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Consider a set of customers (e.g., WiFi receivers) and a set of service providers (e.g., wireless ac-
cess points), where each provider has a capacity and the quality of service offered to its customers

is anti-proportional to their distance. The capacity constrained assignment (CCA) is a matching

between the two sets such that (i) each customer is assigned to at most one provider, (ii) every
provider serves no more customers than its capacity, (iii) the maximum possible number of cus-

tomers are served, and (iv) the sum of Euclidean distances within the assigned provider-customer

pairs is minimized. Although max-flow algorithms are applicable to this problem, they require
the complete distance-based bipartite graph between the customer and provider sets. For large

spatial datasets, this graph is expensive to compute and it may be too large to fit in main memory.

Motivated by this fact, we propose efficient algorithms for optimal assignment that employ novel
edge-pruning strategies, based on the spatial properties of the problem. Additionally, we develop

incremental techniques that maintain an optimal assignment (in the presence of updates) with a

processing cost several times lower than CCA re-computation from scratch. Finally, we present
approximate (i.e., suboptimal) CCA solutions that provide a tunable trade-off between result ac-

curacy and computation cost, abiding by theoretical quality guarantees. A thorough experimental

evaluation demonstrates the efficiency and practicality of the proposed techniques.
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1. INTRODUCTION

Assume that we want to assign a set of WiFi receivers to a set of wireless access
points. An access point can serve up to a maximum number of receivers. A receiver
can be assigned to one access point only, and their distance determines the signal
strength (and, thus, the quality of service). Ideally, we would like to serve as many
receivers as possible, and at the same time minimize the average (or, equivalently,
the summed) distance from their access points. Similar problems arise in many
resource allocation applications that require a matching between users and facil-
ities based on capacity constraints and spatial proximity. Such a scenario is the
assignment of students to schools (with certain capacity each) so that the average
traveling distance of children to their schools is minimized. Another application
(in welfare states) is the assignment of residents to designated, public clinics of
given individual capacities. In the commercial world, a franchise (e.g., supermarket
chain, fast-food chain) could match its outlets (with certain capacities) and the
(residential locations of) its employees. The above situations are instances of the
capacity constrained assignment (CCA) problem.

Formally, the problem input consists of a set of customers P and a set of service
providers Q. In addition to spatial coordinates, set Q also includes the capacity q.k
of each provider q ∈ Q. A matching M ⊆ Q×P is said to be valid if (i) each provider
q ∈ Q (customer p ∈ P ) appears at most q.k times (at most once) in M and (ii)
the size of M is maximized (i.e., it contains min{|P |,

∑
q∈Q q.k} provider-customer

pairs) [Irving et al. 2003]. Among all possible valid matchings, CCA computes a
matching M that minimizes the assignment cost Ψ(M), defined as:

Ψ(M) =
∑

(q,p)∈M

dist(q, p) (1)

where dist(q, p) denotes the Euclidean distance between q and p. Essentially, the
assignment cost determines the quality of a matching; i.e., the output M of CCA
achieves the optimal overall quality.

Figure 1 illustrates a scenario where P={p1, ..., p12}, Q={q1, q2, q3}, q1.k =
q3.k = 3, and q2.k = 5. Intuitively, assigning to each qi the customers pj that
fall inside its Voronoi cell (indicated by dashed lines in the figure) leads to the
minimum matching cost [Okabe et al. 2000]. However, this approach ignores the
service provider capacities. In our example, it assigns 5, 3, and 4 customers to q1, q2
and q3, respectively, violating the capacity constraints of q1 and q3. The optimal
CCA matching, on the other hand, would assign {p2, p3, p4} to q1, {p5, ..., p9} to
q2, and {p10, p11, p12} to q3, as shown by the three ellipses. In the general case∑
q∈Q q.k 6= |P |, i.e., the customers may be fewer or more than the cumulative

capacity of the service providers. CCA assigns every pj ∈ P to a qi ∈ Q, unless all
service providers have reached their capacity. In Figure 1, for instance, p1 is not
assigned to any qi, since they are all full. Conversely, it is possible that some service
providers are not fully utilized. In any case, CCA computes the maximum size
matching with the minimum assignment cost, subject to the capacity constraints.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 1. Spatial assignment example

CCA can be reduced to the well-known minimum cost flow (MCF) problem in a
complete distance-based bipartite graph between Q and P [Ahuja et al. 1993; Murty
1992]. In the operations research literature [Vygen 2004], there is an abundance
of MCF algorithms based on this reduction. These solutions, however, are only
applicable to small-sized datasets. In particular, the best of them have a cubic
time complexity (elaborated in Section 2.2), and require that the bipartite graph
(which contains |Q| · |P | edges) resides in memory. For moderate and large size
datasets, this graph takes up a prohibitive amount of space (exceeding several times
the typical memory sizes), and leads to an excessive computation cost, because the
CCA complexity increases with the number of edges in the graph.

Motivated by the lack of CCA algorithms for large datasets, we develop efficient
and highly scalable techniques that produce an optimal assignment. We use the
MCF reduction as a foundation, but we achieve space and computation scalability
by exploiting the spatial properties of the problem and incrementally including
into the graph only the necessary edges. Furthermore, we extend our framework
with an update method, which utilizes an existing matching to derive the new
optimal assignment when the customer dataset is updated. Additionally, we design
approximate solutions that provide a tunable trade-off between processing cost
and assignment quality; we analyze the inaccuracy incurred and devise theoretical
bounds for the deviation from the optimal matching.

A preliminary version of this paper appears in [U et al. 2008b]. The best exact
algorithm proposed in that version is IDA (described in Section 3.3). Here, we
enhance IDA with an optimization (Section 3.3.2), but we additionally propose a
new algorithm, SIA, that vastly outperforms IDA. Furthermore, the current version
considers incremental assignment maintenance in the presence of customer updates,
a topic ignored by our preliminary work. Moreover, a byproduct of SIA is faster
approximation techniques; although our approximate algorithms are practically the
same, they can now achieve better quality in shorter time, using SIA as a building
block (instead of IDA).

The rest of the paper is organized as follows. Section 2 covers background and
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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existing work related to our problem. Section 3 presents the central theorem our
approach is stemming from, and then describes our optimal CCA algorithms that
utilize it. Section 4 extends our framework with an incremental maintenance tech-
nique that processes customer updates. Section 5 studies the trade-off between
computation cost and matching quality, and develops approximate CCA solutions
with guaranteed error bounds. Section 6 empirically evaluates our exact and ap-
proximate CCA methods using synthetic and real datasets. Finally, Section 7
summarizes and concludes the paper.

2. BACKGROUND AND RELATED WORK

CCA can be reduced to a flow problem on a graph. In Section 2.1 we describe the
graph formulation of CCA, and in Section 2.2 we describe a traditional algorithm
for the corresponding flow problem. Even though this solution is inapplicable to
our setting, it is fundamental to our techniques. In Section 2.3 we survey spatial
queries and algorithms related to our approach. Table I summarizes the notation
used in subsequent sections.

Symbol Description

Q set of service providers (points)

P set of customers (points)

dist(qi, pj) Euclidean distance between qi and pj

e(qi, pj) (directed) edge from qi to pj

w(qi, pj) cost of edge e(qi, pj)

s source node

t sink node

v.α minimum cost from s to node v

v.τ potential value of node v

v.prev prev. node of v in shortest path from s to v

vmin last node in the current shortest path that belongs to P

γ required flow (min{|P |,
∑

q∈Q q.k})

Table I. Notation

2.1 Minimum Cost Flow on Bipartite Graph

CCA can be reduced to a maximum flow problem on a (directed) bipartite graph
[Ahuja et al. 1993]. Consider the example in Figure 2(a), where P = {p1, p2},
Q = {q1, q2}, and q1.k = 1, q2.k = 2. This CCA problem is represented by the flow
graph shown in Figure 2(b). The flow graph is a complete bipartite graph between
Q and P , extended with two special nodes s and t (called the source and the sink,
respectively) and |Q|+ |P | extra edges from/to these nodes. Specifically, letting V
be the set of nodes in the graph, then V = Q

⋃
P

⋃
{s, t}. Each node v ∈ V has a

fixed balance f(v). For every p ∈ P and q ∈ Q, the balance is set to 0. For s and t,
f(s) = γ and f(t) = −γ, where γ is the required flow and γ = min{|P |,

∑
q∈Q q.k}.

In our example, γ = min{2, 3} = 2 and the balances are shown next to each node
in the figure.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 2. CCA reduction to the MCF problem

Let E represent the set of edges in the flow graph. Each edge e(vi, vj) ∈ E has
a cost w(vi, vj) and a capacity c(vi, vj). The set of edges E comprises: (i) an edge
e(s, qi) for every service provider qi ∈ Q, with cost 0 and capacity qi.k (modeling
the capacity constraint of the service provider), (ii) an edge e(qi, pj) for every pair
of service provider qi ∈ Q and customer pj ∈ P , with cost dist(qi, pj) (e.g., in
Figure 2, w(q1, p2) = dist(q1, p2) = 3) and capacity 1 (implying that pair (qi, pj)
can appear at most once in the final matching M), and (iii) an edge e(pj , t) for
every customer pj ∈ P , with cost 0 and capacity 1 (implying that pj is assigned to
at most one service provider). In Figure 2(b), the label of each edge indicates (in
parentheses) its cost and capacity.

Given the above graph, the minimum cost flow (MCF) problem is to associate
an integer flow value x(vi, vj) ∈ [0, c(vi, vj)] with each edge e(vi, vj) ∈ E such that
for every node v ∈ V it holds that:∑

e(v,vm)∈E

x(v, vm)−
∑

e(vm,v)∈E

x(vm, v) = f(v) (2)

and the following objective function Z(x) is minimized:

Z(x) =
∑

e(vi,vj)∈E

w(vi, vj) · x(vi, vj) (3)

An optimal CCA assignment is derived by solving the MCF problem and including
in M these and only these pairs (qi, pj) for which x(pj , qi) = 1. Intuitively, every
edge e(pj , qi) with x(pj , qi) = 1 incurs cost w(pj , qi) = dist(pj , qi) and Ψ(M) =
Z(x). Also, the required flow γ ensures (according to Equation 2) that M has the
full size, i.e., that M covers the maximum possible number of customers.

Several algorithms have been proposed in the literature for solving MCF [Ahuja
et al. 1993], including adaptations of the primal simplex (linear programming)
method [Hung 1983], cost scaling [Gabow and Tarjan 1991; Goldberg and Kennedy
1995], signature [Balinski 1985] and relaxation [Bertsekas 1981; 1988] techniques.
The most general approaches with the lowest complexity are the Hungarian al-
gorithm and the successive shortest path algorithm (SSPA; described in detail in
Section 2.2).

The Hungarian algorithm [Kuhn 1955; Munkres 1957] constructs a cost ma-
trix with |Q| · |P | entries, performs subtraction/addition for entries in specific
rows/columns, until each row/column has at least one zero value. This solution
is limited to small problem instances; it becomes infeasible even for moderate-sized

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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problems, as the cost matrix may not fit in main memory.
The aforementioned methods solve a static (i.e., one-time) MCF problem. Con-

versely, [Toroslu and Üçoluk 2007] proposes an update module for the Hungarian
algorithm. Given the current MCF solution, this method computes the new solu-
tion if a provider-customer pair (along with their incident edges) is appended to
the current flow graph. The general idea is to add the new customer and the new
provider to the existing cost matrix and perform a single iteration of the Hungar-
ian algorithm on it. This method explicitly considers one-to-one assignment and
assumes that the number of providers is equal to the number of customers (i.e.,
q.k = 1 for all q ∈ Q, and |Q| = |P |). Furthermore, it cannot handle deletions, and
requires that a provider is inserted for every inserted customer.

[Mills-Tettey et al. 2007] extends the idea in [Toroslu and Üçoluk 2007] to han-
dle multiple updates and address deletions (while still assuming one-to-one assign-
ment). Specifically, letting |I| and |D| be the number of insertions and deletions,
[Mills-Tettey et al. 2007] applies the insertions/deletions onto the cost matrix and
runs on it max{|I|, |D|} iterations of the Hungarian algorithm. The main limitation
of [Mills-Tettey et al. 2007] is that, similar to [Toroslu and Üçoluk 2007], it uses the
voluminous cost matrix of the Hungarian algorithm (with size O(|Q| · |P |)), which
yields it inapplicable to moderate or large problem instances due to its huge space
requirements.

