
Title SPECS: Secure and privacy enhancing communications
schemes for VANETs

Author(s) Chim, TW; Yiu, SM; Hui, LCK; Li, VOK

Citation Ad Hoc Networks, 2011, v. 9 n. 2, p. 189-203

Issued Date 2011

URL http://hdl.handle.net/10722/129984

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37954193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SPECS: Secure and Privacy Enhancing
Communications Schemes for VANETs

T.W. Chim, S.M. Yiu and Lucas C.K. Hui
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

Email: {twchim, smyiu, hui}@cs.hku.hk

Victor O.K. Li
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong

Email: vli@eee.hku.hk

Abstract—Vehicular ad hoc network (VANET) is an emerging
type of networks which facilitates vehicles on roads to commu-
nicate for driving safety. The basic idea is to allow arbitrary
vehicles to broadcast ad hoc messages (e.g. traffic accidents) to
other vehicles. However, this raises the concern of security and
privacy. Messages should be signed and verified before they are
trusted while the real identity of vehicles should not be revealed,
but traceable by authorized party. Existing solutions either rely
heavily on a tamper-proof hardware device, or cannot satisfy
the privacy requirement and do not have an effective message
verification scheme. In this paper, we provide a software-based
solution which makes use of only two shared secrets to satisfy
the privacy requirement (with security analysis) and giveslower
message overhead and at least 45% higher successful rate than
previous solutions in the message verification phase using the
bloom filter and the binary search techniques (through simulation
study). We also provide the first group communication protocol
to allow vehicles to authenticate and securely communicatewith
others in a group of known vehicles.

Index Terms—Secure vehicular sensor network, authentication,
batch verification, bloom filter, group communications

I. I NTRODUCTION

A vehicular ad hoc network (VANET) is also known as a
vehicular sensor network by which driving safety is enhanced
through inter-vehicle communications or communications with
roadside infrastructure. It is an important element of the
Intelligent Transportation Systems (ITSs) [1]. In a typical
VANET, each vehicle is assumed to have an on-board unit
(OBU) and there are road-side units (RSU) installed along
the roads. A trusted authority (TA) and maybe some other
application servers are installed in the backend. The OBUs and
RSUs communicate using the Dedicated Short Range Com-
munications (DSRC) protocol [2] over the wireless channel
while the RSUs, TA, and the application servers communicate
using a secure fixed network (e.g. the Internet). The basic
application of a VANET is to allow arbitrary vehicles to
broadcast safety messages (e.g. road condition, traffic accident
information) to other nearby vehicles and RSU such that
other vehicles may adjust their travelling routes and RSU
may inform the traffic control center to adjust traffic lights
for avoiding possible traffic congestion. This paper focuses on
inter-vehicle communications.

Like other communication networks, security issues have
to be well-addressed. For example, the message from an OBU

has to be integrity-checked and authenticated before it can
be relied on. Otherwise, an attacker can replace the safety
message from a vehicle or even impersonate a vehicle to
transmit a fake safety message. For example, an attacker may
impersonate an ambulance to request other vehicles to give
way to it or request nearby RSUs to change traffic lights to
green. Besides, privacy is another important issue in recent
years. A driver may not want others to know its driving routes
by tracing messages sent by its OBU. Thus an anonymous
communications protocol is needed. While being anonymous,
a vehicle’s real identity should be able to be revealed by a
trusted party when necessary. For example, the driver who
sent out fake messages causing an accident should not be able
to escape by using an anonymous identity. Thus we call this
kind of privacy conditional privacy.

In terms of integrity-checking and authentication, digital
signature in conventional public key infrastructure (PKI)[3]
is a well accepted choice. However, requiring a vehicle to
verify the signatures of other vehicles by itself as in works
like [4] induces two problems as mentioned in [5]. First, the
computation power of an OBU is not strong enough to handle
all verifications in a short time, especially in places where
the traffic density is high. Second, to verify a message from
an unknown vehicle involves the transmission of a public key
certificate which causes heavy message overhead. Therefore,
the general approach is to let the nearby RSU to help a vehicle
to verify the message of another. The volume of signatures to
be verified can be very huge (every vehicle is expected to
broadcast a safety message every few hundred ms [6]). An
efficient method for verifying a batch of signatures within a
short period of time is desirable.

Related problems have been addressed in some recent works
[5], [7]–[15]. In [7], the IBV protocol was proposed for
vehicle-to-RSU communications. The RSU can verify a large
number of signatures as a batch using just threepairing
operations (see the Preliminaries Section for what a pairing
operation is). However, their work has some limitations. First,
their protocol relies heavily on a tamper-proof hardware de-
vice, installed in each vehicle, which preloads the system-wide
secret key. Once one of these devices is cracked, the whole
system will be compromised. Second, a vehicle’s real identity
can be traced by anyone, thus the protocol does not satisfy

2

the privacy requirement. Third, their protocol has a flaw such
that a vehicle can use a fake identity to avoid being traced
(anti-traceability attack) or even impersonate another vehicle
(impersonation attack1). Forth, in their batch verification
scheme, if any of the signatures is erroneous, the whole batch
will be dropped. This is inefficient because most signatures
in the batch may actually be valid, thus may imply a not
satisfactory successful rate. Finally, the IBV protocol isnot
designed for vehicle-to-vehicle communications.

In a more recent work [5], the RAISE protocol was pro-
posed for vehicle-to-vehicle communications. The protocol is
software-based. It allows a vehicle to verify the signatureof
another with the aid of a nearby RSU. However, no batch
verification can be done and the RSU has to verify signatures
one after another. On the other hand, to notify other vehicles
whether a message from a certain vehicle is valid, a hash value
of 128 bytes needs to be broadcasted. There can be tens up
to thousands of signatures within a short period of time, thus
the notification messages induce a heavy message overhead.

Although the basic idea in an VANET is to allow unknown
vehicles to broadcast safety message to one another, like other
ad hoc network applications, there are scenarios (e.g. car rac-
ing, police patrolling, and tour travelling) which should allow
a group of known vehicles to communicate securely among
themselves. [8] considers such a secure group communications
scenario but they only focus on how the group key can be
updated. How vehicles can form a group and how the initial
group key can be established are not considered at all.

Other recent efforts for making authentication in VANETs
more efficient include [9] and [10]. In [9], the authors pro-
pose to use the physical property of a transmitting signal
to discriminate one transmitter from others because physical
measurement is more efficient than software computation.
[10], on the other hand, aims at enhancing the efficiency of any
certificate-based authentication scheme. The authors propose
a HMAC-based solution to replace the time-consuming and
traditional certificate revocation list checking process.

Regarding conditional privacy preserving, some recent
works [11]–[13] propose to achieve the goal by using group
signature schemes. That is, each vehicle in the system is as-
signed a group private key. When a vehicle wants to broadcast
a message, it signs the message using its group private key.
Verifiers such as RSUs can then verify its signature using a
common group public key. In this way, a signature can be
properly verified but at the same time, the real identity of the
signer can be hidden. Only if necessary, a trusted party can use
a private key to reveal the real identity of the signer. Though
conditional privacy preserving can be achieved, we argue that
such group signature schemes are complicated and inefficient.

In terms of secure VANET applications, [14] and [15] are
two representatives. [14] proposes a secure navigation scheme
for locating parking lots in a car park while [15] proposes
a secure and privacy preserving road toll calculation scheme
under the principle of multi-party computation.

1Please refer to the Appendix for details of the attacks.

