < β and KEω2 < β Same as QAP Same as QAP
Synthesis mechanism Distance-preserving

crossover
Same as QAP Probabilistic select

have insufficient KE, i.e., KEω1 ≤ β and KEω2 ≤ β, where β

(Table II) defines the least amount of KE a molecule should
possess. When a molecule has too little KE, it potentially loses
its ability to escape from a local minimum. When two such
molecules collide, they combine and form a new molecule
whose KE becomes large again. Then the resultant molecule
can continue to explore different parts of the PES with the
ability to avoid getting stuck in a local minimum. We give a
recapitulation of the above mentioned implementation details
in the second column of Table III. When applying CRO
to other problems, the implementation details are subject to
change in order to have better performance. In other words,
the implementation details are problem-dependent.

We summarize the simulated versions of these four elemen-
tary reactions in terms of intensification and diversification in
Table IV. More ticks indicate stronger effects. Note that the
distance-preserving crossover operator used in synthesis has
some effect of intensification. For QAP, we can replace the
circular shift and distance-preserving crossover mechanisms
with other suitable ones. The extent of intensification and
diversification may vary, depending on how we implement the
mechanisms in the simulation.

The values of the parameters, neighborhood structure, de-
composition and synthesis criteria, and the mechanisms used in
decomposition and synthesis to generate new molecule(s) can
be changed and tuned to match the nature of the problem. To
the best of our knowledge, there are no theoretical guidelines
on how to tune them and to match them with the problem, as
is also true in other metaheuristics. The adjustments rely on
the experience and preferences of researchers [36].

2) Results: We tested the effectiveness of CRO with 23
problem instances (Table V) selected from a QAP digital
library [37] and compare the results with an oracle-based view
of computation [24], i.e., finding the best solution within a
certain number of function evaluations. Thus, the stopping
criterion is when a certain number of function evaluations
are reached. We do not adopt the computational time as the
performance metric, simply because it highly depends on how
we program the simulation codes.15 We compare the results
of CRO with those of three other famous metaheuristics for

15Computational times for a run of simulation on the test instances are also
provided in Table V as reference.

TABLE IV

Intensification and Diversification of the Four Elementary

Reactions

Elementary Reactions Intensification Diversification
On-wall ineffective collision

√ √ √
Decomposition

√ √
Inter-molecular collision

√ √ √
Synthesis

√ √ √

solving QAP, i.e., fast ant system (FANT) [38], an improved
simulated annealing (ISA) [17], and tabu search (TABU)
[39].16 They are among the best and available algorithms to
solve QAP. All simulation codes are programmed in C++
and tested in Windows environment. We ran all the sim-
ulations on the same computer, with configuration of Intel
Pentium 4 3.2 GHz and 512 MB dual RAM. This removes
any machine-dependent variations and provides more objective
comparisons. Table V shows the simulation results of CRO and
the other three algorithms. As in [40], in Table VI, we also
give the result of t-test with 95% confidence level compar-
ing the means for CRO and those of the other algorithms
in solving the 23 problem instances. “s+,” “s−,” and “≈”
indicate that CRO is significantly better, significantly worse,
and comparable in performance to the counterpart, respec-
tively. All the results of CRO are generated with the same
implementation details explained in the previous section. We
adopt the same stopping criterion, that the function evaluation
limit is set to 150 000, for all the test cases, except tai10b,
tai12b, and tai15b.17 We obtained the statistics by repeat-
ing the simulation run 50 times. They are the “minimum,”
“maximum,” “mean,” and “StdDev” of each set of data and
represent the best case, and the worst case, the average and
the standard deviation, respectively, in the 50 runs. The results
from different runs vary as they employ randomization in the
calculation. Values in brackets mean it is the best among all the
metaheuristics.

16Their original codes can be found on the Internet (http://mistic.heig-
vd.ch/taillard/). We modified their original codes to meet the stopping cri-
terion.

17150 000 function evaluation limit is too large when compared with their
solution spaces. If we still use 150 000, many parts of the solution spaces are
explored by the algorithms, and thus, the power of the algorithms cannot be
revealed.
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TABLE V

Simulation Results of CRO on Solving QAP Compared With the Other Three Metaheuristics

Instance Problem
Size

Global
Min.