We note that updating an MCF (or CCA) solution is different from the dynamic
optimal assignment in vehicle routing [Spivey and Powell 2004]; the latter is a
scheduling problem that incorporates the anticipation of future events and defines
optimality differently (i.e., the individual assignments reported are non-optimal for
the current state of the system, but are expected to optimize some criterion in the
long run).

2.2 Successive Shortest Path Algorithm

SSPA is a popular technique for the MCF problem defined above [Derigs 1981]. It
receives as input the flow graph defined in Section 2.1 and performs γ = min{|P |,

∑
q∈Q q.k}

iterations. In each iteration, it computes the shortest path from the source s to the
sink t, and reverses the path’s edges. After the last iteration, every (directed) edge
from a point in P to a point in Q corresponds to a pair in the optimal matching
M .1

Algorithm 1 is the detailed pseudo-code of SSPA. In each loop, SSPA invokes
Dijkstra’s algorithm to compute the shortest path sp between the source and the
sink; the algorithm adheres to the edge directions and cannot pass through edges
e(s, qi) (or, e(pj , t)) that were already included in c(s, qi) (c(pj , t), respectively)
shortest paths in previous loops. For a visited node v (i.e., a node de-heaped
during Dijkstra’s algorithm), we use v.α to refer to its minimum distance from the
source, and v.prev to indicate the node it was reached from. We denote by vmin
the last node in the current shortest path that belongs to P (note that sp may be
passing via multiple points of P ). Upon sp computation in Line 2, SSPA traces it

1Note that this is equivalent to forming M by edges e(pj , qi) with flow 1, as described in Section
2.1. For simplicity, in our SSPA description we omit flow computation per se, and focus on

retrieving the optimal CCA matching directly.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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back and reverses the direction of all the edges it contains (Lines 4–6); we say that
this step augments the path into the graph. Then, SSPA updates the potential (to
be discussed shortly) of the nodes visited by Dijkstra’s algorithm (Lines 7, 8), and
the costs of the edges incident to these nodes (Lines 9–13).

Algorithm 1 Successive Shortest Path Algorithm (SSPA)
algorithm SSPA(Set Q, Set P , Edge set E)

1: for loop:=1 to γ do
2: vmin:=Dijkstra(Q, P , E)
3: v:=vmin //v is a local variable of node type
4: while v.prev 6= ∅ do
5: reverse e(v, v.prev) in E
6: v:=v.prev . proceed with the previous node

7: for all visited nodes vi do
8: vi.τ :=vi.τ − vi.α+ vmin.α
9: for all edges e(vi, vj) incident to vi do

10: if vi ∈ Q ∪ {s} then
11: w(vi, vj):=dist(vi, vj)− vi.τ + vj .τ

12: if vi ∈ P then
13: w(vi, vj):=−dist(vi, vj)− vi.τ + vj .τ

An important step in SSPA is the edge cost updating performed in Lines 11 and
13. To ensure that no edge cost becomes negative (which is a requirement for the
correctness of Dijkstra’s algorithm), SSPA uses the concept of node potentials. The
potential v.τ of a node v ∈ V is a non-negative real value that is initialized to 0 for all
v ∈ V before the first SSPA loop, and is subsequently updated in Line 8 every time
v is visited (i.e., de-heaped) by Dijkstra’s algorithm. The cost of an edge w(vi, vj)
varies during the execution of SSPA, and is defined as ±dist(vi, vj) − vi.τ + vj .τ
at all times (we establish the convention that dist(vi, vj) = 0 if any of vi, vj is s or
t). The node potentials and the definition of edge costs play an important role in
SSPA and in our methods described in Section 3.

Example: Consider the CCA example and flow graph in Figure 2. SSPA performs
in total γ = 2 iterations. Figure 3(a) shows the flow graph of Figure 2(b) appended
with the initial potentials next to each node (all set to 0). In the first iteration,
SSPA finds the shortest path sp1 = {s, q1, p2, t} from the source to the sink. Then,
it augments sp and updates the flow graph to be used in the next iteration; Figure
3(b) illustrates the reversed sp edges, the updated node potentials and the new edge
costs. Figure 3(c) shows in bold the shortest path sp2 = {s, q2, p2, q1, p1, t} found in
the second iteration. Note that sp2 cannot pass through edges e(s, q1) and e(p2, t),
since they have already been used c(s, q1) = 1 and c(p2, t) = 1 times in previous
shortest paths (i.e., in sp1). Figure 3(d) augments sp2 and updates the flow graph.
Even though this is the last iteration of SSPA, it exemplifies an interesting case.
Edge e(s, q2) is part of sp2, but it is not “completely” reversed; its capacity is 2,
and only one of its “instances” is reversed, which leads to (i) decreasing its capacity
by 1, and (ii) creating reverse edge e(q2, s) with capacity 1 and cost 0. To complete

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 3. Example of SSPA

the example, the optimal assignment M corresponds to edges from P to Q in the
resulting flow graph after the γ = 2 iterations, i.e., it contains (q1, p1) and (q2, p2).

SSPA requires that the entire flow graph is available. The graph contains an
excessive number of O(|Q| · |P |) edges, which do not fit in memory for large problem
instances. Moreover, the time complexity of SSPA is O(γ ·(|E|+|V |·log|V |)), where
O(|E|+ |V | · log|V |) is the cost to compute a shortest path. Since in our targeted
applications |E| is quite large (O(|P | · |Q|)), SSPA is particularly slow.

2.3 Spatial Queries

Point sets are usually indexed by spatial access methods in order to accelerate
query processing. The R-tree [Guttman 1984] and its variants (e.g., [Sellis et al.
1987; Beckmann et al. 1990]) are the most common such indexes. The R-tree is a
balanced tree that groups together nearby points into leaf nodes, and recursively
groups these leaf nodes into higher level nodes (again based on their proximity)
up to a single root. Each non-leaf entry is associated with a minimum bounding
rectangle (MBR) that encloses all the points in the subtree pointed by it.

Typical spatial search operations on a point set P are range and nearest neighbor
(NN) queries. Given a range value r and a query point q, the r-range query retrieves
all points of P within (Euclidean) distance r from q. If P is indexed by an R-tree,
this query is evaluated by following recursively R-tree entries that intersect the
circular disk with center at q and radius r. The K-nearest neighbor (KNN) query
receives as input an integer K and a query point q, and returns the K points of
P that are closest to q. The first KNN method for R-trees [Roussopoulos et al.
1995] searches the tree in a depth-first manner, by recursively visiting the node with
the minimum distance from q. The state-of-the-art KNN processing technique is
the best-first NN algorithm [Hjaltason and Samet 1999], which employs a heap for
organizing encountered R-tree entries and visiting them in ascending order of their
distance from q, until K points are discovered.

Assignment problems in large spatial databases have recently received consider-
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able attention. [U et al. 2008a] and [Wong et al. 2007] study the spatial matching
(SM) join, which is an instance of the traditional stable marriage problem [Gale and
Shapley 1962; Gusfield and Irving 1989] in the spatial domain. Given two point
sets P and Q, the SM join iteratively outputs the closest pair [Corral et al. 2000]
(p, q) in P ×Q, reports (p, q) as an assigned pair, and removes both p and q from
their corresponding datasets before the next iteration. This procedure continues
until either P or Q becomes empty. [Wong et al. 2007] enhances the performance of
a näıve (i.e., repetitive closest pair) algorithm with several geometric observations.
SM is related, yet different by definition from CCA; SM greedily performs local
assignments instead of minimizing the global assignment cost.

[Papadias et al. 2005] proposes the aggregate nearest neighbor (ANN) search prob-
lem, which retrieves the K points (of a point set P ) with the smallest sums of
distances from a set Q of query points. There are several major differences between
ANN search and CCA: (i) the ANN result set contains K points in P , whereas
CCA computes a matching between P and Q, and (ii) in ANN there are no ca-
pacity considerations (i.e., each examined point in P is evaluated according to its
aggregate distance from all points in Q).

Another related problem in spatial databases is min-dist optimal-location (MDOL)
computation [Zhang et al. 2006]. Given a set of points P , a set of existing providers
Q, and a user-specified spatial region R (i.e., a permissible range for installing a
new provider), the MDOL problem is to derive the location inside R where if a new
provider is placed, it will minimize the average distance between each point in P
and its closest provider. MDOL is different from CCA, because it outputs a single
point (as opposed to a matching) and it implicitly assigns each point in P to its
closest provider, ignoring any possible capacity constraints.

[Ester et al. 1995] and [Mouratidis et al. 2008] propose K-medoid methods for
large spatial datasets indexed by R-trees. In this problem, the objective is to choose
K points (i.e., medoids) from an input dataset P so that the sum of distances
between all points in P and their closest medoid is minimized. The problem is
NP-hard, so both techniques use heuristics and produce suboptimal answers. The
former approach follows the hill-climbing paradigm, while the latter uses the Hilbert
space-filling curve [Bially 1969] to group the points into K groups and extract one
medoid per group. The problem is intrinsically different from CCA, since the input
includes a single dataset and there are no capacity considerations.

3. EXACT METHODS

In this section we present methods for computing an optimal assignment. In ac-
cordance with most real-world scenarios, we consider that Q (the set of service
providers) and P (the set of customers) contain two-dimensional points. How-
ever, our algorithms can easily extend to problems of higher dimensionality. Both
datasets are stored in main memory. This is a reasonable choice, because as shown
in the preliminary version of this paper, the I/O cost of our CCA techniques ex-
ceeds that of fetching the entire (index of the) datasets from the disk. Keeping Q
and P in primary storage is sensible, as their size accounts for a small fraction of
the overall memory requirements (CCA is a memory-intensive problem).

Our techniques direct the search towards one of Q or P , performing multiple NN
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computations in it. To accelerate these operations, a spatial index is assumed on
the corresponding dataset. In the basic form of our methods (and unless otherwise
specified), P is the indexed dataset. However, an enhanced approach presented
later may require that the search is directed towards Q, necessitating an index on
Q instead. The index may be any data-partitioning spatial access method; in the
following we consider R-trees due to their prevalence and wide applicability.

3.1 Fundamental Primitives

As explained in Section 2.2, SSPA is not applicable to large CCA problem instances.
To alleviate the space and running time problems incurred by the huge flow graph,
we develop incremental SSPA-based algorithms that start from an empty flow graph
and insert edges into it gradually. Intuitively, edges with small costs are highly
probable to indicate pairs in the optimal assignment. A fundamental theorem
(presented below) formalizes this intuition and excludes from consideration edges
whose cost is too high to affect the result of SSPA.

Our general idea is to execute the search in a subgraph with edge set Esub ⊆ E,
where E is the complete set of flow graph edges. We refer to the Euclidean distance
between the nodes of an edge as its length. Let function φ(·) take as input a set
of edges and return the minimum edge length in it. To facilitate the derivation of
distance bounds, we require Esub to be distance-bounded, as defined below.

Definition 3.1. An edge set Esub ⊆ E is said to be distance-bounded if

∀ e(qi, pj) ∈ Esub, dist(qi, pj) ≤ φ(E − Esub)

In other words, a distance-bounded Esub contains those and only those edges in
E that have length less than or equal to a threshold (i.e., φ(E−Esub)). Conversely,
all the remaining edges (i.e., edges in E − Esub) have length greater than or equal
to that threshold. We stress that function φ(·) and Definition 3.1 refer to edge
lengths, and not to their costs (note that costs w(qi, pj) vary during the execution
of our algorithms because the node potentials are updated).

Suppose that we are given a distance-bounded edge set Esub. Consider an exe-
cution of Dijkstra’s algorithm in Esub that computes the shortest path sp between
the source and the sink, and the potential values vi.τ for every node vi, derived
as described in Section 2.2. The following theorem determines the condition that
should hold so that sp is the shortest path in the complete edge set E.