In this paper, we propose two Secure and Privacy Enhancing
Communications Schemes for vehicular sensor networks
(SPECS). Our schemes can handle ”ad hoc messages” (those
sent out by arbitrary vehicles) as well as allow vehicles that
know one another in advance to form a group and send
”group messages” securely among themselves. In summary,
our schemes have the following novel features over earlier
schemes:

1) Our schemes are software based and do not rely on any
special hardware. Our schemes are also based on bilinear
pairing as in [7]. The pairing operation is known to
be computationally expensive. We reduce the number
of such operations in the verification phase from three
to two to enhance the efficiency (a save of 33.3% of
processing delay).

2) By establishing shared secrets with RSU and TA on the
handshaking phase, a vehicle is allowed to use a different
pseudo identity for each session (or message) to protect
its privacy while the real identity is traceable only by TA.
We also show that impersonation attack is not feasible
in our schemes.

3) We make use of the techniques of binary search in
RSU message verification phase and bloom filter to
replace hash values in notification messages to reduce
the message overhead substantially and enhance the
effectiveness of the verification phase. Bloom filter is
a well-known technique. We show an interesting appli-
cation of it by using two bloom filters with opposite
meaning to substantially reduce the false positive rate
by up to 89.6%.

4) Any vehicle can form a group with other vehicles after
an initial handshaking phase with a nearby RSU and
then can authenticate and communicate with one another
securely without the intervention of RSU even after
moving into the region of another RSU.

We provide a security analysis on our schemes and an
anlysis on the effectiveness of using bloom filter to replace
hash values in the notification messages. Through the analysis
and extensive simulation, we show that our schemes can
reduce the message overhead and increase the successful rate
by at least 45% while the additional overhead is insignificant
when compared to the existing solutions.

The remainder of this paper is organized as follows: the
system model and the problem statement are described in
Section II. Some preliminaries about bilinear maps and bloom
filter are given in Section III. Our schemes are presented
in Section IV. The analysis and evaluation of our schemes
are given in Sections V, VI and VII. Finally, Section VIII
concludes the paper.

II. PROBLEM STATEMENT

System model and assumptions:Recall that a vehicular network
consists of on-board units (OBUs) installed on vehicles, road-
side units (RSUs) along the roads, and a trusted authority
(TA). We focus on the inter-vehicle communications over the
wireless channel. We assume the followings:

3

1) The TA is always online and trusted. RSUs and TA
communicate through a secure fixed network. To avoid
being a single point of failure or a bottleneck, redundant
TAs which have identical functionalities and databases
are installed.

2) The RSUs have higher computation power than OBUs.
3) The RSU to Vehicle Communication (RVC) range is at

least twice of the Inter-Vehicle Communication (IVC)
range to ensure that if an RSU receives a message, all
vehicles receiving the same message are in the feasible
range to receive the notification from the RSU.

4) There exists a conventional public key infrastructure
(PKI) for initial handshaking. The public key of the
TA PKTA is known by everyone. The public key of
vehicle Vi PKVi

is known by the TA. Also any RSU
R broadcasts its public keyPKR with hello messages
periodically to vehicles that are travelling at the RVC
range of it. ThusPKR is known by all vehicles nearby.
There is no need for vehicles to know the public keys of
other vehicles to avoid message overhead for exchanging
certificates. The private keys of TA,Vi andR areSKTA,
SKVi

andSKR respectively and are kept secret by the
corresponding party.

5) The real identity of any vehicle is only known by the
TA and itself but not by others.

Security requirements: We aim at designing schemes to satisfy
the following security requirements:

1) Message integrity and authentication: A vehicle should
be able to verify that a message is indeed sent and signed
by another vehicle without being modified by anyone.

2) Identity privacy preserving: The real identity of a vehicle
should be kept anonymous from other vehicles and a
third-party should not be able to reveal a vehicle’s real
identity by analysing multiple messages sent by it.

3) Traceability and revocability: Although a vehicle’s real
identity should be hidden from other vehicles, if neces-
sary, the TA should have the ability to obtain a vehicle’s
real identity and to revoke it from future usage.

III. PRELIMINARIES

Our schemes arepairing-basedand defined on two cyclic
groups with abilinear mapping[16]. We briefly introduce
what a bilinear map is and will discuss the basics on bloom
filter which we apply in the RSU notification phase.

A. Bilinear Maps

Let G be a cyclic additive group andGT be a cyclic
multiplicative group. Both groupsG and GT have the same
prime orderq. The mappingê : G × G → GT is called a
bilinear mapif it satisfies the following properties:

1) Bilinear: ∀P, Q, R ∈ G and∀a, b ∈ Z, ê(Q, P + R) =
ê(P + R, Q) = ê(P, Q) · ê(R, Q). Also ê(aP, bP) =
ê(P, bP)a = ê(aP, P)b = ê(P, P)ab.

2) Non-degenerate: There existsP, Q ∈ G such that
ê(P, Q) 6= 1GT

.

3) Computable: There exists an efficient algorithm to com-
pute ê(P, Q) for any P, Q ∈ G.

The bilinear map̂e can be constructed on elliptic curves.
Each operation for computinĝe(P, Q) is a pairing operation.
Pairing operation is the most expensive operation in this kind
of cryptographic schemes. The fewer the number of pairing
operations, the more efficient the scheme is. The groupsG

andGT are called bilinear groups. The security of our schemes
relies on the fact that the discrete logarithm problem (DLP)on
bilinear groups is computationally hard, i.e., given the point
Q = aP , there exists no efficient algorithm to obtaina by
given P and Q. The implication is that we can transferQ
in an open wireless channel without worrying thata (usually
some secret) can be known by the attackers.

B. Bloom Filter

A bloom filter is a method for representing a setA =
a1, a2, ..., an of n elements to support membership queries.
The idea is to allocate a vectorv with m bits, initially all set
to 0, and then choosek independent hash functions,h1, h2,
..., hk, each with range 1, ...,m. For each elementa ∈ A,
the bits at the positionsh1(a), h2(a), ..., hk(a) in v are set
to 1 (A particular bit might be set to 1 multiple times). To
answer if a valueb is in A, we check the bits at positions
h1(b), h2(b), ...,hk(b). If any of them is 0, thenb is definitely
not in the setA. Otherwise we conjecture thatb is in the
set although there is a certain probability that we are wrong
(called a false positive). After insertingn keys into the vector
with m bits with k hash functions, the probability that a
particular bit is still 0 is(1 − 1

m
)kn ∼ e−

kn
m assuming that

on any input value, the hash functions pick each position with
equal probability. Hence the probability of a false positive is
(1 − (1 − 1

m
)kn)k ∼ (1 − e−

kn
m)k. Let f(k) = (1 − e−

kn
m)k

and let g(k) = lnf(k) = kln(1 − e−
kn
m). By finding dg

dk

and makingdg
dk

= 0, it can be shown that to minimize the
probability of having false positives,k should be set tomln2

n
.

IV. OUR SOLUTIONS - SPECS

This section presents our proposed SPECS schemes. There
are some initial parameters to be generated by TA using the
following steps. This needs to be done once for the whole
system unless the master key, or the real identity of a vehicle
are believed to be compromised, or TA wants to update the
parameters and the master key periodically to enhance the
security level of the system.

1) TA choosesG and GT that satisfy the bilinear map
properties.

2) TA randomly pickss ∈ Zq as its master key and
computesPpub = sP as its public key. The public
parameters{G, GT, q, P , Ppub} are publicly accessible
by all RSUs and vehicles.