Function
Evaluation
Limit

FANT ISA
Min. Max. Mean StdDev Min. Max. Mean StdDev

nug21 21 2438 150 000 (2438) 2464 2444.44 8.03 (2438) 2462 2445.72 9.42
nug22 22 3596 150 000 (3596) 3632 3599.80 7.39 (3596) 3644 3607.84 17.88
nug24 24 3488 150 000 (3488) 3546 3500.40 13.69 (3488) (3526) 3498.40 13.07
nug25 25 3744 150 000 (3744) 3772 3750.36 7.50 (3744) 3768 (3746.96) 5.36
nug27 27 5234 150 000 (5234) 5324 (5249.52) 24.87 (5234) 5314 5259.04 31.47
nug28 28 5166 150 000 (5166) 5266 5203.24 24.99 (5166) 5278 (5201.28) 30.17
nug30 30 6124 150 000 6128 6210 6158.56 23.00 (6124) 6214 (6146.96) 22.08
kra30a 30 88 900 150 000 (88 900) 93 200 (90 601.80) 788.29 90 160 94 340 91 644.20 1029.06
kra30b 30 91 420 150 000 (91 420) 93 010 92 031.00 425.24 91 590 94 990 92 752 899.41
kra32 32 88 700 150 000 (88 700) 91 490 90 373.80 746.27 (88 700) 93 060 90 664.60 1085.55
tai10b 10 1 183 760 50 000 (1 183 760) (1 183 760) (1 183 760.00) (0) (1 183 760) 1 213 671 1 184 925.80 4938.19
tai12b 12 39 464 925 50 000 (39 464 925) (39 464 925) (39 464 925.00) (0) (39 464 925) 45 097 713 41 801 386.02 1 674 363
tai15b 15 51 765 268 50 000 (51 765 268) (51 855 477) (51 744 385.84) (25 041.2) (51 765 268) 50 035 184 51 814 064.70 59 535.52
esc32a 32 130 150 000 (130) 146 138.60 3.21 134 150 140.60 3.16
esc32b 32 168 150 000 (168) (192) 178.88 9.70 188 224 208.96 (7.94)
esc32c 32 642 150 000 (642) (642) (642.00) (0) (642) (642) (642.00) (0)
esc32d 32 200 150 000 (200) (200) (200.00) (0) (200) 208 202.44 1.82
esc32e 32 2 150 000 (2) (2) (2.00) (0) (2) (2) (2.00) (0)
esc32g 32 6 150 000 (6) (6) (6.00) (0) (6) (6) (6.00) (0)
esc32h 32 438 150 000 (438) 440 438.12 0.48 (438) 442 439.80 1.30
tai64c 64 1 855 928 150 000 (1 855 928) (1 857 646) (1 856 255.96) 664.31 (1 855 928) 1 857 660 1 859 213.60 (4081.4)
wil50 50 48 816 150 000 48 964 49 254 49 098.72 71.41 (48 844) 49 296 (48 937.12) (96.30)
wil100 100 273 038 150 000 274 800 (275 980) 275 436.48 (279.92) (273 816) 276 034 (274 683.32) 525.24
Instance TABU CRO

Min. Max. Mean StdDev Min. Max. Mean StdDev Computational time
(s)