Theorem 3.2. Consider a distance-bounded edge set Esub ⊆ E. Let sp be the
shortest path (between source and sink) in Esub and τmax = max {qi.τ |qi ∈ Q} be
the maximum potential value. If the total cost of sp is at most φ(E−Esub)− τmax,
then sp is also the shortest path (between source and sink) in the complete flow
graph.

Proof. Consider the edges in E − Esub. First, their minimum length is φ(E −
Esub). Second, as explained in Section 2.2, the cost of an edge e(qi, pj) is defined as
w(qi, pj) = dist(qi, pj)− qi.τ + pj .τ . Since dist(qi, pj) ≥ φ(E −Esub), qi.τ ≤ τmax,
and pj .τ ≥ 0, it holds that

w(qi, pj) ≥ φ(E − Esub)− τmax,∀e(qi, pj) ∈ E − Esub
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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According to the above (and since edge costs are always non-negative), any path
passing through an edge e(qi, pj) in E − Esub has at least a cost of φ(E − Esub)−
τmax. Therefore, if the shortest path sp (in Esub) has total cost no greater than
φ(E − Esub)− τmax, then it must be the shortest path in the entire E too.

In the following we investigate approaches for gradually expanding the subgraph
Esub and use it to derive CCA pairs. Our algorithms enlarge Esub with incremental
nearest neighbor searches [Hjaltason and Samet 1999] around points in Q. Section
3.2 presents a basic approach (termed NIA), while Section 3.3 proposes an im-
proved method (IDA) that utilizes some central observations in the flow subgraph.
Section 3.4 describes a third approach (SIA) that reduces running time based on
a simplification of the flow graph. Section 3.5 discusses an optimization in the
implementation of these three methods.

3.2 Nearest Neighbor Incremental Algorithm

Our basic approach is the nearest neighbor incremental algorithm (NIA). Algorithm
2 is the pseudo-code of NIA. We use a min-heap H that organizes encountered
edges in ascending cost order. Specifically, we first compute for each point qi ∈ Q
its nearest neighbor pj in P and insert the corresponding edge e(qi, pj) into H. In
every loop, NIA de-heaps the shortest edge e(qi, pj) from H and inserts it into Esub
(Lines 9, 10). Then, it computes the next nearest neighbor of qi and inserts the
corresponding edge into H (Lines 11, 12). Next, it computes the shortest path sp
in the new Esub.

Due to the min-heap ascending ordering and the incremental nearest neighbor
search, it is guaranteed that the top edge in H has the minimum length in E −
Esub. Letting TopKey(H) be the key (i.e., length) of the top entry in H, it holds
that (i) Esub is a distance-bounded edge set and (ii) φ(E − Esub) = TopKey(H).
From Theorem 3.2 it follows that if the cost of sp (i.e., vmin.α) is no greater than
TopKey(H) − τmax, then sp is a valid shortest path and is thus augmented into
the graph.

Otherwise (i.e., if the sp cost is larger than TopKey(H) − τmax, or the sink
is unreachable), sp is invalid and ignored. In this case, NIA de-heaps the top
edge e(qi, pj) from H and inserts it into Esub. For the qi node of the de-heaped
edge, NIA finds its next nearest neighbor in P . Letting pm be this neighbor, edge
e(qi, pm) is inserted into H (with key equal to its length). A new shortest path is
computed in the expanded Esub and the procedure is repeated; the current iteration
is considered complete when a valid shortest path is computed and augmented into
the graph. Overall, NIA terminates after γ completed iterations (equivalently,
after augmenting γ valid shortest paths), where γ is the required flow and equals
min{|P |,

∑
q∈Q q.k}.

3.3 Incremental On-demand Algorithm

In this section we present the incremental on-demand algorithm (IDA), which im-
proves on NIA by pruning more edges and accelerating sp computations.

3.3.1 Exploiting Full and Non-Full Nodes in Esub. IDA utilizes observations in
the flow subgraph evolution during execution. Specifically, it relies on the concept
of full service providers and full customers.
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Algorithm 2 Nearest Neighbor Incremental Algorithm (NIA)
algorithm NIA(Set Q, Set P )

1: H:=new min-heap
2: τmax:=0; Esub:=∅
3: for all qi ∈ Q do
4: pj :=first NN of qi in P
5: insert 〈e(qi, pj), dist(qi, pj)〉 into H

6: for loop:=1 to γ do
7: vmin.α :=∞
8: while vmin.α > TopKey(H)− τmax do
9: de-heap the top entry 〈e(qi, pj), dist(qi, pj)〉 from H

10: insert edge e(qi, pj) into Esub

11: pm:=next NN of qi in P
12: insert 〈e(qi, pm), dist(qi, pm)〉 into H
13: vmin:=Dijkstra(Q, P , Esub)

14: ReverseEdges()
15: UpdatePotentials()
16: τmax:=max {qi.τ |qi ∈ Q} . the highest potential

Definition 3.3. A service provider qi ∈ Q is said to be full when edge e(s, qi) has
already been used qi.k times in previous (valid) shortest paths.

For a full qi, since e(s, qi) (with a fixed cost 0) has reached its capacity, Dijkstra’s
algorithm can no longer pass through this edge. In other words, the shortest path
from s to qi can no longer be this edge and, thus, qi.α (i.e., the minimum cost from
s to qi) may be greater than 0. This fact is exploited by IDA, which leads to a
more effective pruning of edges incident to qi.

IDA uses an edge heap H just like NIA. Unlike NIA, where the key of the edges
in H is their length dist(qi, pm), in IDA the key of an edge e(qi, pm) is qi.α +
dist(qi, pm). The rationale is that if qi is full, any sp going through qi should have
cost at least qi.α. This leads to earlier termination and smaller Esub, since edges
reachable through full service providers are not de-heaped (and, thus, not inserted
into Esub) unnecessarily early.

As qi.α varies, whenever some Dijkstra execution visits a full qi ∈ Q and updates
qi.α to a new value, IDA accordingly updates the key of its corresponding edge
e(qi, pj) in H to the new qi.α + dist(qi, pj). Note that (in both NIA and IDA) for
every qi ∈ Q there is exactly one edge in H from qi to some pj ∈ P at all times. It
is easy to show the correctness of IDA, after replacing φ(E−Esub) by Φ(E−Esub)
in Theorem 3.2. Φ(E − Esub) models the minimum possible cost an sp could have
if it passes through some edge in E − Esub.

Similar to full service providers, IDA also exploits the properties of full customers
to improve the running time and, specifically, to accelerate shortest path computa-
tions. Below we formally define full customers and provide a theorem that allows
sp retrieval without invoking Dijkstra’s algorithm.

Definition 3.4. A customer pj ∈ P is said to be full when edge e(pj , t) has
already been used in a previous (valid) shortest path.

Theorem 3.5. If no q ∈ Q is full, then the shortest path (between source s and
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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sink t) passes through a single edge e(qi, pj); i.e., sp = {s, qi, pj , t}, where qi ∈ Q,
pj ∈ P . Furthermore, e(qi, pj) is the shortest edge in Esub with a non-full pj.

Proof. Since no q ∈ Q is full, all q ∈ Q are inserted into the Dijkstra heap
and visited (with cost q.α = 0) before any p ∈ P . Therefore, after de-heaping
the first pj ∈ P , and if pj is full, Dijkstra cannot return to any q ∈ Q. As a
result, the current sp must be passing through exactly one edge e(qi, pj) (with a
non-full pj) followed by e(pj , t), i.e., sp = {s, qi, pj , t}. Since qi and pj are non-full,
w(s, qi) = w(pj , t) = 0 and the sp cost is w(qi, pj).

It remains to show that the cost order among edges e(q, p) ∈ Esub with non-
full p coincides with their length order. As described in Section 2.2, w(q, p) =
dist(q, p)−q.τ+p.τ . Note that a node p ∈ P becomes full when Dijkstra’s algorithm
visits it for the first time. Equivalently, all non-full ones have never been visited
by Dijkstra’s algorithm and their potentials remain 0 since the initialization of the
problem. As a result, p.τ = 0, and w(q, p) = dist(q, p)− q.τ . Also, the fact that all
q ∈ Q are non-full leads to their potentials being updated in every IDA iteration to
the same exact value (Line 8 in Algorithm 1). Thus, the cost order among edges
with non-full p coincides with their distance order.

According to the above theorem, as long as no service provider q ∈ Q is full,
IDA computes the current sp, without invoking Dijkstra’s algorithm, by iteratively
de-heaping edges e(qi, pj) from H. If pj is full, we directly insert it into Esub and
de-heap the next entry; otherwise, we report sp = {s, qi, pj , t}. Note that after de-
heaping any edge e(qi, pj) from H, we en-heap the edge from qi to its next nearest
customer (as in Lines 9–12 of Algorithm 2).

Algorithm 3 is the pseudo-code of IDA. Lines 1–5 initialize Esub identically to
NIA. In Line 11 we compute the current sp. Note that if no service provider is
full, we derive sp using Theorem 3.5 and the method described above (we omit this
enhancement from the pseudo-code for readability). In Lines 12–14, if the last sp
computation visited some full q ∈ Q and altered its q.α value, then we accordingly
update the key of its corresponding edge e(q, p) in H to the new q.α + dist(q, p)
(Line 14). Lines 15–16 retrieve the next NN of qi (qi refers to e(qi, pj) de-heaped
in Line 9) and insert the corresponding edge into H. Note that we perform this
after updating the q.α values in Lines 12–14 so that the en-heaped edge has an
up-to-date key.

Example: Consider the example in Figure 4(a), where the table at the top illustrates
the lengths of all encountered edges (i.e., edges in Esub and in the heap). The flow
graph shown skips the source and sink for clarity and includes only edges between
service providers and customers. Service provider q1 (shown shaded) is full with
q1.α = 3. Dashed edges e(q1, p3), e(q2, p5) and the bold one e(q3, p4) have been
en-heaped but not yet inserted into Esub. At the bottom, H1 and H2 illustrate the
heap contents in NIA and IDA, respectively, assuming that so far they proceeded
identically. Their difference is the key of e(q1, p3), which is 7 in NIA and 10 in
IDA (since dist(q1, p3) = 7 and q1.α = 3). This leads to a different insertion order
into Esub and a faster IDA termination. For the current sp to be valid, in Line 8
of Algorithm 2 (Algorithm 3), NIA (IDA) requires that its cost is no greater than
7-τmax (8-τmax), where 7 (8) is the TopKey(H1) value (TopKey(H2), respectively).
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Algorithm 3 Incremental On-demand Algorithm (IDA)
algorithm IDA(Set Q, Set P )

1: H:=new min-heap
2: τmax:=0; Esub:=∅
3: for all qi ∈ Q do
4: pj :=first NN of qi in P
5: insert 〈e(qi, pj), dist(qi, pj)〉 into H

6: for loop:=1 to γ do
7: vmin.α :=∞
8: while vmin.α > TopKey(H)− τmax do
9: de-heap 〈e(qi, pj), key〉 from H

10: insert e(qi, pj) into Esub

11: vmin:=Dijkstra(Q,P,Esub)
12: for all visited q ∈ Q do
13: if q is full and q.α changed in Line 11 then
14: update q.α in H

15: pm:=next NN of qi in P
16: insert 〈e(qi, pm), qi.α+ dist(qi, pm)〉 into H

17: ReverseEdges()
18: UpdatePotentials()
19: τmax:=max {qi.τ |qi ∈ Q} . the highest potential
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Fig. 4. Utilizing full service providers in IDA

This implies that the current IDA iteration has higher chances to terminate without
needing to insert new edges and re-invoke Dijkstra’s algorithm.

Let us now focus on IDA. Since the top edge in H2 is e(q3, p4) (shown in bold), we
insert it into Esub. Figure 4(b) shows the new flow graph, assuming that q3.k = 2
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Fig. 5. Example of role reversal between Q and P

and that the subsequent Dijkstra execution returned an sp passing through e(q3, p4).
Augmenting this sp makes q3 full with q3.α = 2, and alters q1.α to 5. Since q1.α has
changed, IDA updates the key of e(q1, p3) in H2 to dist(q1, p3) + qi.α = 12. Then,
we find the next NN of q3 (i.e., p1) and insert the corresponding edge e(q3, p1) into
H2 with key q3.α+ dist(q3, p1) = 12. The bold edge (i.e., e(q2, p5)) is the one to be
inserted next into Esub.