3) TA assigns each vehicle a real identityRID ∈ G

and a passwordPWD. The drivers are informed about
them during network deployment or during vehicle first
registration.

4

The schemes can be divided into the following modules:
1) Initial handshaking (Fig. 1): This module is executed

when a vehicle meets a new RSU. The vehicle authen-
ticates itself with the TA via RSU. Note that TA is the
only authorized party to know the real identity of the
vehicle, so TA will pass information to RSU to allow
RSU to verify the vehicle’s signature even if it uses
pseudo identity to sign the message. Also, RSU will
generate a shared secret with the vehicle. If this is the
first time the vehicle authenticates itself with the TA,
TA will also pass its master keys and a shared secret
to the vehicle. This only needs to be done once in the
whole journey. To increase the security level,s is not
preloaded into any hardware on the vehicle like [7]. For
the shared secret with RSU, a new secret is generated
every time the vehicle moves into the region of another
RSU.
For ad hoc messages, we have the following modules:

2) Message signing (Fig. 2): When a vehicle wants to send
out a message, it first creates a pseudo identity together
with the signing key. This can be doneper message
to increase the difficulty of attackers to trace its real
identity. Then, it signs the message using the signing
key of the pseudo identity.

3) Batch verification (Fig. 3): This module is used by the
RSU to verify a set of messages using onlytwo pairing
operations in a batch mode. We also describe how to
generate a notification broadcast message using bloom
filter and how to handle the case in which there are some
invalid signatures in the batch (recall that in [7], once
there is an invalid signature in the batch, the whole batch
of signatures are assumed to be invalid and ignored).

4) Real identity tracking and revocation: This module is
used by TA to reveal the real identity of the sender of
a given message and then revoke it from future usage if
necessary.
For group messages, we have the following modules:

5) Group key generation (Fig. 4): This module is used when
a set of vehicles want to form a group. A group secret
key will be generated by the TA and forwarded by an
RSU.

6) Group message signing and verification (Fig. 5): This
module shows how to generate a group message so that
the group members can verify the signature without the
help of an RSU. Note that to reveal the real identity of
the sender of a group message by the TA, we can apply
the same procedure as for ad hoc message.

A. Initial handshaking

We use the notationsENCZ(M), DECZ(M) and
SIGZ(M) to denote encrypting, decrypting and signing,
respectively, messageM using the keyZ from now on. The
detailed processes in this module are as follows:

1) When a vehicleVi meets the first RSUR, it signs its
RID and PWD using its private keySKVi

. It then
encrypts RID, PWD and SIGSKVi

(RID, PWD)

Fig. 1. Initial Handshaking

using the TA’s public key PKTA and sends
ENCPKT A

(RID, PWD, SIGSKVi
(RID, PWD)) to

the RSU which forwards it to the TA.
2) The TA decrypts the block and verifiesRID, PWD

and checksVi’s signature using its public keyPKVi
. If

they are all valid and ifRID is not in its revocation
list, it generates a shared secretti for Vi and computes
Vi’s ID Verification Public Key asV PKi = ti ⊕ RID.
TA then passesV PKi to the RSU to enable it to
verify signatures fromVi even ifVi uses pseudo identity
to sign the message. The TA then stores the (RID,
ti) pair into its repository and forwardsPKVi

, V PKi

and X = ENCPKVi
(s, V PKi, SIGSKTA

(s, V PKi))
to the RSU, wherePKR and PKVi

are conventional
public keys of the RSU and vehicleVi respectively. Note
that to letVi know thats andV PKi are really sent by
the TA, the TA includes its signature ons and V PKi

(SIGSKTA
(s, V PKi)) into the encrypted text.

3) The RSU chooses a random numbermi to be the shared
secret between itself and vehicleVi. It stores the (V PKi,
mi) pair into its verification table for later usage. It then
sendsY = ENCPKVi

(mi, SIGSKR
(mi)) and X to

vehicleVi. Again to let vehicleVi know thatmi is really
sent by the RSU, the RSU signs it.

4) Vehicle Vi decryptsY to obtain mi and verifies the
RSU’s signature on it. Similarly, it decryptsX to obtain
s and V PKi and verifies the TA’s signature on them.
It then computes its shared secret with the TA using
t = V PKi ⊕ RID.

This basically completes the initial handshaking phase. The
following shows the procedure when vehicleVi leaves the
range of an RSU and enters the range of another. It includes a
simpler authentication process with the TA so that TA can pass
the information to the new RSU for verifyingVi’s signature
and a new shared secret will be generated by this RSU.

5) Vi generate a random noncer′ and sends
ENCPKT A

(RID||r′) to TA via this new RSU.
The random noncer′ avoids Vi from being tracked
even the attacker captures a number of these packets
as Vi is moving across RSUs. The TA obtainsRID
by decrypting the block using its private keySKTA

and then removing the concatenationr′. This time the
TA does not need to verifyVi’s PWD anymore as it
has already done that whenVi first starts up. Instead it
directly generates a newti and a newV PKi for Vi and
sendsV PKi to the new RSU. The TA then adds the
new ti into its repository. Next the new RSU chooses

5

a random numbermi to be its shared secret withVi.
After storing (V PKi, mi) into its verification table,
RSU sendsY = ENCPKVi

(mi, SIGSKR
(mi)) to Vi

which then decrypts it using its conventional secret key.
From now on, vehicleVi starts to use the new shared
secret with the new RSU for message signing.

B. Message signing

Fig. 2. Message Signing

To sign a message, a vehicle generates a pseudo identity and
the corresponding signing key. A different pseudo identitycan
be used for a different message.

To generate a pseudo identity,Vi first generates a random
noncer. Its pseudo identityIDi contains two parts -IDi1 and
IDi2 whereIDi1 = rPpub andIDi2 = V PKi⊕H(miIDi1).
The corresponding signing key isSKi = (SKi1, SKi2)
whereSKi1 = smiIDi1 and SKi2 = sH(IDi2). H(.) is a
MapToPoint hash function [17]. Then, to sign a messageMi,
Vi computes the signatureσi = SKi1 + h(Mi)SKi2 where
h(.) is a one-way hash function such as SHA-1 [18]. Vehicle
Vi then sends< IDi, Mi, σi > to others.

C. Batch verification

Fig. 3. Batch Verification

This module allows an RSU to verify a batch of signatures
using only two pairing operations based on the bilinear prop-
erty of the bilinear map. We require an RSU to perform batch
verification at a frequency higher than that a vehicle broadcasts
safety messages so that a vehicle can verify the safety message
of another before it broadcasts a more updated one. We first
show the verification procedure. Then, we show how to make
use of bloom filter to construct a notification message in order
to reduce the message overhead. Lastly, we describe how to
handle the case in which there are invalid signatures in the
batch and how to extract valid ones from the batch instead of
dropping the whole batch as in [7].

Verification procedure. Assume that the RSU wants to verify
a batch of signaturesσ1, σ2, ..., σn from vehiclesV1, V2, ...,
Vn on messagesM1, M2, ..., Mn. With the shared secrets
and the pseudo identities of the vehicles, the RSU first finds
out their verification public keysV PK1, V PK2, . . . , V PKn

and shared secretsm1, m2, . . . , mn by checking which of the
stored(V PKi, mi) pairs satisfyIDi2 = V PKi⊕H(miIDi1)
It then verifies the signatures by checking ifê(

∑n

i=1
σi, P) =

ê(
∑n

i=1
miIDi1 + h(Mi)H(IDi2), Ppub).