nug21 (2438) 2484 2452.28 10.63 (2438) (2456) (2443.64) (5.39) 1.046
nug22 (3596) 3696 3618.92 22.76 (3596) (3606) (3597.80) (2.78) 1.109
nug24 (3488) 3554 3503.20 15.74 (3488) (3526) (3494.88) (10.21) 1.265
nug25 (3744) 3788 3751.76 10.84 (3744) (3760) 3749.68 (4.19) 1.343
nug27 (5234) 5382 5285.56 40.33 (5234) (5298) 5259.36 (18.92) 1.500
nug28 (5166) 5282 5219.76 35.68 (5166) (5238) 5202.52 (18.24) 1.610
nug30 (6124) 6234 6175.28 25.93 6128 (6206) 6170.12 (19.48) 1.781
kra30a (88 900) 95 280 92 428.40 1638.10 (88 900) (61 800) 90 664.20 (670.28) 1.797
kra30b 91 490 96 050 93 029.60 1183.56 91 490 (92 840) (92 022.80) (332.98) 1.797
kra32 (88 700) 94 430 91 714.60 1344.64 (88 700) (91 260) (90 190.80) (635.02) 1.984
tai10b (1 183 760) (1 183 760) (1 183 760.00) (0) (1 183 760) 1 187 126 1 184 029.28 922.44 0.407
tai12b (39 464 925) 40 063 583 39 526 972.08 172 115.2 (39 464 925) 40 063 573 39 511 175.94 139 496.6 0.485
tai15b (51 765 268) 51 944 836 51 822 408.02 58 390.18 (51 765 268) 52 205 386 52 035 537.10 88 128.42 0.640
esc32a 134 162 145.80 6.95 (130) (142) (136.84) (2.68) 2.000
esc32b (168) 224 196.32 10.72 (168) (192) (175.36) 8.53 1.985
esc32c (642) 646 642.24 0.96 (642) (642) (642.00) (0) 2.016
esc32d (200) 216 205.32 5.07 (200) (200) (200.00) (0) 2.015
esc32e (2) (2) (2.00) (0) (2) (2) (2.00) (0) 2.031
esc32g (6) (6) (6.00) (0) (6) (6) (6.00) (0) 2.016
esc32h 440 478 453.00 12.72 (438) (438) (438.00) (0) 2.000
tai64c (1 855 928) 1 883 516 1 863 245.04 6081.09 (1 855 928) 1 860 348 1 856 796.04 1004.97 6.984
wil50 48 996 49 828 49 343.88 232.61 48 918 (49 214) 49 071.12 68.26 4.407
wil100 280 634 283 190 281 779.56 596.49 274 618 276 278 275 291.16 345.02 15.985

In order to understand the performance of CRO during a
simulation run, we examine the case of the instance kra3218

in detail. Each run of simulations is terminated once the
number of function evaluations reaches 150 000, where we
examine roughly a 5.70 × 10−31 (=150 000/32!) fraction of
the whole solution space only, in each run of simulation.
Although all metaheuristics can obtain the global minimum,
CRO outperforms all the others, in terms of the mean and

18kra32 has problem size of 32. It defines the distance and flow information
with real-world data used to plan Klinikum Regensburg in Germany. The
solution space is of the order of 1035 (=32!), and its global minimal solution
has function value equal to 88 700.

maximum costs obtained. For further examination, we plot
the results versus the number of function evaluations in the
period of a simulation run in Fig. 8. We record the best result
after each interval of 2500 function evaluations. There are
61 (=1 + 150 000/2500) data points in each run, including the
one before each simulation run starts. Assume each function
evaluation takes roughly equal amount of time, for all the
plots above, each data point represents the statistical result
of 50 runs at a time instance. Fig. 8(a)–(c) show the plots of
mean cost, maximum cost, and minimum cost, respectively.
For easier observation, Fig. 8(d)–(f) give the zoomed portions
of the graphs on their left, corresponding to the dotted-line
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TABLE VI

Result of t-Test with 95% Confidence Level Comparing the

Means for CRO and the Other Algorithms in Solving

the QAP Instances

Instant FANT ISA TABU
nug21 ≈ ≈ s+
nug22 s+ s+ s+
nug24 s+ ≈ s+
nug25 ≈ s− ≈
nug27 s− ≈ s+
nug28 ≈ ≈ s+
nug30 s− s− ≈
kra30a ≈ s+ s+
kra30b ≈ s+ s+
kra32 ≈ s+ s+
tai10b s− ≈ s−
tai12b s− s+ ≈
tai15b s− s− s−
esc32a s+ s+ s+
esc32b s+ s+ s+
esc32c ≈ ≈ s+
esc32d ≈ s+ s+
esc32e ≈ ≈ ≈
esc32g ≈ ≈ ≈
esc32h s+ s+ s+
tai64c s− s+ s+
wil50 s+ s− s+
wil100 s+ s− s+

boxes. They show CRO obtain better or equally good results
eventually. For Fig. 8(b), (c), (e), and (f), points on the same
curve do not necessarily belong to the same run and they are
the results of the whole 50 runs.