3.3.2 Reverse Handling for Over-Capacity Cases. IDA exploits an additional
observation, related to the supply-demand relationship as defined by the cumulative
provider capacity and the number of customers. Specifically, we distinguish between
the under-capacity (

∑
q∈Q q.k ≤ |P |) and over-capacity (

∑
q∈Q q.k > |P |) cases. In

the over-capacity case, providers take longer to get full (with some never becoming
full). This significantly limits the effectiveness of the first enhancement described
in Section 3.3.1 (i.e., the qi.α values remain 0 for many/all IDA iterations). To
solve this problem, we process over-capacity problems by reversing the roles of Q
and P ; the resulting problem is now an under-capacity one and IDA is performed
on it instead. This technique reduces the size of Esub, as well as the number of
Dijkstra executions.

To exemplify, consider Figure 5(a). All service providers have capacity 1 (render-
ing this an over-capacity problem) and the provider-customer distances are given
in the table above the flow graph. Assume that we apply IDA directly (without
role reversal). The first IDA iteration inserts e(q1, p1) into Esub, and augments the
corresponding path (as it is valid according to Theorem 3.2). The second iteration
initially inserts e(q2, p1), but the corresponding sp is invalid. Thus, it additionally
inserts e(q3, p2) and terminates after augmenting the new sp. Figure 5(a) shows
the final Esub.

What we propose, on the other hand, is to reverse the roles of Q and P ; Figure
5(b) shows the transformed (under-capacity) problem. After the first IDA iteration
(which includes e(qa, pa) into Esub), qa.α = ∞. This updates the key of e(qa, pb)
in edge heap H to ∞ and prevents it from being inserted into Esub in the second
iteration. Figure 5(b) shows the final Esub, which only includes 2 edges (versus 3 in
Figure 5(a)). Also, only 2 shortest paths were computed (versus 3 in the original,
over-capacity problem).
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Note that, even though node reversal reduces the number of Esub edges and
Dijkstra executions, the number of IDA iterations remains γ = min{|P |,

∑
q∈Q q.k}.

Another remark is that the reversal requires an R-tree on Q to accelerate NN
searches in it, as mentioned in the beginning of Section 3.

3.4 Simplified Graph Incremental Algorithm

There is an SSPA implementation (we refer to it as SSPA+) which has the same
space requirements and asymptotic performance as the original SSPA, but runs
faster in practice. SSPA+ requires that the summed provider capacity is equal to
the number of customers [Ahuja et al. 1993; Orlin and Lee 1993], i.e., equi-capacity
case, where |P | =

∑
q∈Q q.k. The main idea in SSPA+ is to eliminate the source

s and the sink t from the flow graph (along with their incident edges). In lack of
source s, shortest paths can start from any provider q and end at any customer p,
provided that less than q.k paths have started at q, and no path has ended at p yet
(or, in IDA terminology, that both q and p are non-full). Correctness is guaranteed
after γ = |P | =

∑
q∈Q q.k iterations, regardless of the order that providers were

chosen as the shortest path starting points. SSPA+ is more efficient than SSPA
because its Dijkstra searches start from the providers directly (instead of s), leading
to fewer heap operations and smaller heap sizes.

Our third CCA algorithm, termed simplified graph incremental algorithm (SIA),
exploits the simplified flow graph of SSPA+. Prior to describing SIA, we first extend
SSPA+ to cases where |P | 6=

∑
q∈Q q.k. We only consider the under-capacity case

(
∑
q∈Q q.k < |P |), because SIA employs the reverse handling of Section 3.3.2 for

over-capacity problems.
If

∑
q∈Q q.k < |P |, we add one fictitious service provider qe with capacity qe.k =

|P | −
∑
q∈Q q.k into the flow graph; there are |P | artificial edges from qe to all

customers p with dist(qe, p) = ∞ (practically, dist(qe, p) is set to a very large
number). Note that the resulting problem is an equi-capacity one, and SSPA+ is
now applicable. After inserting qe, the required flow becomes γ = |P |. However, it
can be easily seen that none of the artificial edges of qe would appear in an optimal
assignment (for the original problem), and that any sp from qe would not pass
through or affect any edge e(q, p) for q 6= qe. Therefore, we do not need to perform
shortest path searches from qe, and only have to execute

∑
q∈Q−{qe} q.k iterations

of SSPA+ (instead of |P |).
Although SSPA+ is faster than SSPA and can be extended to under- and over-

capacity cases as shown above, it does not overcome the main limitation of SSPA,
which is its prohibitive space requirements. Specifically, SSPA+ requires the entire
bipartite graph in main memory, and is thus inapplicable to moderate and large
size CCA problems. In the following, we show how our CCA (and, specifically, the
IDA) pruning techniques can be applied in conjunction with SSPA+.

3.4.1 Pruning Techniques in SIA. In NIA and IDA, edge pruning is based on
Theorem 3.2. Below, we present an adaptation of this theorem that reflects the
lack of sink and source nodes. First, however, we must redefine the concept of a
distance-bounded edge set. In contrast with Definition 3.1, E now refers to the
complete bipartite graph between Q and P (i.e., it excludes the edges incident to
s and t). Also, since the source is missing, a non-full provider qi plays its role. We
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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define Esub ⊆ E to be distance-bounded with respect to qi with bound Ξ as follows.

Definition 3.6. An edge set Esub ⊆ E is said to be distance-bounded w.r.t. qi
with bound Ξ if

∀ e(qk, pj) ∈ E − Esub, qk.α+ dist(qk, pj) > Ξ

Note that qk.α represents the minimum cost from qi to qk, and that qi.α = 0,
since qi now plays the role of s. Essentially, the above definition requires that Esub
contains all edges within cost Ξ from qi. Under the above definition, Theorem 3.7
is the crux of SIA.

Theorem 3.7. Consider a distance-bounded edge set Esub ⊆ E w.r.t. provider
qi with bound Ξ. Let sp be the shortest path from qi to a non-full pj ∈ P and
τ ′max = max{v.τ |v ∈ Q ∧ v.α ≤ Ξ}. If the total cost of sp is at most Ξ−τ ′max, then
sp is also the shortest path (between qi and a non-full customer) in the complete
flow graph E.

Proof. Suppose that the shortest path from qi (to a non-full customer) in E
contains an edge e(qk, pj) that is not in Esub. The cost of this path is qk.α +
dist(qk, pj) − qk.τ + pj .τ plus the cost of the remaining path from pj to the end-
node (non-full customer). Since e(qk, pj) /∈ Esub, it follows from Definition 3.6
that:

qk.α+ dist(qk, pj) ≥ Ξ⇒
qk.α+ dist(qk, pj)− qk.τ ≥ Ξ− qk.τ

For a path passing through qk to be shorter than sp, it should hold that qk.α ≤
Ξ−τ ′max ≤ Ξ. Thus, qk ∈ {v|v ∈ Q ∧ v.α ≤ Ξ}, and hence qk.τ ≤ τ ′max. Therefore,

qk.α+ dist(qk, pj)− qk.τ ≥ Ξ− τ ′max ⇒
qk.α+ dist(qk, pj)− qk.τ + pj .τ ≥ Ξ− τ ′max ⇒

qk.α+ w(qk, pj) ≥ Ξ− τ ′max
The above contradicts our assumption, because it implies that any path passing
through edge e(qk, pj) has cost higher than Ξ − τ ′max and, thus, larger than sp.
Hence, if the shortest path sp (in Esub) has total cost no greater than Ξ − τ ′max,
then it must be the shortest path in the entire E too.

Algorithm 4 presents the pseudo-code of SIA, which is practically an adaptation
of IDA based on Theorem 3.7. In the beginning of each iteration, SIA selects a
source qi in round-robin fashion among the non-full providers2. After qi is de-
termined, SIA finds its first NN and places the corresponding edge into heap H.
Unlike IDA which en-heaps |Q| edges (initialization Lines 3–5 in Algorithm 3), SIA
inserts a single edge into H; since Esub is empty, qk.α =∞ for all service providers
other than qi and, thus, Theorem 3.7 ignores them at this stage. If during some
Dijkstra execution (Line 12) a provider q is encountered for the first time in the

2The source selection strategy does affect performance, albeit to a small degree. We tried various
heuristics, as well as exhausting the excess capacity of a provider before proceeding to the next

non-full one, but the round-robin technique yielded the best performance.
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current SIA iteration, then the edge with its first NN is inserted into H (Lines
14–16). This implies that q’s edges start being considered for inclusion into Esub,
as q.α is no longer ∞. The validity of a shortest path according to Theorem 3.7 is
checked in Line 9, where TopKey(H) plays the role of bound Ξ; it is easy to see
that Ξ = TopKey(H) since edge insertion in Line 16 adds q.α to the edge length,
and uses their sum as the sorting key. An important remark is that (unlike IDA)
SIA re-initializes heap H and sets v.α = ∞ for all v ∈ Esub at the beginning of
every iteration (Line 3), because once a different provider qi is chosen as source
(Line 4), the previous node distances and H contents are invalidated. Finally, note
that the node potentials are maintained across iterations (i.e., they are not reset in
each iteration) to avoid negative edges in Esub.

Algorithm 4 Simplified Graph Incremental Algorithm (SIA)
algorithm SIA(Set Q, Set P )

1: τ ′max:=0; Esub:=∅
2: for loop:=1 to γ do
3: H:=new min-heap; set v.α :=∞ for each v ∈ Esub

4: select a non-full qi ∈ Q in round-robin fashion
5: qi.α := 0
6: pj :=first NN of qi in P
7: insert 〈e(qi, pj), dist(qi, pj)〉 into H
8: vmin.α :=∞
9: while vmin.α > TopKey(H)− τ ′max do

10: de-heap 〈e(qk, pj), key〉 from H
11: insert e(qk, pj) into Esub

12: vmin:=Dijkstra(Q,P,Esub)
13: for all visited q ∈ Q do
14: if q is not in H then . i.e., q.α used to be ∞
15: pj :=get next NN of q in P
16: insert 〈e(q, pj), q.α+ dist(q, pj)〉 into H

17: if q.α changed in Line 12 then
18: update q.α in H

19: pm:=next NN of qk in P
20: insert 〈e(qk, pm), qk.α+ dist(qk, pm)〉 into H

21: ReverseEdges()
22: UpdatePotentials()
23: τ ′max = max{v.τ |v ∈ Q ∧ v.α ≤ TopKey(H)}

SIA benefits from the flow graph simplification (i.e., the removal of source and
sink), because Dijkstra executions become faster in a fashion similar to SSPA+.
Compared to IDA, the path verification bound in SIA becomes tighter; τ ′max (in
Theorem 3.7) is expected to be smaller than τmax (in Theorem 3.2) because it is
computed over a subset of the providers. This leads to a more effective sp verifica-
tion mechanism, implying faster execution and smaller Esub. Figure 6 demonstrates
these two advantages with an example.

There are |Q| = 3 providers with capacity 1 each, and |P | = 3 customers. The
flow graph corresponds to either algorithm (IDA and SIA) after two executions; for
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Fig. 6. IDA versus SIA

SIA, we assume that the first iteration chose q1 as the source, and the second chose
q2. The solid edges have been inserted into Esub, while the dashed edges indicate
the next NN of the service providers. Potential values τ1 and τ2 above each node
correspond to IDA and SIA, respectively. In the third iteration, the edge heap of
IDA is H1 and of SIA (with source q3) is H2; note that H2 does not contain e(q2, p3)
because q2.α =∞ (i.e., q2 was not visited by any Dijkstra execution in the current
iteration). The shortest path in both3 IDA and SIA is sp = {q3, p1, q1, p3} with
cost 6. TopKey(H) is also the same in both cases (i.e., 10). Nevertheless, τmax is 5
but τ ′max is only 3. Therefore, IDA (where TopKey(H)− τmax < 6) needs to insert
more edges into H before it can deem sp valid. On the other hand, SIA augments
sp directly without further expansion.