Proof of correctness:
L.H.S.
= ê(

∑n
i=1

SKi1 + h(Mi)SKi2, P)
= ê(

∑n

i=1
SKi1, P)ê(

∑n

i=1
h(Mi)SKi2, P)

= ê(
∑n

i=1
smiIDi1, P)ê(

∑n

i=1
h(Mi)sH(IDi2), P)

= ê(
∑n

i=1
miIDi1, sP)ê(

∑n
i=1

h(Mi)H(IDi2), sP)
= ê(

∑n

i=1
miIDi1, Ppub)ê(

∑n

i=1
h(Mi)H(IDi2), Ppub)

= R.H.S. �

To avoid replay attack, an RSU stores the pseudo identities
used by vehicles. If the pseudo identity in a vehicle’s message
matches any stored one, the RSU reject the message immedi-
ately. Note that if a vehicle does not know the shared secret
with the RSU, it cannot produce a valid signature. There may
be a very small chance that the pseudo identities generated
by two vehicles are the same. In that case, RSU will treat
the signatures as invalid. The vehicles will sign again using a
different pseudo identity.

Generating notification message.After the RSU verifies ve-
hicle Vi’s signatureσi, it notifies all vehicles within its RVC
range the result. We first assume that all signatures are valid.
For each valid message, we store a hash valueh(IDi||Mi)
of the message in the bloom filter (the hashing function is
known to everyone) to minimize message overhead. However,
as we discussed in Section III-B, there can be false positives
in a bloom filter. To reduce this impact, we propose to use two
bloom filters which contain opposite information:Positive and
Negative Filter. The positive bloom filter stores the hash value
of pseudo identities and messages of vehicles whose signatures
are valid and the negative bloom filter stores the hash value of
pseudo identities and messages of vehicles whose signatures
are invalid.

If vehicle Vi wants to verify vehicleVj ’s signatureσj on
messageMj, it first computesh(IDi||Mi) and then checks
the positive filter and the negative filter as included in the
RSU broadcast. There are four possible cases (see Table I).
For the first two cases, the resulting validity ofσj can be
confirmed. For the third case,Vj ’s hash appears in both filters.
Then this must be a false positive in either filter, thus a re-
confirmation procedure is needed. For the last case,Vj ’s hash
does not appear in both filters. It means that the RSU still has
not yet verifiedσj and soVi has to wait for the RSU’s next
broadcasting message.

To facilitate re-confirmation, we require a vehicle to store
the signatures of other vehicles which they are interested in
upon receiving them for the first time for a short period.
Also we require the RSU to store the valid signatures that
it has verified together with the sending vehicles’ pseudo
identities for at least one more batch verification period after
that signature is lastly requested.

If case 3 occurs, vehicleVi re-sendsσj to the RSU. RSU
searches forσj from those stored signatures. Ifσj can be
found, the RSU adds the hash ofVj into the positive filter.

6

TABLE I
POSSIBLECASES AND THEIR IMPLICATIONS IN BLOOM FILTERS

Case Positive Filter Negative Filter Validity ofσj

1 True False Valid
2 False True Invalid
3 True True (Re-confirmation needed)
4 False False (Wait for next broadcast)

Otherwise, it adds it into the negative filter. All re-confirmation
results can be embedded into a re-confirmation reply similar
to a normal notification message. In practice, we can use one
bit to distinguish whether the reply is a normal notification
message or a re-confirmation reply.

There is still a chance that case 3 occurs again. Our scheme
allows the use of bloom filters for re-confirmation forK
rounds. If afterK rounds and case 3 still occurs, the RSU will
sendh(IDj||Mj) of Vj to vehicleVi as a direct notification.
To facilitate the RSU to know what it should send in the re-
confirmation reply, the RSU stores the number of requests
to each of its signature stored. See next section for the
performance of our schemes with different values ofK.

Note that the size of each bloom filterm (i.e. the number of
bits used) can be a variable in our schemes to save transmission
overhead. To help the receiving vehicles to interpret the size
the filters (so that they can adjust the range of hash functions
accordingly), together with the valid and the invalid filters, the
RSU also transmits a valuen to represent the total number of
signatures in the batch (i.e. the number of values being added
into any bloom filter cannot exceedn). To allow vehicles to
confirm that a notification message is indeed sent by an RSU,
RSU signs the bloom filters using its private keySKR before
broadcasting them.

Invalid signatures in the batch. A batch may contain tens
up to thousands of signatures depending on the traffic density
around the RSU. In the IBV protocol, if any of the signatures
inside the batch is invalid, the whole batch is dropped. This
approach is inefficient in the sense that most of the signatures
in the batch are actually valid and can be used. Thus in our
schemes, we propose to adopt binary search in the verification
process to extract those valid ones. Assume that the batch
containsn signatures, we arrange them in a fixed order (say
according to the senders’ pseudo identities). If the batch veri-
fication fails, we first find out the mid-point asmid = ⌊ 1+n

2
⌋.

Then we perform batch verification on the first half (the1st

to midth elements) and the second half (the(mid + 1)th to
nth elements) separately. If any of the two batches causes a
failure in the verification again, we repeat the same process
on the invalid batch. If the pairing on any batch is valid,
the RSU notifies all those signatures immediately. The binary
search stops if a batch contains only one signature or when a
pre-defined level of binary search is reached. In Section VII,
we evaluate the performance of our schemes using different
number of levels in binary search and it is found that a full
exploration may not be necessary in most cases.

D. Real identity tracking and revocation

To reveal the real identity of the sender of a message, TA is
the only authorized party that can perform the tracing. Given
vehicle Vi’s pseudo identityIDi and its shared secret with
the connecting RSUmi, TA can search through all the stored
(RIDj, tj) pairs from its repository. VehicleVi’s real identity
is theRIDj value from the entry that satisfies the expression
IDi2 ⊕ tj ⊕ H(miIDi1) = RIDj .

Proof of correctness:
L.H.S.
= ti ⊕ RIDj ⊕ H(miIDi1) ⊕ ti ⊕ H(miIDi1)
= R.H.S. �

No other party can obtain vehicleVi’s real identity sinceti
is only known by the TA andVi itself.

Upon gettingVi’s real identityRIDi, TA can revoke it if
necessary. This can be done by simply storingRIDi into a
revocation list.Vi can no longer obtainV PKi from it in the
future.

E. Group key generation

Fig. 4. Group Key Generation

This subsection shows how a group of known vehicles can
form a group with any RSU, then they can communicate
securely within the group without any further help from RSU
to verify these group messages.

Assume that vehiclesV1, V2, ..., Vn have already registered
with an RSU and their shared secrets with the RSU arem1,
m2, ...,mn respectively. Also assume that these vehicles know
pseudo identities of one another already or they can know
others’ pseudo identities by the last message received from
one another.

Group request. Vehicle Vi first sends to the RSU message
Mi = {GPREQ, ID1, . . . , IDi−1, IDi+1, ..., IDn} and its
signatureσi = SKi1 + h(Mi)SKi2 on it whereIDj is the
pseudo identity ofVj . Also SKi1 and SKi2 are generated
using the methods in Section IV-B. Note thatVi can be anyone
or the leader of the group

Group agree. Any vehicle Vj receiving Vi’s GPREQ
message checks whether its pseudo identity is included
in the GPREQ message. If yes, it sends outMj =
{GPAGR, IDj} and its signatureσj = SKj1+h(Mj)SKj2.