To understand how the parameter values are set as in
Table II, we do an analysis on the parameters. Let the
settings in Table II be the basis. For each of the parameters
investigated, we replace the parameter value with some other
reasonable ones and fix the rest with the values as in the
basis. We repeat the simulations on kra32 for 50 times. The
performance is checked with the mean of the best total costs
at the ends of the 50 runs. As shown in Fig. 9, the parameter
settings in Table II (except for β) are the best. In Fig. 9(e), the
last two data points for β appear to be an anomaly as the total
cost increases and then decreases as β changes from 1.2×104

to 1.6×104. This is because CRO is a stochastic metaheuristic,
and the results may vary in different runs of the simulation,
especially when the number of runs is not sufficiently large.

As shown in Table V, CRO can outperform the other three
metaheuristics in many of the test instances. For esc32c,
esc32d, esc32e, esc32g, and esc32h, CRO can even find
the global minimum in all the 50 runs. Moreover, CRO
can generate the minimum standard deviations among all
the metaheuristics in most of the problem instances. This
implies that CRO can achieve the most stable results. From
the website of the QAP digital library [37], most of the test
cases in which CRO works well are real-life instances, whose
flow and distance data are from real-life examples. Their
common characteristic is that the fitness landscapes formed
from the problems are in a certain pattern, unlike the randomly
generated instances whose fitness landscapes are unstructured.
For problems other than QAP, there are also real-life instances
as well as randomly generated instances. By applying the

phenomenon shown in the QAP, CRO is expected to have
better performance for the real-life instances.

We note that CRO is already at a disadvantage in this
comparison, because the chosen competitors (FANT, ISA, and
TABU) are already the QAP-adapted versions of their original
metaheuristics. We believe that if we can get the research
community interested in this proposed approach, improved
versions of CRO will soon be available. Nevertheless, we are
confident that CRO is one of the successful metaheuristics
which can be used to solve optimization problems in general.

B. Resource-Constrained Project Scheduling Problem

Similar to QAP, RCPSP is one of the classical NP-hard
optimization problems. It “is one of the most intractable prob-
lems in Operations Research” [41]. Job-shop, flow-shop, and
open-shop problems [42] are its special cases. Comprehensive
surveys about the heuristics on solving RCPSP can be found
in [43] and [44].

Consider that we have a project consisting of a set of n
activities, S = {1, 2, . . . , n}, where n indicates the dimensions
of the problem. There are a set of (renewable) resources K
and each resource k ∈ K has its own capacity limit Rk. For
each activity j ∈ S, there are a set of immediate predecessor
activities Pj , and it has a non-preemptable duration dj . We
denote the finish time of activity j as fj (and thus the start
time is fj−dj). When activity j is being processed, it consumes
rj,k units of resource k. Let A(t) = {j ∈ S|fj − dj ≤ t < fj}
be the set of activities being processed at time t. We add
two dummy activities (indicated as activity 0 and activity
n + 1) with zero duration and zero resource consumption to
S and they represent the “project start” and “project end,”
respectively. They must be the first and the final activities
to be scheduled accordingly. For the rest of the activities, an
activity j can only be scheduled starting at time t provided
that all its immediate predecessors Pj have been finished at
or before t, and that there are adequate resources between
time t and t + dj . The makespan is the time we spend on
the project (i.e., the finish time of activity “project end”).
All variables shown above take non-negative integer values.
RCPSP tries to minimize the makespan of the schedule of a
project subject to the precedence constraints and the resource
constraints. Mathematically, in the generic form of (1) from
Section I, we can formulate RCPSP as follows:

min fn+1 (13)

subject to fh ≤ fj − dj 1 ≤ j ≤ n + 1; h ∈ Pj,∑
j∈A(t) rj,k ≤ Rk k ∈ K; t ≥ 0,

fj ≥ 0 0 ≤ j ≤ n + 1.