3.5 Optimization: Reducing Dijkstra Executions

All our algorithms (NIA, IDA, SIA) apply incremental NN search to discover the
edges one-by-one, in order to keep Esub small. However, since Esub expands slowly,
they may perform numerous Dijkstra executions. To accelerate processing, we
reduce the cost of Dijkstra executions by (i) reusing the vi.α values computed in
the previous sp computation and (ii) utilizing the entries that remained inside the
Dijkstra heap upon termination. Assume that in the current iteration (of either
NIA, IDA, or SIA) some invalid sp has been computed, and that we need to find a
new sp after inserting a new edge e(q, p) into Esub. Let Hd be the Dijkstra search
heap after the last sp computation.

Our objective is (i) to identify the visited nodes v whose v.α value is affected by
e(q, p) (i.e., e(q, p) leads to a shortest path from the source to v) and, eventually,
(ii) to update the keys of nodes inside Hd. This is performed by the path update
algorithm (PUA) to be described shortly. Upon termination of PUA, a new Dijkstra
execution is performed, which however directly uses the updated Hd and avoids
visiting nodes de-heaped in previous sp computation(s) in the current iteration.

PUA initializes an empty min-heap Hf to play the role of a Dijkstra-like search
heap among previously visited nodes. Hf organizes its entries (nodes) in ascending
order of their α values. First, we insert into Hf the q node of the new edge e(q, p).
Next, we iteratively de-heap the top node vi from Hf and examine whether nodes
vj connected to vi can be reached through a shorter path via vi. In particular, if
vj .α > vi.α + w(vi, vj) then vj .α is updated to vi.α + w(vi, vj) and vj .prev is set

3The sp in IDA starts from s and ends at t, but we only show the intermediate nodes for simplicity.
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to vi (to indicate that vj is now reachable via vi). If vj is in Hd or Hf , its key
is updated to vj .α in its containing heap. Otherwise (i.e., if vj is neither in Hd

nor Hf ), it is inserted into Hf with key vj .α. PUA terminates when Hf becomes
empty. Algorithm 5 presents PUA.

Algorithm 5 Path Update Algorithm (PUA)
algorithm PUA(Set Q, Set P , Heap Hd, Edge set Esub, Edge e(q, p))

1: Hf :=new min-heap
2: insert 〈q, q.α〉 into Hf

3: while Hf is not empty do
4: de-heap top node vi (with the lowest vi.α value) from Hf

5: for all edges e(vi, vj) ∈ Esub outgoing from vi do
6: if vj .α > vi.α+ w(vi, vj) then
7: vj .α:=vi.α+ w(u, v); vj .prev:=vi

8: if vj ∈ Hd then
9: update vj .α in Hd

10: else if vj ∈ Hf then
11: update vj .α in Hf

12: else
13: insert 〈vj , vj .α〉 into Hf

Example: We illustrate the PUA technique with an example, assuming processing
with NIA/IDA. Figure 7(a) shows the current Esub edges between (some nodes of)
sets Q and P , the α values of these nodes, and the edge costs (numbers above each
edge) after the last Dijkstra execution. The visited nodes are illustrated shaded,
while the nodes remaining in Hd are q4 and p3 (having bold borders and lighter
gray color). Consider that edge e(q1, p2) with cost w(q1, p2) = 2 is inserted into
Esub. Figure 7(b) shows the new edge (in bold) and the PUA steps. First, q1 is
inserted into Hf with key q1.α = 0. Its de-heaping leads to adjacent node p2 which
is reachable with a lower cost (than the current p2.α) via q1. Thus, p2 is inserted
into Hf with key equal to the new p2.α = q1.α + w(q1, p2) = 2. Similarly, the
de-heaping of p2 leads to updating the key of q4 in Hd to the new q4.α = 3. After
these changes, the new sp can be computed by directly using Hd = {〈q4, 3〉, 〈p3, 5〉}
in the new Dijkstra execution. Note that the shortest paths to (and, accordingly,
the α values of) q2, q3, p1, p3 have not been affected by the insertion of e(q1, p2) and
the new sp search avoids unnecessary computations for them. PUA works similarly
with SIA, since it concerns only the Dijkstra building block. Assuming that SIA
chooses q1 as the source, the difference in the above example is that q3 would not
be visited and would not be in Hd.

PUA can utilize results only among Dijkstra executions that take place in the
same iteration. The reason why reusing cannot span multiple iterations is that
sp augmentation (which signals the end of an iteration) alters many edges, by
reversing their directions and modifying their costs. Another important remark
is that IDA/SIA use the above PUA-based optimization only after some of the
service providers become full, because until then shortest paths are computed using
Theorem 3.5 directly.
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Fig. 7. Example of PUA

4. INCREMENTAL CCA MAINTENANCE

In the previous section we computed a one-time, static assignment. However, in
practice, the customers may issue updates, i.e., move to a new location. Since
re-assignment from scratch is expensive, in this section we propose an approach
to incrementally update an existing matching. Specifically, we extend our best
exact method, SIA, to process updates of customer locations; we focus on customer
updates, as usually the provider set is rather static.

In Section 2.1 we described existing methods for assignment maintenance, i.e.,
[Toroslu and Üçoluk 2007; Mills-Tettey et al. 2007]. The main drawback of these
techniques is that they require the complete cost matrix of the Hungarian algorithm
to fit in main memory. The size of this matrix is equivalent to the entire flow graph
E. The central challenge in this section is how to extend our framework so that
optimality can be maintained efficiently with small space requirements.

First, in Section 4.1, we adapt the (Hungarian-based) method of [Mills-Tettey
et al. 2007] to work with SSPA+; note that Hungarian and SSPA are practically
dual views of the same process and that a mapping between them is possible. Since
the resulting SSPA+ approach still requires the entire flow graph in memory, in
Section 4.2 we show how SIA and our CCA pruning techniques can be applied
(instead of SSPA+) to maintain the assignment using only a flow subgraph Esub.
Section 4.3 describes how arbitrary customer insertions and deletions (i.e., general
updates other than just movements) can be dealt with.

4.1 Preliminary Solution

Suppose that an optimal assignment M is stored in our system when we receive
location updates from some customers. Our task is to compute the new optimal
assignment M ′ according to the current customer positions.

Our preliminary solution is an SSPA+-based adaptation of [Mills-Tettey et al.
2007]; it follows the same steps using the flow graph instead of the Hungarian cost
matrix. The entire E is assumed to be available (since SSPA+ is used). First, we
add an imaginary provider qe with capacity qe.k = |P | −

∑
q∈Q q.k into the flow

graph4. There are |P | artificial edges from qe to all customers p with dist(qe, p) =

4We focus on the under-capacity case, since the over-capacity one can be dealt with by reverse
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Fig. 8. SSPA+ update example

∞. All customers that were unassigned in M are given to qe; i.e., the corresponding
edges are reversed. In Figure 8(a), for example, both q1 and q2 have capacity 1,
and they were assigned p1 and p2, respectively. Customer p3 was not assigned. The
fictitious qe is added in the flow graph with capacity 1, and p3 is assigned to it (as
indicated by the reversal of edge e(qe, p3)).

Let p be a moving customer, and assume that it is currently assigned to provider
q ∈ Q∪ {qe}. Since the new assignment of p is unknown, we reverse edge e(p, q) in
E. First, this results in q becoming non-full. Second, since the Euclidean distance
of p from the service providers has changed, some edges may result in negative costs
(due to the obsolete potentials). Thus, we update them as indicated by Theorem
4.1.

Theorem 4.1. If the costs of some edges e(qi, p) incident to the updated cus-
tomer p are negative, we can safely eliminate all negative costs by setting: p.τ =
maxe(qk,p)∈E∧w(qk,p)<0 {−dist(qk, p) + qk.τ}.

Proof. First, we prove that no negative cost exists after updating p.τ . Since
p.τ is increased, all non-negative edge costs remain non-negative. Let us focus now
on the negative cost ones. For such an edge e(qi, p), since w(qi, p) was negative
before the update, it holds that5 dist(qi, p) − qi.τ + p.τ ≤ 0 ⇒ dist(qi, p) − qi.τ ≤
0⇒ −dist(qi, p) + qi.τ ≥ 0. After the update, the cost becomes:

w(qi, p) = dist(qi, p)− qi.τ + p.τ

= dist(qi, p)− qi.τ + max
e(qk,p)∈E∧w(qk,p)<0

{−dist(qk, p) + qk.τ}

= max
e(qk,p)∈E∧w(qk,p)<0

{−dist(qk, p) + qk.τ} − (−dist(qi, p) + qi.τ)

≥ 0

The inequality holds because maxe(qk,p)∈E∧w(qk,p)<0{−dist(qk, p)+qk.τ} ≥ −dist(qi, p)+
qi.τ , while both quantities are positive for edges with previously negative costs (as
shown above).

handling (see Section 3.3.2).
5In this inequality p.τ refers to the potential of p before the update.
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Next, we show that the change does not affect the SSPA+ computation. Due to
the inclusion of qe, the only non-full customer is p. Therefore, if an sp is computed,
it must end at p. Since the costs of all edges that are incident to p are increased
by the same amount, the sp computation is not affected by the new q.τ .

Consider again the example in Figure 8(a), and assume that p3 moves to a new
location. Figure 8(b) shows its new distances from the providers and the updated
flow graph. We first reverse e(qe, p3). If we keep using the potential values from the
previous flow graph (in Figure 8(a)), then w(q2, p3) = dist(q2, p3)−q2.τ+p3.τ = −3
which is negative. Therefore, we apply Theorem 4.1, and set p3.τ = 3. After
this change, all edge costs are non-negative (note that w(q2, p3) = 0, which is
permissible).

After applying the above process (edge reversal and potential update) for each
moving customer, we resume SSPA+. Specifically, letting there be |U | updates,
there are |U | edge reversals. This means that there are some non-full providers (with
total free capacity |U |) and exactly |U | non-full customers. Therefore, we perform
|U | SSPA+ iterations; i.e., we compute and augment |U | shortest paths, choosing
sources in round-robin fashion among the non-full providers. The new optimal
assignment M ′ is derived from the resulting flow graph, ignoring the assignments
made to qe.

Continuing our example in Figure 8(b), we perform |U | = 1 iterations of SSPA+.
The only non-full provider is qe and it is used as source. The shortest path is
{qe, p2, q2, p3} which is augmented. This reverses the included edges as shown in
Figure 8(c), practically assigning p3 to q2 and leaving p2 unassigned (specifically,
p2 is assigned to qe and, thus, is left out of M ′). Note that, unlike Section 3.4,
we cannot simply remove qe. In our example, for instance, if there was no qe,
there would be no non-full provider to choose as the source of sp. Algorithm 6 is
the pseudo-code of the complete SSPA+ update process (U is the set of customer
updates).

Algorithm 6 SSPA+ Update Process
algorithm SSPA-Update(Set Q, Set P , Edge set E, Set U)

1: insert qe into the system (Q := Q ∪ {qe})
2: set qe.k := |P | −

∑
qi∈Q qi.k

3: for all p ∈ U do
4: reverse e(p, q) in E . q is p’s assigned provider in M
5: update p.τ according to Theorem 4.1

6: run |U | iterations of SSPA+ in E

4.2 SIA Update Process

Our preliminary solution above requires that the entire flow graph fits in memory,
and is thus inapplicable to large problems. Using Algorithm 6 as a basis, in this
section we replace SSPA+ by SIA, so that only a flow subgraph Esub ⊆ E is
used. Our approach requires that the potentials of all providers and customers are
recorded after the last assignment (i.e., M) computation. It also requires that the
expansion distance q.η is kept for each provider q; this is the distance of the last

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



24 · Optimal Matching between Spatial Datasets under Capacity Constraints

NN of q retrieved during M ’s computation. The q.η values are used to construct a
new Esub when a set of customer updates U arrives (although storing the previous
Esub and amending it is possible, this is not much faster than Esub reconstruction
as described below).

We build a new Esub as follows. For every q ∈ Q, we perform a range query (with
center at q and radius q.η) on the updated P , and insert into Esub an edge e(q, p)
for each retrieved customer p. If p was previously assigned to q, then we reverse
edge e(q, p). We set the potentials as stored after M ’s computation. Subsequently,
we proceed as in Section 4.1, i.e., we add the imaginary provider qe, reverse edges
that correspond to assignments of moving customers, and handle any negative costs
according to Theorem 4.1. Finally, we perform |U | iterations of SIA in Esub and
derive the new assignment M ′. Algorithm 7 outlines the SIA maintenance process.