Group batch verification. The RSU then batch-verifiesσ1, ...,
σn. For any vehicleVx whose signature is found to be valid, it
generates its group public key asGPKx = mxP . Recall that
mx is the shared secret between the RSU and vehicleVx. Be-
sides group public keys, the RSU also requests the TA to pro-
vide the group of vehicles a common group secret key. Without

7

loss of generality, assume the signatures fromV1, ..., Vx are
valid. The RSU sendsV PK1, ..., V PKx to the TA which in
turn generates a random numberrr and computes the group se-
cret key asCGS = s×rr. Next the TA sendsENCt1(CGS),
..., ENCtx

(CGS) back to the RSU. Recall thatti is the
shared secret betweenVi and the TA. The RSU then broadcasts
Mr = {ID1, ..., IDx, GPK1, ..., GPKx, ENCt1(rr), ...,
ENCtx

(rr)} and its signatureSIGSKR
(Mr) to the vehicles

concerned. Note that in case the verification fails due to invalid
signatures or vehicles inside the range have same pseudo
identity (although the chance is very small), RSU will stop
the protocol and the group is required to repeat the protocol
again for the sake of security reason.

Group secret establishment.Each vehicle in the group stores
all the group public keys and the decryptedCGS values. Note
that the RSU does not knowCGS since the TA encrypts it
using its shared secret with each vehicle. Thus vehicles in the
group can communicate with others securely from now on.

F. Group message signing and verification

Fig. 5. Group Message Signing and Verification

Next we look at the pseudo identity generation, message
signing and signature verification when group communications
take place. When vehicleVi wants to send a group message
Mi, it generates its pseudo identityIDi and signatureσi

in the same way as in Section IV-B. However, its secret
signing key is generated asSKi = (SKi1, SKi2) where
SKi1 = miIDi1 and SKi2 = miH(IDi2). Vi then sends
out < IDi, ENCCGS(GPKi||IDi), Mi, σi > where r is
the random nonce used to generate its pseudo identity. Note
that GPKi is included so that the receiving vehicle knows
which group public key to use for verification. To make it
impossible for any vehicle outside the group to traceVi, GPKi

is first concatenated with its per session pseudo identity and
then encrypted using the common group secretCGS.

To verify the signatureσi of vehicleVi on messageMi, the
receiving vehicle first decryptsENCCGS(GPKi||IDi) using
CGS. If it finds thatGPKi obtained does not belong to any
group member, it simply ignores the message. Otherwise it
checks whether̂e(σi, P) = ê(IDi1+h(Mi)H(IDi2), GPKi).

Proof of correctness:
L.H.S.
= ê(SKi1 + h(Mi)SKi2, P)
= ê(SKi1, P)ê(h(Mi)SKi2, P)
= ê(miIDi1, P)ê(h(Mi)miH(IDi2), P)
= ê(IDi1, miP)ê(h(Mi)H(IDi2), miP)
= ê(IDi1, GPKi)ê(h(Mi)H(IDi2), GPKi)
= R.H.S. �

V. SECURITY ANALYSIS

We analyse our schemes to show that they are secure
with respect to the security requirements listed in section
II. For the first two requirements - message integrity and
authentication, identity privacy preserving, we try to prove the
security formally using ways discussed in [19], [20] and [21].
Basically, we define some games which actually represent
some possible ways that an attacker can attack our system.
Then through some mathematical calculations, we show that
all these games are unlikely and so our schemes are secure.

A. Message integrity and authentication

In this sub-section, we show that an attacker cannot generate
a valid signature on behalf of any vehicle. We consider two
different kinds of attackers: 1) an attacker is itself a vehicle
and 2) an attacker is an RSU (e.g. an RSU being hacked).

a. Vehicle as an attacker:
We first consider the case that the attacker is a vehicle

(that is he knowss but notmi for any other vehicleVi). We
argue that if DH is hard, then a vehicle’s message (either ad
hoc message or group message) cannot be forged by another
vehicle and our scheme is secure against existential forgery,
adaptive chosen message attack under random oracle model.
The proof is as follows.

We first considerGame 1 between a challenger and an
attacker who is a vehicle:

Setup: The challenger starts by giving the attacker a set of
system parameters includingP andPpub. The challenger also
gives the attacker a pseudo identityIDi = (IDi1, IDi2) and
the corresponding group public keyGPKi. This simulates
the situation that the attacker eavesdroppedIDi and GPKi

of another vehicleVi from the air. Further sinces is known
by all vehicles in our scheme, the challenger sends it to the
attacker as well.

Query: Assume the attacker does not know how to compute
H(.) and h(.) functions. He can ask the challenger for the
valueH(IDi2) and the hash (h(.)) values of up tok different
messages.

Challenge:The challenger then asks the attacker to pick two
random messageMi and Mj and sign them on behalf ofVi

to produceσi andσj .
Guess:Finally, the attacker sends two pairs< Mi, σi > and

< Mj , σj > to the challenger.

The attacker’s advantage in this game is defined to bePr[σi

andσj are valid signatures]. We say that our signature scheme
is secure against existential forgery, adaptive chosen message
attack if the attacker’s advantage is negligible.

Next we assume that we have an algorithmA which runs
in polynomial time and has a non-negligible advantagee as
the attacker inGame 1. We will constructGame 2 in which a
Diffie-Hellman (DH) attackerB can make use ofA to achieve

8

a non-negligible advantage in breaking DH.B is given the
valuesP , a, aP , bP , cP andd, wherea, b, c andd are some
constants, as inputs and he is asked to computeab(2c + d)P .
Note that computingab(2c+d)P is as hard as computingbcP .
Now let us look at howB can make use ofA to solve this
DH problem by following the steps below:

Setup: B makes up the parameters(P, Ppub = aP) in our
SPECS scheme. Note thata now plays the role ofs. Since
s is known by all vehicles in our scheme,B sendsa to A
as well. FurtherB also providesA a pseudo identityIDi =
(IDi1, IDi2) = (cP, xP), wherex is a random number, and
the corresponding group public keyGPKi = bP where b
plays the role of shared secretmi in our scheme. Note thatA,
as a vehicle, has no way to validate the given pseudo identity
since only TA and RSUs have such an ability. ThusA will
not doubt the relationship betweenIDi1 andIDi2.

Query: A then asksB for the valueH(IDi2) (this is the
only H(.) value it needs to impersonateVi) and B replies
with bP . Next A picks up tok random messages and queries
B for their hash (h(.)) values.B answers these queries using
a random oracle.B maintains a table to store all its answers.
Upon receiving a message, if the message has been queried
before,B answers with the stored value. Otherwise, it answers
with a random value and stores it into its table for later usage.
Except for theuth and vth queries (say messagesMu and
Mv), B answers with the valuesx and d − x respectively
wherex < d is a random number.

Challenge: When the query phase is over,B asksA to pick
two random messagesMi andMj and sign them on behalf of
Vi.

Guess:A picks two random messagesMi andMj, generates
signaturesσi and σj on them on behalf ofVi and sends the
pairs < Mi, σi > and < Mj , σj > to B. Note thatA must
have queriedMi and Mj in the query phase, otherwise he
does not know how to computeh(Mi) andh(Mj).