1) Implementation Details: Each solution of RCPSP can
be represented in the form of permutation, i.e., activity list
[42]. Consider we have a project of four activities, with activity
0 and activity 5 as the “project start” and “project end.” A
solution [0, 3, 1, 4, 2, 5] means that activity 3 has higher
priority to be scheduled than activity 1, 4 and 2.19 We use the

19Activity 0 and 5 must be in the first and the last place in the solution
because they indicate the “project start” and “project end.”
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Fig. 8. Plots versus the duration of a simulation run. (a) Mean cost. (b) Maximum cost. (c) Minimum cost. (d) Zoomed portions of (a). (e) Zoomed portions
of (b). (f) Zoomed portions of (c).

following serial schedule generation scheme [42] to generate
the finish times of all activities and to get the objective function
value, i.e., makespan.

For fast implementation, we adopt the same algorithmic
details of CRO for QAP to solve RCPSP, since both problems
have the same solution structure, i.e., a permutation of n
numbers. The only difference is in the parameter values used,
as shown in the third column of Table II.

2) Results: We test the performance of CRO with the
benchmark instance set j120 from a digital library PSPLIB
[45]. j120 contains 600 problem instances and each has 120
activities for scheduling, excluding the dummy activities. We
do the simulation for the whole set of instances once and,
for each instance, we end the iterations when 60 000 function
evaluations have been reached, i.e., 60 000 calls to the above
schedule generation scheme.

As shown in the official website of PSPLIB, the current
best results generated by heuristics (and metaheuristics) are
reported. We tabulate the authors, the reported year and the
number of first best makespan found in Table VII. The data are
sorted in descending order of the number of instances. We also
include the number of instances found by CRO that correspond
to the currently best makespan. As indicated, CRO can obtain
the best makespans of 116 instances. Note that we adopt
the same neighborhood structure, decomposition and synthesis
criteria, and decomposition and synthesis mechanisms used for
QAP directly for this problem. Moreover, we do not employ
any RCPSP-favorable heuristic components [44] into CRO.20

This implies that CRO can indeed solve complex optimization
problems like RCPSP.

20We leave the tasks of implementing RCPSP-favorable heuristic compo-
nents into CRO for future work.
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Fig. 9. Performance on kra32 versus variations of the control parameters. (a) PopSize. (b) KELossRate and MoleColl. (c) InitialKE. (d) α. (e) β.

Serial schedule generation(ω)

Input: Activity list ω

1. Create a set Unscheduled = {1, 2, . . . , n + 1}
2. Create a set Scheduled={0}
3. Create an empty set Eligible = {φ}
4. Set f0 = 0
5. while Unscheduled is not empty do
6. Check Unscheduled to see which activities are

eligible for scheduling according to the precedence
constraints and put them into Eligible

7. Select the highest priority activity j in Eligible
according to ω

8. Remove j from Eligible and put it into Scheduled
9. Determine the maximum finish time Tmax of all

activities in Pj

10. For any time t ≥ Tmax, determine the minimum tmin

such that for each k ∈ K, available resource ≥ rj,k

in the period [tmin, tmin + dj)
11. Set fj = tmin + dj

12. end while
13. Set makespan = fn+1

14. Output makespan

C. Channel Assignment Problem

After testing CRO with two classic optimization prob-
lems, we investigate the performance of CRO in a practi-
cal channel assignment problem in multiradio wireless mesh
networks [31].