Algorithm 7 SIA Update Process
algorithm SIA-Update(Set Q, Set P , Edge set Esub, Set U)

1: for all q ∈ Q do
2: for all p ∈ P where dist(q, p) ≤ q.η do
3: insert e(q, p) into Esub

4: if (q, p) ∈M then
5: reverse e(q, p) in Esub

6: set node potentials as stored after M ’s computation
7: insert qe into the system (Q := Q ∪ {qe})
8: set qe.k := |P | −

∑
qi∈Q qi.k

9: for all p ∈ U do
10: reverse e(p, q) in Esub

11: update p.τ according to Theorem 4.1

12: run |U | iterations of SIA in Esub

A performance issue with Algorithm 7 relates to the existence of qe in the flow
graph when SIA is executed in Line 12. Specifically, many (among the |U |) SIA
iterations use qe as the source. Shortest path computation from qe is expensive,
due to its large number of incident edges; i.e., there are |P | adjacent nodes (all
p ∈ P ), all of which are en-heaped during Dijkstra computation. Furthermore,
multiple sp computations may be required in each iteration (until a valid one is
found), exacerbating the problem. In Section 4.2.1 we describe an optimization to
mitigate this deficiency.

4.2.1 Optimization: Removing qe. As explained previously, qe is necessary to
ensure optimality. Thus, it cannot be simply deleted/ignored. Our main idea is to
first use qe while optimally solving CCA in Esub (not E), and then remove qe so
that SIA can continue from Esub as per normal and derive the optimal solution in
the entire E.

Specifically, our improved update process includes three stages. Stage one runs
SSPA+ in Esub (including qe, but ignoring any edge outside Esub); this leads to an
optimal assignment within Esub. Stage two expands and updates Esub so that SIA
can run on it. Stage three removes qe from Esub and produces the new assignment
M ′ using SIA. The performance benefits of this approach over the basic Algorithm
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 9. SIA update example

7 stem from the fact that (i) in stage one, although qe still exists, a single sp
computation is necessary per SSPA+ iteration (the derived sp needs not be checked
for validity, as we only require optimality within Esub), and (ii) in stage three, SIA
runs on a graph without qe.

Consider the example in Figure 9(a). Assuming that the previous assignment M
was computed by SIA, the edges of the flow graph correspond to the previous Esub.
Suppose that customers p1 and p3 move, and their new distances are shown in Figure
9(b). The same figure illustrates the reconstructed Esub (following Lines 1–11 of
Algorithm 7). Note that edge e(p1, q1) is not included in Esub, since dist(q1, p1) is
now larger than q1.η = 3. At this point, our enhancement takes over.

In stage one, |U | = 2 and the non-full providers are qe and q1. When q1 is
chosen as source, SSPA+ fails to find any path to a non-full customer; q1 is only
connected to p2 which is full. However, to ensure optimality (within Esub), |U |
paths must be augmented successfully. Therefore, the capacity of qe is increased
by one6 (qe.k = 1 + 1 = 2) and both SSPA+ iterations use qe as source. The two
shortest paths of qe are {qe, p1} and {qe, p2, q2, p3}. The resulting Esub is shown in
Figure 9(c) and contains three assignments e(p1, qe), e(p2, qe), and e(p3, q2).

Observe that SSPA+ ensures non-negative edge costs in Esub but not in the entire
E. Preservation of non-negative costs in E is an invariant in our CCA techniques
and must be ensured before SIA can be applied. Formally, the flow subgraph is
valid with respect to E if using its potentials does not lead to negative costs for
any edge in E. Stage two checks whether Esub is valid w.r.t. E and, if it is not, it
expands/updates it accordingly. The details of stage two will be presented shortly.

Returning to our example in Figure 9(c), assume that Esub is deemed valid by
stage two. Stage three first removes qe from the flow subgraph, along with its
incident edges (i.e., e(p1, qe), e(p2, qe) and e(qe, p3)). Finally, SIA is executed on
the resulting Esub, augmenting paths from non-full providers until they all become
full. Provider q1 is non-full and is chosen as source. Since SIA fails to find a path
to any non-full customer, it inserts into its edge heap H an edge from q1 to its next

6In the general case, qe.k is increased by the number of iterations that q1 must be used as the

source in order to become full.
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NN that lies further than q1.η = 3 (i.e., customer p1). It proceeds like Algorithm
4, expanding Esub until a valid sp is found and augmented. The new optimal
assignment M ′ is extracted from the flow subgraph upon termination of SIA.

4.2.1.1 Stage two. The pseudo-code of stage two is given in Algorithm 8. It
performs validity checking and expansion at the same time. Initially, for each
provider qi ∈ Q, it retrieves the next NN pj ∈ P where dist(qi, pj) > qi.η. If
dist(qi, pj) − qi.τ ≥ 0, then the cost of all edges e(qi, pk) ∈ E − Esub is non-
negative7. If the above inequality holds for all providers qi ∈ Q, then the flow
subgraph is valid w.r.t. E.

If the inequality does not hold for a provider qi, Algorithm 8 keeps retriev-
ing the next NNs of qi and inserting the corresponding edges into Esub until
dist(qi, pj) − qi.τ ≥ 0 (where pj is the last retrieved NN of qi). If any of these
included edges have negative costs (Line 6), stage two treats each of them as an
update of the corresponding customer. Specifically, the insertion of a negative cost
edge e(qi, pj) into Esub can be dealt with transparently if we assume that the (pre-
viously undefined) distance of pj from qi is now dist(qi, pj), which is equivalent to
a movement of pj . Thus, Lines 6–9 alter accordingly Esub (in a fashion similar to
Lines 10, 11 in Algorithm 7) and add pj into update set U . Note that inserted
edges with non-negative costs do not affect the validity of Esub (and do not have
to be treated as updates).

Finally, after negative cost edges are guaranteed not to exist in E, Line 12 reruns
stages one and two in the updated Esub using U as the set of updates. Note that
this recursively alters and expands Esub, until it is valid w.r.t. E and ready to be
processed by SIA in stage three.

Algorithm 8 Stage Two
algorithm StageTwo(Set Q, Set P , Edge set Esub, Set U)

1: U := ∅
2: for all qi ∈ Q do
3: pj :=first NN of qi in P where dist(qi, pj) > qi.η
4: while dist(qi, pj)− qi.τ < 0 do
5: insert e(qi, pj) into Esub

6: if w(qi, pj) < 0 and ∃qk ∈ Q such that e(pj , qk) ∈ Esub then
7: reverse e(pj , qk) in Esub

8: update pj .τ according to Theorem 4.1
9: insert pj into U if pj /∈ U

10: pj :=next NN of qi in P

11: if U 6= ∅ then
12: run stages one and two in Esub

7It holds by definition that pk.τ ≥ 0. Since dist(qi, pj) − qi.τ ≥ 0 and dist(qi, pk) ≥ dist(qi, pj),

it follows that w(qi, pk) = dist(qi, pk)− qi.τ + pk.τ ≥ 0.
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4.3 Insertion and Deletion Handling

So far we considered customer updates that correspond to movements. However,
insertions of new customers and/or deletions of existing ones may occur. Handling
is identical to Section 4.2 by establishing the following two conventions:

Insertion of customer pj into P . We assume that the distance of pj from each
qi ∈ Q was previously infinite, while its new distance from them is the actual
dist(qi, pj).

Deletion of customer pj from P . We implicitly keep pj in the system and assume
that it has moved from its previous location to a new one, which is infinitely far
from every qi ∈ Q.

Regarding deletion handling, explicit storage of each deleted customer would
unnecessarily increase the size of Esub (and thus the storage and computation re-
quirements). To overcome this problem, we introduce a fictitious customer pe whose
distance form each provider is infinite, and whose capacity is increased by one for
each customer deletion.

Note that we can handle multiple insertions and deletions (and movements) at
the same time. Having modeled each insertion/deletion as a customer movement,
we can process multiple ones simultaneously, using the technique in Section 4.2
without any modification.

5. APPROXIMATE METHODS

Time-critical applications may favor fast answers over exact ones. This motivates us
to develop approximate CCA solutions. In this section we propose a methodology
that provides a tunable trade-off between result accuracy and response time, and
comes with theoretical guarantees for the assignment cost. We consider approxima-
tion only for one-time, static assignments, because our approximate methods are
very fast compared to the exact ones (as we show later), and incremental evaluation
would not pay off if suboptimal answers are acceptable.

Our general approach consists of three phases. The first one is the partitioning
phase, in which we form groups Gm of either the points in Q or points in P , so
that the diagonal of their MBR does not exceed a threshold δ. Parameter δ is used
to control the quality of the assignment; the smaller δ is, the better the computed
matching approximates the optimal. The second phase, called concise matching,
solves optimally a small CCA problem extracting one representative point per group
Gm and using the set of representatives as the set of service providers or customers.
Finally, the refinement phase uses the assignment produced in the previous step to
derive a matching on the entire sets P and Q.

We assume a data-partitioning spatial access method on each of Q and P . In
addition to the concise matching phase (where an index is necessary on the dataset
where the search is directed to), the partitioning phase also requires an index on
the partitioned dataset. We consider R-trees because of their widespread use and
favorable data grouping properties [Theodoridis et al. 2000].

Section 5.1 describes two alternative partitioning and concise matching approaches,
while Section 5.2 describes refinement techniques that could be used with either of
these alternatives. Section 5.3 derives error bounds for our approximate solutions.
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5.1 Partitioning and Concise Matching

We distinguish between two methods, called service provider approximation (PA)
and customer approximation (CA). PA and CA follow different approaches for par-
titioning and subsequent concise matching. Specifically, PA groups the service
providers and solves concise matching in the entire P , while CA groups the cus-
tomers and performs concise matching in the entire Q.

PA and CA proceed symmetrically, treating P in place of Q and vice versa. For
the sake of presentation, we focus on CA. Partitioning in CA is performed on P . We
first initialize a set S of customer groups to ∅. Given parameter δ, we traverse the
R-tree of P . Starting from the root entries, we compare the MBR diagonal of each
of them with δ. If the diagonal of entry e is smaller than or equal to δ, we insert
it into S (the corresponding group of customers are those in the subtree rooted at
e). Otherwise (i.e., e’s diagonal is larger than δ), we visit the corresponding node
and recursively repeat this procedure for its entries.

R-tree leaves are an exception to this procedure. In particular, if δ is small, it is
possible that we reach an entry e corresponding to an R-tree leaf whose diagonal is
larger than δ. An option would be to insert into S all points in e, but this would
result in a large S. Thus, we handle e as follows. We conceptually split its MBR
into two equal halves on its longest dimension. We repeat this process until the
diagonal of each partition becomes smaller than or equal to δ. Then, we insert the
resulting conceptual entries into S.

Upon termination of the above procedure, all entries in S have diagonal smaller
than δ and the union of customers in their subtrees is the entire P . The size of
S, however, can be reduced by an extra step that merges its contents into hyper-
entries (MBRs) whose diagonal does not exceed δ. This is performed as follows.
The entries in S are sorted according to the Hilbert value of their bottom-left MBR
corner. For each entry e, we scan the following ones in the sorted order. If merging
e with one of them leads to a permissible diagonal, the two entries are replaced in
S by a hyper-entry and scanning resumes, potentially merging additional entries
into the hyper-entry. This process is repeated for the remaining entries in S.

Based on the resulting S, we produce a set P ′ of customer representatives as
follows. For each entry (normal, conceptual, or hyper-entry) e ∈ S we derive a
representative point g located at the geometric centroid of e, i.e., the intersection
of its MBR diagonals. The representative has weight g.w equal to the number of
customers in the subtree(s) of e. The resulting set P ′ serves as an approximation
of P .