If Mi = Mu and Mj = Mv or Mi = Mv and
Mj = Mu, B computesσi + σj . This is equivalent to
abIDi1 + aH(IDi2)h(Mi) + abIDi1 + aH(IDi2)h(Mj) =
ab(cP)+ a(bP)(x)+ ab(cP)+ a(bP)(d−x) = ab(2c+ d)P .
Having this value,B resolves the given DH instance success-
fully. AssumeA’s advantage in breaking our SPECS scheme
is ǫ and the probability thatA picksMu andMv is 1/C(k, 2).
Hence,Pr[B succeeds] = 1/C(k, 2) × ǫ. Since ǫ is non-
negligible,B can solve the DH problem but this violates the
assumption that DH is hard. Therefore, our signature scheme
is secure against existential forgery, adaptive chosen message
attack under random oracle model. �

b. RSU as an attacker:
Next we consider the case that the attacker is an RSU (that

is he knowsmi for some vehicleVi but nots). We argue that if
DH is hard, then a vehicle’s message (either ad hoc message or
group message) cannot be forged by an RSU and our scheme

is secure against existential forgery, adaptive chosen message
attack under random oracle model. The proof is as follows.

We first considerGame 1 between a challenger and an
attacker who is an RSU:

Setup: The challenger starts by giving the attacker a set of
system parameters includingP andPpub. The challenger also
gives the attacker a pseudo identityIDi = (IDi1, IDi2), the
corresponding group public keyGPKi and shared secretmi.
This simulates the situation that the attacker eavesdropped IDi

of any vehicleVi from the air and that he is the RSU assigning
GPKi andmi.

Query: Assume the attacker does not know how to compute
H(.) and h(.) functions. He can ask the challenger for the
valueH(IDi2) and the hash (h(.)) values of up tok different
messages.

Challenge:The challenger then asks the attacker to pick two
random messagesMi andMj and sign them on behalf ofVi

to produceσi andσj .
Guess:Finally, the attacker sends two pairs< Mi, σi > and

< Mj , σj > to the challenger.

The attacker’s advantage in this game is defined to bePr[σi

andσj are valid signatures]. We say that our signature scheme
is secure against existential forgery, adaptive chosen message
attack if the attacker’s advantage is negligible.

Next we assume that we have an algorithmA which runs
in polynomial time and has a non-negligible advantagee as
the attacker inGame 1. We will constructGame 2 in which a
Diffie-Hellman (DH) attackerB can make use ofA to achieve
a non-negligible advantage in breaking DH.B is given the
valuesP , aP , b, bP , cP andd, wherea, b, c andd are some
constants, as inputs and he is asked to computeab(2c + d)P .
Note that computingab(2c + d)P is as hard as computing
acP . Now let us look at howB can make use ofA to solve
this DH problem by following the steps below:

Setup: B makes up the parameters(P, Ppub = aP) in our
SPECS scheme. Note thata now plays the role ofs. B also
providesA a random verification public keyV PKi, a pseudo
identity IDi = (IDi1, IDi2) = (cP, V PKi⊕H(bIDi1)), the
corresponding group public keyGPKi = bP and b which
plays the role of shared secretmi in our scheme. Note thatA
is an RSU and it knows how to validate the composition of
a pseudo identity. ThereforeIDi must be properly formed so
that A will not have any doubt on it.

Query: A then asksB for the valueH(IDi2) (this is the
only H(.) value it needs to impersonateVi) and B replies
with bP . Next A picks up tok random messages and queries
B for their hash (h(.)) values.B answers these queries using
a random oracle.B maintains a table to store all its answers.
Upon receiving a message, if the message has been queried
before,B answers with the stored value. Otherwise, it answers
with a random value and stores it into its table for later usage.
Except for theuth and vth queries (say messagesMu and

9

Mv), B answers with the valuesx and d − x respectively
wherex < d is a random number.

Challenge: When the query phase is over,B asksA to pick
two random messagesMi andMj and sign them on behalf of
Vi.

Guess:A picks two random messagesMi andMj, generates
signaturesσi and σj on them on behalf ofVi and sendsσi

and σj to B. Note thatA must have queriedMi and Mj

before, otherwise he does not know how to computeh(Mi)
andh(Mj).

If Mi = Mu and Mj = Mv or Mi = Mv and
Mj = Mu, B computesσi + σj . This is equivalent to
abIDi1 + aH(IDi2)h(Mi) + abIDi1 + aH(IDi2)h(Mj) =
ab(cP)+ a(bP)(x)+ ab(cP)+ a(bP)(d−x) = ab(2c+ d)P .
Having this value,B resolves the given DH instance success-
fully. AssumeA’s advantage in breaking our SPECS scheme
is ǫ and the probability thatA picksMu andMv is 1/C(k, 2).
Hence,Pr[B succeeds] = 1/C(k, 2) × ǫ. Since ǫ is non-
negligible,B can solve the DH problem but this violates the
assumption that DH is hard. Therefore, our signature scheme
is secure against existential forgery, adaptive chosen message
attack under random oracle model. �

Note that the signature schemes for ad hoc messages and
group messages only differ in the composition of pseudo
identities. However, in the above proof,Vi’s pseudo identity
is provided to the attacker and its composition does not affect
his forging process. Therefore, the proof above applies to both
ad hoc messages and group messages.

In practice, RSUs can be cracked easily and this is un-
avoidable. However, we can add in additional measures to our
schemes to reduce the impact. For example, we can classify
messages into different security levels. For critical message,
we can require them to be verified by TA instead of by RSUs.
Or we can have another variation under which a message
can only be trusted if it is verified by multiple consecutive
RSUs. We believe with these measures, even if a few RSUs
are cracked, the effect is not a disaster.

B. Identity privacy preserving

In this sub-section, we show that an attacker cannot obtain
a vehicle’s real identity easily. Since the only information that
is related to a vehicle’s real identity and is exposed in the
network is its pseudo identity, we show that an attacker cannot
obtain a vehicle’s real identity even it is keeping its pseudo
identity.

We argue that if DDH is hard, then the pseudo identity of a
vehicle can preserve its real identity. The proof is as follows.

We first considerGame 1 between a challenger and an
attacker:

Setup: The challenger starts by giving the attacker a set of
system parameters includingP andPpub.

Choose: The attacker then freely chooses two verification
public keysV PK0 and V PK1 and sends them to the chal-
lenger (these choices do not need to be random, the attacker
can choose them in any way it desires).

Challenge: The challenger sets a bitx = 0 with probability
1/2 and setsx = 1 with probability 1/2. The challenger then
sends the attacker the pseudo identity corresponding toV PKb

together with the group public key.
Guess:The attacker tries to guess the value ofx chosen by

the challenger, and outputs its guess,x′.

The attacker’s advantage in this game is defined to be
Pr[x = x′]− 1/2. We say that our pseudo identity generation
algorithm is semantically secure against a chosen plain text
attack (CPA) if the attacker’s advantage is negligible.

Next we assume that we have an algorithmA which runs
in polynomial time and has a non-negligible advantagee as
the attacker inGame 1. We will constructGame 2 in which
a Decisional Diffie-Hellman (DDH) attackerB can make use
of A to achieve a non-negligible advantage in breaking DDH.
B is given a DDH instance(P, aP, bP, T) as input and he is
asked to determine whetherT = abP . We further lett denote
a bit thatB is trying to guess (i.e.t = 0 for positive answer
T = abP while t = 1 for negative answerT 6= abP). Game
2 runs as follows:

Setup: Based on the DDH instance,B makes up the
parameters(P, Ppub = aP) and gives them toA. Note thata
now plays the role ofs in our SPECS scheme.