We consider a set of stationary wireless routers N in a
wireless mesh network. Each router i ∈ N is equipped with a
number of radio interfaces Ri. There are a set of radio channels
K = {1, 2, . . . , |K|}. A router needs to assign a channel to its
interface in order to communicate with other routers. A router

TABLE VII

Number of Instances with Best Solution Found Reported

in PSPLIB

Authors Year Number of Instances With
Best Makespan Found

D. Sun, S. Zhou 2007 129
K. Bouleimen 1997 120
Authors of this paper 2009 116
V. Valls, M. Quintanilla, F. Ballestin 2002 73
K. Nonobe and T. Ibaraki 1998 69
F. Xiao, A. Lim and B. Rodrigues 2005 57
T. Baar, P. Brucker, S.Knust 1997 42
D. Debels and M. Vanhoucke 2005 36
M. R. Ranjbar, F. Kianfar 2007 24
V. Valls, M. Quintanilla, F. Ballest 1999 14
Jose Fernando Goncalves & Jorge
Magalhae

2006 11

D. Merkle, M. Middendorf,
H. Schmeck

2000 5

J. Horstmann and J. Homberger 2005 5
A. Horbach 2008 4
M. Palpant, C. Antigues,
P. Michelon

2002 4

D. Sun 2007 2
J. Alcaraz and C. Maroto 1998 2
K. Fleszar, K. S. Chen 2002 1
L.Y. Tseng and S.C. Chen 2004 1
P. Laborie 2005 1

with multiple interfaces can assign multiple channels at the
same time. It can transmit radio signals for a certain distance,
and thus, it has a transmission range and an interference range.
(For simplicity, we assume that the values of the two ranges
are the same.) For two routers to communicate with each other,
each of them must assign the identical channel to one of its
interfaces and they must be within the transmission range of
each other. From this, we can produce a communication graph,
which is an undirected graph with nodes representing the
routers. An edge (i.e., communication link) between two nodes
means that they are within each other’s communication range.



LAM AND LI: CHEMICAL-REACTION-INSPIRED METAHEURISTIC FOR OPTIMIZATION 397

For i, j, a, b ∈ N, a communication link (i, j) can interfere
another communication link (a, b) if i or j is within the
interference range of a or b, and vice versa. Then we can
produce the corresponding conflict graph Gc(Vc, Ec). Vc is
the set of vertices and each vertex represents a communication
link in the communication graph. Ec is the set of edges and,
for u,v∈ Vc, an edge (u, v) means that u and v interfere each
other.

Consider a channel assignment as a function f : Vc → K,
i.e., assigning each link to exactly one channel in the channel
set K. We define E(i) ⊆ Vc as the communication links
incident on router i. Since a router i cannot be assigned
a number of channels larger than Ri, we have the inter-
face constraint. We also define network interference I(f ) =
|{(u, v) ∈ Ec|f (u) = f (v)}|. The objective of CAP is to
minimize the overall network inference subject to the interface
constraint. Mathematically, we have

min I(f )

subject to |{k|f (e) = k for some e ∈ E(i)}| ≤ Ri (14)

where f is a solution to the problem. For the detailed formula-
tion, interested readers may refer to [31]. This formulation of
CAP for multiradio wireless mesh network is firstly proposed
by the authors of [31] and it is proved to be NP-hard.

1) Implementation Details: In [31], the authors propose a
centralized tabu-based algorithm for the above defined CAP.
The algorithm consists of two phases. The first phase employs
a TS technique to find a channel assignment function f without
considering the interface constraint. In the second phase,
the interface constraint violation is removed and a feasible
f is obtained. Our goal is to compare the performance of
various metaheuristics. For simplicity, we replace the first
phase (i.e., the TS component) with CRO.21 Since this tabu-
based algorithm is the only algorithm proposed to solve this
problem, we can only compare the performance of CRO with
TS.

Hereafter, we focus on the CRO component in the first phase
of the algorithm. In general, the implementation details of this
version of CRO are more or less the same as that for QAP. The
fourth column of Table II shows the parameter values used.
A possible solution is in the form of an integer vector with
length equal to the number of vertices |Vc| in the conflict graph
generated from the problem. Each element of a solution can
be any integer from one to the number of channels specified
by the problem. For example, if there are four vertices in the
conflict graph and three channels available, [2, 1, 1, 3] is a
possible solution and it means that we assign channel 2 to the
first vertex, channel 1 to the second vertex and so on. Solution
ω′ is a neighbor of solution ω if they are assigned the same
channels for all vertices except one. For example, [2, 1, 2, 3]
is a neighbor of [2, 1, 1, 3], but [2, 1, 3, 1] is not. We name
this structure as the “one-difference” neighborhood structure.