To exemplify CA partitioning, assume that the R-tree of P and parameter δ are
as shown in Figure 10 (the R-tree is illustrated both in the spatial domain and
as stored physically). We first access the root, and consider its entries e1 and e2.
Entry e2 has smaller diagonal than δ and is inserted into S. This is not the case for
e1, whose pointed entries are accessed. Among e1’s entries, e4 and e5 satisfy the
diagonal condition and are included in S. On the other hand, e3 is a leaf and still has
diagonal larger than δ. Thus, we conceptually divide it into two new entries on its
longest dimension (i.e., x dimension). The resulting e3,1 and e3,2 have small enough
diagonal and are placed into S. Entries inserted into S are shown shaded. In the
last step, we merge entries into larger ones (while still satisfying the δ condition);
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e4 and e5 form a hyper-entry whose boundaries are shown dashed. Every entry in
the final S implicitly defines a group of customers Gm. The representatives of these
groups are points g1, g2, g3, and g4, and together comprise set P ′.

In the concise matching phase, CA computes the optimal matching M ′ between
P ′ and Q. This is performed using SIA, because (as we demonstrate in our ex-
periments) it is the most efficient among the exact methods. Note that in this
setting points in P ′ also have capacities (the representative weights). This is not a
problem, since SIA (as well as NIA and IDA) can handle capacities in the customer
side of the flow graph too. The difference is that M ′ may assign “instances” of a
representative to multiple service providers. The matching M ′ produced by this
step will be refined into the final matching M using one of the techniques presented
in Section 5.2.

As mentioned earlier, PA proceeds like CA, the difference being that partition-
ing takes place in Q (utilizing its R-tree) and that concise matching is performed
between P and the set of provider representatives Q′. Note that in PA the rep-
resentative gm of a provider group Gm has capacity gm.k =

∑
q∈Gm

q.k. Before
describing the refinement phase, it is worth mentioning that we attempted to com-
bine CA and PA (i.e., to group both P and Q), but this led to very poor matching
quality. Thus, we ignore this hybrid method in the following.

5.2 Refinement Phase

In both PA and CA, the input of the refinement phase is a matching M ′ between
one approximate set (i.e., Q′ or P ′) and one original set (P or Q, respectively). In
either case, M ′ specifies for each group Gm of service providers (customers) which
customers (instances of service providers) are assigned to it. In other words, in both
PA and CA the refinement phase has to solve several smaller problems of assigning
a set of customers P ′′ to a set of service providers Q′′ (where the number of points
p ∈ P ′′ to be assigned to each q ∈ Q′′ is given by the concise matching phase). We
could run an exact algorithm for each of these smaller problems. This, however, is
expensive. Instead, we propose the following two heuristics8, receiving small sets

8We experimented with several alternatives but these two methods were both efficient and quite

accurate.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



30 · Optimal Matching between Spatial Datasets under Capacity Constraints

P ′′ and Q′′ as input.

Provider-centric refinement : This approach computes the (next) NN of each q ∈ Q′′
in round-robin fashion in set P ′′. When discovering the NN p of service provider
q, we include pair (q, p) in the final assignment M and remove p from P ′′. If q has
reached its number of instances to be assigned to P ′′, we also delete q from Q′′.

Customer-centric refinement : According to this strategy, we identify the p ∈ P ′′
with the minimum distance from any q ∈ Q′′ that has not reached its number
of instances to be assigned to P ′′ (according to M ′). We insert into the final
assignment M the corresponding pair (q, p) and proceed with the next customer in
P ′′.

5.3 Assignment Cost Guarantee

Let M be the matching computed by CA or PA, and MCCA be the optimal match-
ing. The assignment cost error of M is:

Err(M) = Ψ(M)−Ψ(MCCA), (4)

where Ψ(M) and Ψ(MCCA) are defined as in Equation 1. We show that Err(M)
is at most γ · δ. Thus, we are able to control the assignment cost error through
parameter δ.

Theorem 5.1. The assignment error of either CA or PA is upper bounded by
γ · δ.

Proof. We focus on CA, as the proof for PA follows the same lines. First, note
that the approximate matching M has the full size γ, since concise matching leaves
customers unassigned only if all service providers are fully utilized (i.e., they have
reached their capacity). From the optimal matching MCCA, we derive another
matching M ′CCA by replacing each pair (q, p) ∈ MCCA with pair (q, g), where g
is the representative of p’s group. After the replacement, the cost of each pair
increases/decreases by at most δ

2 (since the representative g of each group Gm lies
no further than δ

2 from any customer in Gm). Thus, Ψ(M ′CCA) ≤ Ψ(MCCA)+γ · δ2 .
Note that M ′CCA is not necessarily the optimal matching between Q and P ′ (i.e.,

the set of customer representatives). Let M ′ be the optimal matching between Q
and P ′. We know that Ψ(M ′) ≤ Ψ(M ′CCA). Combining the two inequalities, we
derive Ψ(M ′) ≤ Ψ(MCCA) + γ · δ2 .

CA replaces the pairs of M ′ heuristically to form the final matching M , incurring
a maximum error of δ

2 per pair. Hence, Ψ(M) ≤ Ψ(M ′) + γ · δ2 . From the last two
inequalities, we infer that Ψ(M) ≤ Ψ(MCCA) + γ · δ.

To confirm the tightness of the bound in Theorem 5.1, we demonstrate an example
where the upper bound assignment error γ · δ is close to the actual assignment cost
error Err(M). We focus on the approximate matching M computed by the CA
method; the situation is similar for PA. Consider the example in Figure 11, where
Q = {q} (there is one provider) and P = {p1, p2, · · · , p4k} (there are 4k customers).
Note that customers p1, p2, · · · , pk are located at the same position. Similarly, other
customers share other locations. Suppose that the capacity of provider q is k.

The CA method groups customers p1, p2, · · · , p2k into entry e1, and places the
remaining customers into entry e2. For each entry ei, its diagonal length is exactly
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δ. The gray points correspond to entry centroids gi (i.e., customer representa-
tives). Assume that the minimum distance of q from the MBRs of e1 and e2 is
µ and 2µ, respectively, where µ is a value arbitrarily close to zero. After parti-
tioning into e1 and e2, CA’s concise matching assigns representative g1 to provider
q, because dist(q, g1) < dist(q, g2). Next, the refinement phase assigns customers
pk+1, pk+2, · · · , p2k to q. Since µ tends to zero, the assignment cost of this approx-
imate matching is Ψ(M) = k · δ/

√
2. Consider now the optimal matching MCCA;

in MCCA, provider q is assigned customers p2k+1, p2k+2, · · · , p3k. Since µ tends to
zero, the optimal assignment cost is Ψ(MCCA) = 0.

By Theorem 5.1, the upper bound assignment error in the above example is k · δ
because the matching size γ is k. On the other hand, the actual assignment cost
error is Err(M) = Ψ(M) − Ψ(MCCA) = k · δ/

√
2. In other words, the actual

error Err(M) is 0.7071 of the upper bound error k · δ, and therefore there exists
a problem instance in which Theorem 5.1 provides a reasonably tight bound of
the actual error. Note however that, unlike this purposely selected pathological
example, in the general case the actual assignment cost error is much lower (as we
demonstrate in the experiments).

2μμ
p1 - pk p2k+1 - p3kq

e1 e2

δg1 g2

pk+1 - p2k p3k+1 - p4k

Fig. 11. Tightness example

6. EXPERIMENTS

This section empirically evaluates the performance of our algorithms. All meth-
ods were implemented in C++ and experiments were executed on an Intel Core 2
Duo E7200 machine with 4 GBytes RAM, running on Ubuntu 8.04. Section 6.1
describes the datasets, the parameters under investigation, and other settings used
in our evaluation. Section 6.2 investigates the performance of our algorithms on
optimal CCA computation. Section 6.3 evaluates the efficiency of our incremental
maintenance techniques under different update models. Section 6.4 explores the
efficiency and assignment cost error of our approximate CCA methods.

6.1 Data Generation and Problem Settings

The CCA problem takes two spatial datasets as input: the service provider set Q
and the customer set P . Both datasets were generated on the road map of San
Francisco (SF) [Brinkhoff 2002], using the generator of [Yiu and Mamoulis 2004].
In particular, the points fall on edges of the road network, so that 80% of them are
spread among 10 dense clusters, while the remaining 20% are uniformly distributed
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in the network. This dataset selection simulates a real situation where some parts
of the city are denser than others. To establish the generality of our methods, we
also present results for different distributions. All datasets were normalized to lie
in a [0, 1000]2 space.

In Section 6.3, we use two update models that simulate different practical scenar-
ios. The first is Movement, which simulates small movements in the road network;
each update is a customer movement to a random position within its current edge.
The second is Insertion/Deletion, where arbitrary insertions and deletions occur in
P . Customers are deleted randomly, and an equal number of new ones are inserted
at locations that follow the original distribution of P .

By default, the capacity k of all q ∈ Q is 80 and the dataset cardinalities are
|Q| = 1K and |P | = 100K. Table II shows the parameters under investigation and
their examined values. Both datasets are stored in main memory and indexed by
R-trees with 1 KByte node size. Unless otherwise specified, for each experiment we
report the memory usage (i.e., |Esub|, number of edges in the subgraph) and the
CPU time.

Parameter Default Range

|Q| (in thousands) 1 0.25, 0.5, 1, 2.5, 5

|P | (in thousands) 100 25, 50, 100, 150, 200

Capacity k 80 20, 40, 80, 160, 320

Diagonal δ 5, 10 2.5, 5, 10, 20, 40, 80

Update ratio 1%, 10%
1%, 5%, 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%, 90%, 100%

Table II. System parameters

6.2 Experiments on Optimal Assignment

SSPA and SSPA+ require that the complete flow graph is stored in main memory.
For our default setting this leads to space requirements that exceed the available
system memory. To provide, however, an intuition about (i) the inherent com-
plexity of the problem and (ii) the relative performance of SSPA/SSPA+ versus
our algorithms, we experiment on a smaller problem. We generated Q and P as
described in Section 6.1, with |Q| = 250 and |P | = 25K, so that the flow graph
fits in main memory. SSPA and SSPA+ do not utilize an index, as they involve no
spatial searches. Figure 12 shows |Esub| and the CPU time (in logarithmic scale)
versus the provider capacity k in this small problem. Our best method, SIA, is one
to two (three to four) orders of magnitude faster than SSPA+ (SSPA, respectively)
in all cases. Moreover, SIA has two to three orders smaller space requirements
than SSPA and SSPA+. For under-capacity problems, the second fastest method is
IDA. For over-capacity ones, however, both NIA and IDA are slower than SSPA+,
because they build on SSPA and follow its trend.

In the remaining experiments, we focus on large problem instances, excluding
the inapplicable SSPA and SSPA+. In Figure 13(a) we measure |Esub| as we vary k
and set the remaining parameters to their default values. We include the complete
bipartite graph size |E| = |Q| · |P | (indicated by “FULL”) as a reference for the
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Fig. 12. Performance vs. k, |Q| = 250, |P | = 25K
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Fig. 13. Performance vs. k, |Q| = 1K, |P | = 100K

space requirements of SSPA/SSPA+. Due to the application of Theorems 3.2 and
3.7, our algorithms (NIA, IDA, SIA) use/store only a fragment of the complete
bipartite graph. IDA/SIA prune more edges than NIA, because they exploit the
distinction between full and non-full nodes in Esub. The difference becomes more
obvious in the over-capacity case, because IDA/SIA additionally benefit from the
role reversal between P and Q.

Figure 13(b) shows the execution time in the previous experiment. In the under-
capacity case, the processing cost for all methods increases with the provider ca-
pacity, because the number of iterations is proportional to k (i.e., γ = |Q| · k).
In the over-capacity case, γ is independent of k and equal to |P |. However, when
k grows, the capacity constraint becomes looser and the problem becomes easier.
Practically, this means that more customers are assigned to their closest provider.
Another observation is that SIA vastly outperforms IDA, although they use similar
pruning techniques. The reason is the lack of source/sink nodes in SIA. This accel-
erates sp computations because (i) the Dijkstra heap is kept small, and (ii) fewer
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Fig. 14. Performance vs. |Q|, k = 80, |P | = 100K
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Fig. 15. Performance vs. |P |, k = 80, |Q| = 1K

heap operations are required.
Figure 14 investigates the effect of service provider cardinality |Q|. The relative

performance of the algorithms is consistent with our observations in Figure 13;
IDA and SIA prune more edges than NIA, while SIA additionally benefits from
its simplified flow graph. The size of Esub increases with |Q|, but saturates when
k · |Q| exceeds |P |, since the optimal assignment is found before long edges (from
providers to their furthest neighbors and vice versa) are examined.