Choose:A then chooses two verification public keysV PK0

andV PK1 which it has queried for the corresponding group
public keys,m0P and m1P respectively, before and sends
them toB.

Challenge: B is playing the role of challenger here, so it
sets a bitx randomly and generates the pseudo identityID =
(ID1, ID2) whereID1 = raP , ID2 = V PKx ⊕ H(rabP)
andr is a random nonce and sends toA. B also sendsA the
group public keybP . (Note thatb now plays the role of the
RSU-vehicle shared secretmi in our SPECS scheme.)

Guess: Finally A sendsB a bit x′ as its guess forx. B
answers the DDH problem positively thatT = abP if B’s
guess is correct (i.e.x = x′).

Now let us look at whyB can answer the DDH problem
in this way. If t = 0 (i.e. T = abP), then ID2 = V PKb ⊕
H(rabP) = V PKb ⊕ H(bID1) is a valid pseudo identity
in proper format. In this case, sinceA has non-negligible
advantage in the game described above, it is likely thatA
can break our SPECS system and can guessx correctly with
probability 1/2 + ǫ. Thus,Pr[Bsucceeds|t = 0] = 1/2 + ǫ.
If t = 1, we claim thatPr[B succeeds|t = 1] = 1/2
only. To see why, we observe that whenT is randomly
chosen, the termH(rT) in ID2 cannot be cancelled by the

10

term H(bID1) and so there is no way to obtainV PKx.
Thus the computation reveals no information aboutx. In
this sense, the value ofx is hidden toA, so evenA can
break our SPECS system, the probability that he will guessx
correctly is simply 1/2 (by tossing a fair coin). Hence,Pr[B
succeeds] = 1/2 × (1/2 + ǫ) + 1/2 × 1/2 = 1/2 + ǫ/2.
Sinceǫ is non-negligible,B can solve the DDH problem but
this violates the assumption that DDH is hard. Therefore, our
SPECS scheme is secure in the sense that the pseudo identity
of a vehicle can preserve its real identity. �

On the other hand, the random noncer makes the pseudo
identity of a vehicle different in different messages. This
makes tracing the location of a particular vehicle over time
difficult without the shared secret between the sender and the
RSU. Furthermore, since the verification public keyV PKi

of a certain vehicle is different as seen by different RSUs,
even all RSUs collude, they have no way to trace a particular
vehicle’s travelling route.

C. Traceability and revocability

Section IV-D shows that TA is able to trace a vehicle’s real
identity, thus traceability is satisfied. Also TA can revokea
vehicle from future usage, thus revocability is also satisfied.

VI. A NALYSIS ON BLOOM FILTER APPROACH

This section analyses our newly-proposed bloom filter ap-
proach in the verification notification phase. We first show that
the probability of having false positives is very small if we
set the parameters for the bloom filters appropriately, thenwe
show that our message overhead is about 10 times lower than
that under the RAISE protocol. Note that the IBV protocol
does not have a notification phase, so we only compare ours
with the RAISE protocol.

The probabily of having a false positive in our bloom filter
apporach (i.e., case 3 in Table I) is equal to the probability
that all k bits are set in one bloom filter while not allk bits
are set in another bloom filter. Thus the probability of case 3
is Pr(case3) = 2(1− (1− 1

m
)kn)k(1− (1− (1− 1

m
)kn)k) ∼

2(1− e−
kn
m)k(1− (1− e−

kn
m)k). Interestingly we find that the

value of k that minimizes the false positive probability of a
single bloom filter (i.e.k = m ln 2

n
) also minimizes Pr(case 3)

approximately (up to 5 decimal places) based on our empirical
results. Hence we set the number of hash functions tom ln 2

n

in our schemes andPr(case3) ∼ 2(0.6185
m
n (1−0.6185

m
n)).

Fig. 6 shows the value ofPr(case3) as the ratio ofm
n

varies
from 1 to 10. It can be shown that whenm

n
= 5, Pr(case3)

is about 0.16. Whenm
n

= 10, Pr(case3) drops to 0.016 only.
(Note that whenm

n
= 5 and whenm

n
= 10, the false positive

rate of a single bloom filter are 0.39 and 0.15 respectively.)
That is, if there are 100 signatures in a batch, on average only
1 to 2 signatures are affected by bloom filter false positive and
need to be re-confirmed.

Fig. 6. Pr(case 3) with different values of m/n

Now, we analyze the message overhead. Assume that there
are n signatures in a batch. For the RAISE protocol, the
HMAC() value sent by each vehicle is of 16 bytes long while
the H() value sent by the RSU in the notification phase is
16 bytes long per message. After that the RSU signs the
notification message using an ECDSA signature which is 56
bytes long. Together with a message header of 2 bytes long, the
total message overhead for verifying a batch ofn signatures
is 16n + 16n + 56 + 2 = 32n + 58 bytes.

For our schemes, the ECC signature sent by each vehicle is
of 21 bytes long. In the notification phase, we use two bloom
filters. To lower the false positive rate in any bloom filter, the
total number of bits used in each bloom filter is set to 10
times the number of signatures in the batch (i.e.m

n
= 10).

We have two bloom filters and so a total of20n
8

= 2.5n bytes
are needed. We also use 2 bytes to represent the number of
signatures in a batch. Together with a message header of 2
bytes long, the total message overhead for verifying a batch
of n signatures is21n+2.5n+2+56+2 = 23.5n+60 bytes.

Note that when case 3 occurs, additional message overhead
is required for the re-confirmation procedures. If case 3 only
occurs in the first trial and does not occur in the second
trial, the total message overhead for verifying a batch ofn
signatures becomes23.5n + 60 + P (23.5n + 60) = (1 +
P)(23.5n + 60) bytes whereP = Pr(case3). Hence, if
case 3 occurs in all the firstK trials and we switch to the
hash approach after that, the total message overhead becomes∑k

i=1
P i(23.5n + 60)+ P k(37n + 58) bytes. The component

P k(37n + 58) represents the message overhead used for the
hash approach afterK trials. That is, 21 bytes for each ECC
signature, 16 bytes for each H() value, 56 bytes for ECDSA
signature and 2 bytes for message header. SinceP is about
0.016, even ifK is only 2, the overhead of our scheme is
much lower than that of RAISE. And we found that as long
as K > 1, the overhead is similar in different values ofK
since the probability of case 3 is very low, so re-confirmation
is quite unlikely. (refer to Fig. 7 for a more detailed analysis).

VII. S IMULATION RESULTS

In this section, we further compare our schemes with the
IBV protocol in terms of (1) the delay and (2) successful
rate through extensive simulations. Note that IBV also uses
a batch verification scheme, so is much faster than the RAISE
protocol. Thus, we compare the delay of our scheme with the
IBV [7] protocol. For successful rate, we expect we will have

11

Fig. 7. Data Transmission vs. Number of Signatures in the Batch

a similar performance as RAISE as we both will identify all
valid signatures even if there are invalid ones within the same
batch. So, we compare our performance with the IBV protocol.
Note that we only compare the schemes on handling ad hoc
message. We show that our scheme can verify more signatures
while the additional delay required is insignificant.