The decomposition and synthesis criteria are the same as
those for QAP. In decomposition, we obtain two solutions ω′

1

21We can definitely propose a completely CRO-based algorithm for CAP,
without taking the second phase to get a feasible f. However, we are not
purposely building an improved algorithm to solve CAP, but comparing with
other metaheuristics. This can be reserved for future work.

Fig. 10. % Improvement of fractional network interference of CRO-based
over tabu-based method.

and ω′
2 from ω. The two new solutions are obtained in the

same way: randomly select |Vc|/2 number of vertices in ω

and assign a different channel to each of them. We name this
decomposition mechanism as “half-total-change.”

In synthesis, we get a new solution ω′ from two solutions,
ω1 and ω2. We generate ω′ as follows: for each vertex in ω′, we
generate a random number ξ ∈ [0, 1]. If ξ > 0.5, we assign the
channel number at that vertex from ω1. Otherwise, we take the
channel number at that vertex from ω2. We name this synthesis
mechanism as “probabilistic select.” We summarize the above
implementation details in the fourth column of Table III.22

2) Results: As there is no benchmark problem library for
this CAP, we generate a problem instance ourselves.23 We first
define a square with each side equal to 500 units. We generate
the x and y-coordinates of 50 nodes randomly in the square;
each coordinate can be any real number in [0, 500]. For each
node, the transmission and interference ranges are set to 150
units. All nodes have equal number of radio interfaces R and
we do the simulation with various values of R ranging from
2 to 13. There are a total of 12 channels available. We can
then produce the corresponding conflict graph, which has 280
vertices. Thus, a solution is a vector with 280 elements and
each element can take a value from 1 to 12.

In each simulation run, the iterations terminate when the
number of function evaluations reaches 150 000 (same as
QAP). As in [31], the performance of each run is evaluated in
terms of the fractional network interference, which is the ratio
of network interference I(f ) and the total number of edges
in the conflict graph. Smaller fractional network interference
indicates that the assignment can result in less interference.
For each value of R, we repeat the simulation 50 times. In
Table VIII, we give the statistical results of the 50 runs in terms
of mean, standard deviation, maximum and minimum, where
mean, maximum and minimum are shown as percentages. As
in Table VI, we also show the t-test result with 95% confidence
level comparing the means for CRO and TS. We can see that
CRO is significantly better than TS for all cases. Fig. 10 shows
the percentage improvement of CRO over TS. The percentage
improvement is calculated by

22We use different decomposition and synthesis mechanisms because the
solution structures in QAP and CAP are different.

23We follow the settings in [31] to generate the problem instances.
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TABLE VIII

Fractional Network Interference of CRO

Number of Radio Interfaces Per Node
2 3 4 5 6 7 8 9 10 11 12 13

Mean (%) 47.98 30.94 21.28 14.04 7.92 5.10 3.98 3.76 3.74 3.74 3.74 3.73
StdDev 0.62 1.06 1.56 1.85 0.84 0.52 0.22 0.09 0.08 0.08 0.06 0.06
Maximum (%) 49.54 33.33 23.59 18.25 9.95 6.91 4.96 4.09 3.87 3.87 3.84 3.88
Minimum (%) 46.66 27.67 17.55 9.55 6.50 3.96 3.62 3.59 3.54 3.54 3.61 3.59
t-test result s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

ResultTS − ResultCRO

ResultCRO
× 100%.

A positive value means CRO outperforms TS. The larger the
value, the lower interference CRO can get relative to that from
TS. For the maximum (the worst result), CRO gives worse
performance only when R equals 5 and 7. For the rest of
the cases, CRO gives better performance. From R equal to
4 to 8, the average improvement of CRO is above 5%. In
particular, when there are five radio interfaces per node, CRO
can improve the minimum (best) result of TS by 25%.