Figure 15 investigates the effect of |P |. When |P | increases, the complete flow
graph grows but the subgraph explored by our algorithms shrinks. Intuitively, if
there are too many customers, the NNs of each service provider are closer, and
stand a higher chance to be assigned to it; i.e., the problem becomes easier and
fewer Esub edges (and, thus, computations) are needed.

Figure 16 compares the algorithms when Q and P follow varying distributions.
Uniform (U) places points uniformly in the SF network, while Clustered (C) gener-
ates datasets in the way described in Section 6.1. For example, label “UvsC” on the
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Fig. 16. Performance under different distributions (default k, |Q|, |P |)

horizontal axis corresponds to uniform service providers and clustered customers.
SIA is the method of choice for all distribution combinations. We observe that the
cost for computing the optimal assignment increases considerably when the two sets
are distributed differently. If Q is uniform and P is clustered (e.g., customers gather
in central squares during New Year’s Eve), some providers are far from their nearest
customer clusters and compete for points far from them, thus increasing the size of
the examined subgraph. If Q is clustered and P is uniform (e.g., service providers
concentrate around certain regions), the providers cannot fill their capacities with
customers near them and, again, need to expand their search ranges very far. In
both cases, Esub is larger and the problem becomes more complex (compared to
similarly distributed Q and P ).

In the next experiment, we study the performance of our algorithms on vari-
ous real datasets. From the Geographic Names Information System (GNIS)9, we
obtained three real point sets of building locations in the United States: School
(SCH, 172K points), Church (CHU, 181K points), and Populated Place (POP,
177K points). Table III shows the subgraph size and CPU time of NIA, IDA and
SIA for different combinations of these datasets. All parameters are set to their de-
fault values; for each tested combination of Q and P we randomly selected points
from the corresponding real datasets so that their sizes are equal to the default
values (|Q| = 1K and |P | = 100K). The performance trends are similar to Figure
16. When Q and P are drawn from different datasets (i.e., follow a different dis-
tribution), the size of Esub and the CPU time increase because some customers are
assigned to very distant servers. SIA outperforms NIA and IDA in all cases, using
several times (or orders) smaller Esub and requiring a fraction of their CPU time.

6.3 Experiments on Assignment Maintenance

In this section we evaluate CCA maintenance in the Movement and Insertion/Deletion
update models. We compare the processing time of the incremental technique in
Section 4 (denoted by “SIA Update”) with SIA re-computation from scratch (illus-
trated as “SIA” in the charts).

9http://geonames.usgs.gov/domestic/
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Q P
NIA IDA SIA NIA IDA SIA

size of subgraph CPU time (s)

SCH SCH 9.7E+07 7.0E+05 3.8E+05 660.81 325.93 7.18

SCH CHU 9.9E+07 3.5E+07 1.5E+07 4589.99 2861.52 1206.15

SCH POP 9.8E+07 1.7E+07 7.8E+06 3070.91 1799.09 707.37

CHU SCH 1.0E+08 4.0E+07 2.3E+07 7179.93 4891.94 3185.43

CHU CHU 1.0E+08 2.6E+06 4.9E+05 673.24 337.74 10.56

CHU POP 6.1E+07 3.6E+07 2.3E+07 5114.81 3508.26 2018.18

POP SCH 1.0E+08 1.2E+07 5.6E+06 1969.50 1199.09 366.06

POP CHU 1.0E+08 3.2E+07 7.9E+06 3068.73 1754.63 610.17

POP POP 9.8E+07 8.5E+05 5.0E+05 595.86 248.33 10.76

Table III. Performance on real datasets (default k, |Q|, |P |)

Figure 17(a) shows the execution time as a function of the update ratio for Move-
ment updates. SIA Update is 2.4 time faster than SIA even when the update ratio
is 100%. This is an impressive result, considering that all previously assigned pairs
are invalidated (i.e., their edges are reversed when reforming Esub). As the cus-
tomers move within their current road segment, their distances from the providers
change only slightly. This means that most of the |U | = |P | iterations are suc-
cessfully performed in stage one of our update process (see Section 4.2.1), and the
reconstructed Esub does not have to be expanded much in stages two and three.
Another reason is that Esub in SIA Update is built to the largest degree by range
searches (Lines 1–3 in Algorithm 7), which are faster than incremental NN searches.

In Figure 17(b) we investigate the effect of the update ratio in the Insertion/Deletion
model. The incremental SIA method is less efficient than in the Movement case,
because the inserted customers typically do not lie close to the deleted ones. Thus,
Esub needs to be expanded significantly in stages two and tree. Regardless of this
fact, however, our update method is faster than SIA re-computation for update
ratios up to 60%.

In Figure 17, as well as in the remainder of this section, we focus on CPU time
and omit |Esub| measurements. The size of the flow subgraph in SIA Update is
similar to SIA (as reported in Section 6.2). For completeness, we mention that our
incremental method has between 0.1% and 2% (between 1% and 11%) larger Esub
than SIA in all cases in Figure 17(a) (in Figure 17(b), respectively).

In the remaining experiments, each chart presents results for two update ratios;
1% and 10%. There are two lines for the incremental SIA (denoted by “SIA Update-
1%” and “SIA Update-10%”), and one for SIA re-computation10. In Figure 18 we
vary k, while setting the remaining parameters to their default values shown in
Table II. Similarly, in Figures 19 and 20 we vary |Q| and |P |, respectively. In the
default setting, when the update ratio is 10%, incremental SIA is 7.5 (3.4) times
faster than SIA re-computation for Movement (for Insertion/Deletion) updates.
However, when

∑
q∈Q q.k � |P | or

∑
q∈Q q.k � |P |, the benefits of incremental

SIA are not as significant. The reason is that in these cases, the problem becomes

10The reported measurements for SIA re-computation are average values for both update ratios,

as its performance is practically unaffected by the number of updates.
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Fig. 17. Maintenance performance vs. update ratio (default k, |Q|, |P |)
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Fig. 18. Maintenance performance vs. k, |P | = 100k, |Q| = 1K

easier (equivalently, the running time becomes short), leaving little space for im-
provement; note that in the extreme cases (e.g., for k=20 and k=320 in Figure 18)
the reconstruction of Esub alone accounts for 70% of the total processing time in
SIA Update.

In Figure 21 we investigate the effect of different Q and P distributions on main-
tenance performance. When Q and P follow different distributions, the benefits
of incremental SIA are more pronounced. In these cases, Esub is very large (see
Figure 16) and shortest path computation becomes costlier. This fact amplifies the
advantage of SIA Update to execute only |U | iterations instead of γ.

To summarize the CCA maintenance experiments, our incremental technique is
several times faster than SIA re-computation from scratch in near equi-capacity
problems. This is always the case for Movement updates and for up to 60% update
ratios in the Insertion/Deletion model. In seriously under-capacity or over-capacity
cases, the problem becomes easier overall, and the improvement is not as significant.
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Fig. 19. Maintenance performance vs. |Q|, k = 80, |P | = 100K
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Fig. 20. Maintenance performance vs. |P |, k = 80, |Q| = 1K
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Fig. 21. Maintenance performance under different distributions (default k, |Q|, |P |)
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Fig. 22. Approximation quality vs. δ (default k, |Q|, |P |)

6.4 Experiments on Approximate Assignment

In this section we evaluate the accuracy of our approximate CCA methods (i.e., PA
and CA) presented in Section 5, and compare their execution time with SIA (the
fastest exact algorithm). We measure the accuracy of an approximate matching
M by Ψ(M)/Ψ(MCCA), where MCCA is the optimal assignment. For each of PA
and CA, we implemented both provider-centric refinement and customer-centric
refinement (indicated by a “P” or “C” after the method’s name in the charts).

Figure 22 shows the approximation quality and the running time as a function of
the diagonal parameter δ (used in the partitioning phase). As expected, accuracy
and execution cost drop with δ for both CA and PA. However, CA is significantly
faster. The reason is that the flow subgraph in its concise matching phase is much
smaller than in PA. For the same value of δ, the number of customer/provider
groups (and, thus, the number of representatives) in CA and PA is similar. However,
each representative in CA (PA) has a number of incident edges that is proportional
to |Q| (proportional to |P |, respectively). Therefore, Esub in PA is roughly |P |/|Q|
times larger than in CA. For small values of δ, PA yields a low approximation
error, but its running time is too high (around half of SIA). On the other hand, CA
with a small δ (5 and 10) achieves great performance improvement (15 times and
41.5 times) over SIA, while producing a matching only marginally worse than the
optimal. Between its variants, CA-C (i.e., CA with customer-centric refinement)
performs better. In the remaining experiments we focus on CA-C with δ = 5 and
δ = 10 (denoted by “CA-5” and “CA-10”), because these two settings achieve the
best efficiency/accuracy trade-offs.

Next, we evaluate the approximate solutions varying one of k, |Q|, and |P |, while
setting the other two parameters to their default values shown in Table II. In
Figure 23, we examine the effect of k and observe that the approximation quality
improves when it grows. As k increases, the providers are assigned more distant
customers; i.e., both Ψ(M) and Ψ(MCCA) grow. On the other hand, the customer
group MBRs remain constant (as δ is fixed) and, hence, the relative error of a
suboptimally assigned customer drops. When k ≥ 80, the error is lower than 1.5%
and 6% for CA-5 and CA-10, respectively. The execution time of CA follows the
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Fig. 23. Approximation performance vs. k, |Q| = 1K, |P | = 100K
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Fig. 24. Approximation performance vs. |Q|, k = 80, |P | = 100K

trend of SIA, due to its SIA-based concise matching.
Figure 24 investigates the effect of |Q| on the approximation quality and running

time. The error of CA increases with |Q|, because the more service providers around
a customer group, the higher the chances for a suboptimal pair in M . The quality
of CA-10 is more sensitive to |Q|, because more wrong assignments are made by its
concise matching.

Next, in Figure 25, we vary the number of customers |P |. A large |P | reduces
the accuracy of CA, because the customer groups become more crowded, implying
a coarser partitioning and a worse approximation. On the other hand, when |P | is
only 25K, the concise matching of CA degenerates to SIA (i.e., most groups contain
a single customer), leading to a marginally higher processing cost than SIA due to
the unnecessary overheads for partitioning and refinement.

Figure 26 examines the effect of different Q and P distributions. CA-5 and CA-
10 perform well in terms of running time and accuracy for all combinations. For
differently distributed Q and P , CA-5 and CA-10 have less than 1.5% error while
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 25. Approximation performance vs. |P |, k = 80, |Q| = 1K
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Fig. 26. Approximation performance under different distributions (default k, |Q|, |P |)

they are at least one order of magnitude faster than SIA. CA is less accurate (but
faster) for similarly distributed Q and P , because multiple alternatives exist for
each provider-customer assignment with similar costs (i.e., distances) each.

In summary, CA with customer-centric refinement is our best approximate method.
It typically computes a near optimal matching, while being several times faster than
SIA. Importantly, CA is also very robust, avoiding SIA’s undesirable peak (in pro-
cessing time) for near equi-capacity problems.

7. CONCLUSION

In this paper we study the capacity constrained assignment (CCA) problem, which
retrieves the matching (between two spatial datasets) with the lowest assignment
cost, subject to capacity constraints. CCA is important to applications involving
assignment of users to facilities based on spatial proximity and capacity limitations.
We present efficient CCA algorithms that gradually expand the search space and
effectively prune it. In addition to one-time (static) CCA methods, we propose
incremental techniques that amend an existing assignment subject to a batch of
location updates, in order to retain optimality. Finally, we develop approximate

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



42 · Optimal Matching between Spatial Datasets under Capacity Constraints

CCA solutions that provide a trade-off between computation cost and matching
quality.

An interesting direction for future work is the predictive CCA problem. Here,
each customer (i.e., every point of one dataset) follows a predefined trajectory, and
the challenge is to compute all future optimal assignments along with their respec-
tive time intervals. An additional challenge in this model, is to allow updates in
the predefined trajectories, requiring incremental (on-the-fly) amendments of the
predictions made previously. The predictive CCA problem is motivated by intelli-
gent transportation systems, where position anticipation and trajectory mining are
possible.
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