V. Conclusion

CRO is a chemical-reaction-inspired metaheuristic. It mim-
ics the interactions of molecules in a chemical reaction, and
guides the transformation of molecules along the PES toward
the more stable state by redistributing the energies among
molecules and by interchanging the energies from one form
to another. It tries to locate the global minima of the objective
function. It is an inter-disciplinary research problem, in which
we exploit the characteristics of chemical reactions in solving
optimization problems. As shown in the simulation section, we
can apply it to solve well-known NP-hard problems, QAP and
RCPSP, and a practical NP-hard problem CAP. We show that
CRO is effective in solving optimization problems, and among
the few successful metaheuristics. With the NFL theorem,
CRO must have equal performance as the others on the average
but it can outperform all other metaheuristics when matched
to the right problem type. As the “spectrum” of optimization
problems is huge, we will never be satisfied with the small
number of generally acknowledged methods, such as SA,
GA and ACO. As no single metaheuristic can work equally
well over a wide range of problems, the large number of
optimization problems and the small number of satisfactory
metaheuristics mean that we need more metaheuristics to fill
the gap. CRO provides a new approach for solving optimiza-
tion problems and belongs to the few acknowledged successful
metaheuristics.

We decide to demonstrate the fundamental version of CRO
in this paper. In the future, we can develop even better versions
of CRO through hybridation with the others (e.g., CRO + SA,
CRO + ACO, etc.) or through the incorporation of greedy
approaches. It is possible to give good results to a broader
range of problems sets and find the global optima of some
“unsolved” problems, based on this fundamental version of
CRO.
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[19] A. Misevicǐus, “A modified simulated annealing algorithm for the
quadratic assignment problem,” Informatica, vol. 14, no. 4, pp. 497–
514, Dec. 2003.

[20] J.-C. Wang, “Solving quadratic assignment problems by a tabu based
simulated annealing algorithm,” in Proc. Int. Conf. Intelligent Advanced
Syst. (ICIAS), Kuala Lumpur, Malaysia, Nov. 2007, pp. 75–80.



LAM AND LI: CHEMICAL-REACTION-INSPIRED METAHEURISTIC FOR OPTIMIZATION 399

[21] C. Y. Ngo and V. O. K. Li, “Fixed channel assignment in cellular
radio networks using a modified genetic algorithm,” IEEE Trans. Veh.
Technol., vol. 47, no. 1, pp. 163–172, Feb. 1998.

[22] S. M. Bhandarkar and H. Zhang, “Image segmentation using evolution-
ary computation,” IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 1–21,
Apr. 1999.

[23] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE Trans. Evol. Comput., vol. 6,
no. 4, pp. 321–332, Aug. 2002.

[24] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[25] Y. C. Ho and D. L. Pepyne, “Simple explanation of the no-free-lunch
theorem and its implications,” J. Optim. Theory Appl., vol. 115, no. 3,
pp. 549–570, Dec. 2002.

[26] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and
load-balancing: Survey and new directions,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 33, no. 5, pp. 560–572, Sep. 2003.

[27] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques
for the vehicle routing problem,” Adv. Eng. Informatics, vol. 18, no. 1,
pp. 41–48, Jan. 2004.

[28] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn,
and T. Querido, “A survey for the quadratic assignment problem,” Eur.
J. Oper. Res., vol. 176, no. 2, pp. 657–690, Jan. 2007.

[29] E. L. Demeulemeester and W. S. Herroelen, Project Scheduling: A
Research Handbook. Boston, MA: Kluwer Academic Publishers, 2002.

[30] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization
for resource-constrained project scheduling,” IEEE Trans. Evol. Com-
put., vol. 6, no. 4, pp. 333–346, Aug. 2002.

[31] A. P. Subramanian, H. Gupta, S. R. Das, and J. Cao, “Minimum
interference channel assignment in multiradio wireless mesh net-
works,” IEEE Trans. Mobile Comput., vol. 7, no. 12, pp. 1459–1473,
Dec. 2008.

[32] S. Sahni and T. Gonzalez, “P-complete approximation problems,” J.
ACM, vol. 23, no. 3, pp. 555–565, Jul. 1976.

[33] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling
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