A. Simulation Models

We implement our SPECS scheme, the IBV and the RAISE
protocols on a simulator written in C++. Some of the settings
and parameters of our simulation are adopted from works [7]
and [5]. We assume an RSU is installed on a highway and
vehicles passes through it at speeds varying from 50 km/h to
70 km/h. The RVC and the IVC ranges are set to 600 m and
300 m respectively. That is, when a vehicle enters the 600 m
RVC range of the RSU, the messages sent by it can received by
the RSU and at the same time, the messages sent by the RSU
can be received by it. Inter-vehicle messages are sent every
500 ms at each vehicle. IEEE 802.11a is used to simulate the
medium access control layer. That is, when a vehicle wants
to transmit, it first detects whether the channel is available. If
another vehicle is transmitting, it waits until that transmission
is completed and then waits for a random delay period before
it begins to transmit. The bandwidth of the channel is 6 Mb/s
and the average length of inter-vehicle message is 200 bytes.
We assume each pairing operation takes 4.5 ms.

Our simulation runs for 1000 s. We first vary the total
number of vehicles that have ever entered RSU’s RVC range
during the simulation period from 200 to 1000 in steps of 200
to simulate the impact of different traffic densities. We then
vary the inter-vehicle message signature error rate from 1%to
10% to interpret its impact on the performance of our schemes.
Finally we vary the RSU’s batch verification period from 100
ms to 1000 ms in steps of 100 ms to investigate its impact
on different schemes. For each configuration, we compute the
average of 5 different random scenario.

B. Simulation Results

In the first set of experiments, we assume that the RSU
performs batch verification every 300 ms. We then fix the
signature error rate, which is defined as the percentage of
signatures which are invalid, to 5% and vary the total number
of vehicles that have ever entered RSU’s range throughout the
simulation. Here we only consider batches that contain invalid

signatures (Invalid batch). In [5], the expression for successful
rate is defined. We extend its definition to handle invalid batch.

IBSR = 1

N

∑N

i=1

Mi
app

Mi
mac

whereM i
app represents the total number of messages that

are successfully verfied by the RSU and are consumed by
vehicle i in the application layer before vehiclei leaves
RSU’s IVC range. Also the signatures of these messages are
batch-processed with at least one invalid signature by the
RSU. M i

mac, on the other hand, represents the total number
of messages received by both vehiclei and RSU in the
medium access control layer from other vehicles and again the
signatures of these messages are being batch-processed with
at least one invalid signature by the RSU. For our schemes,
we can have different levels of binary search as mentioned
in Section IV. We use the notation SPECS(BSx) to denote
our schemes withx levels of binary search. In Fig. 8, we
can see that the IBV protocol and our schemes with single
level searching (i.e. without breaking down a batch to continue
the searching when the pairing on the batch failed) gives 0%
invalid batch successful rate. This is because as long as there is
an invalid signature in a batch, the RSU considers the whole
batch as invalid and all signatures in the batch is dropped.
For our schemes, it can be seen that the more the levels of
binary search we do, the higher the successful rate we have. In
particular, even we have 2 levels of binary search, our schemes
already outperforms IBV protocol by more than 45%.

Fig. 8. Invalid Batch Successful Rate vs. Number of Vehicles

Fig. 9 shows the corresponding delay performance. We
define the average delay suffered by vehicles as

MD = 1

N

∑N
i=1

1

M

∑M
m=1

(T m
verf − T m

recv)
whereM is the number of messages received by vehiclei,

T m
verf is the time that vehiclei receives the verification notifi-

cation message of messagem from the RSU andT m
recv is the

time that vehiclei receives messagem from its neighboring
vehicle. From Fig. 9, we can see that the delay under the IBV
protocol and our schemes are very close to each other. For
our schemes, as expected, with higher levels of binary search,
longer delay is induced because more pairing operations are
involved. However, even in the worst case (i.e. using 5 levels
of binary search), our schemes only consume an additional
of 10 ms which is roughly equivalent to the delay caused
by 2 pairing operations. One more interesting point to note
is that with a single level of pairing, our schemes consume
5 less ms than the IBV protocol. The reason behind is that
our schemes require 2 pairing operations only while the IBV
protocol requires 3 as mentioned in Section IV.

12

Fig. 9. Delay vs. Number of Vehicles

In this set of experiments, as the number of vehicles varies
from 200 to 1000, the percentage of invalid batches increases
from 13% to 50%. This makes sense because with increased
number of messages, each batch contains more message sig-
natures. Hence the probability that there is at least one invalid
signature in the batch gets higher.

In the second set of experiments, we also assume that the
RSU performs batch verification every 300 ms. We then fix the
number of vehicles that have ever entered RSU’s RVC range
during the simulation period to 300 and vary the signature
error rate from 0% to 10% to investigate its impact on the
invalid batch successful rate and the message delay. We only
consider batches that contain invalid signatures. When error
rate is 0%, IBSR cannot be found asM i

mac = 0 for all vehicles
i. From Fig. 10, we see that the IBV protocol and our schemes
with a single level of pairing gives 0% invalid batch successful
rate due to the dropping of whole batch in case of any invalid
signature. For our schemes, as we increase the levels of binary
search, the successful rate becomes higher. As the error rate
changes from 1% to 10%, our schemes only degrades for less
that 10% and outperforms the IBV protocol for about 50%.

Fig. 10. Invalid Batch Successful Rate vs. Error Rate

The corresponding delay performance is shown in Fig. 11.
With a single level of pairing, the delay experienced by the
receiving vehicle remains constant. As discussed earlier,our
schemes give a lower delay than the IBV protocol due to
the save of one pairing operation. As the error rate increases,
more batches contain invalid signatures. As a result, additional
pairing operations are required to locate the valid signatures.
This causes an increase in average delay. But the gap between
our schemes and the IBV protocol is only about 10 ms.

In this set of experiments, as the signature error rate varies
from 0% to 10%, the percentage of invalid batches increases
from 0% to 57%. This makes sense because with higher error
rate, the probability that there is at least one invalid signature
in the batch gets higher.

Fig. 11. Delay vs. Error Rate

In the last set of experiments, we fix the number of vehicles
that have ever entered RSU’s RVC range during the simulation
period to 300, fix the signature error rate to 5% and vary
the RSU’s batch verification period from 100 ms to 1000
ms to investigate its impact on the invalid batch successful
rate and the message delay. Again we only consider batches
that contain invalid signatures. As shown in Fig. 12, no
matter how long the RSU’s batch verification period is, IBV
protocol and SPECS(BS1) gives 0% invalid batch successful
rate due to the dropping of whole batch in case of any invalid
signature. For our schemes, as we increase the levels of binary
search, the successful rate becomes higher. Further as the
batch verification period changes from 100 ms to 1000 ms,
our schemes degrades for about 20%. This is due to two
reasons. First, a longer batch verification period implies that
more vehicles’ signatures are included in a batch. Thus it
takes longer time to complete the binary search. Second, the
RSU waits for a longer time before it starts performing batch
verification. Thus a vehicle experiences longer waiting time
in general. Such increase in delay is shown in Fig. 13. As a
result, some vehicles may not have enough time to wait for the
verification result before it leaves the concerned RSU’s range.

Fig. 12. Invalid Batch Successful Rate vs. Batch Verification Period

Fig. 13. Delay vs. Batch Verification Period

We magnify the range 0.01354 ms to 0.0136 ms in Fig.
14. It shows that the delay performance of the IBV protocol

13

is also affected by the prolonged batch verification period.A
vehicle in general needs to wait for a longer time before the
RSU verification result is available.

Fig. 14. Delay vs. Batch Verification Period (Magnified)

VIII. C ONCLUSIONS

We proposed two secure and privacy enhancing communi-
cations schemes for VANETs to handle ad hoc messages and
group messages for inter-vehicle communications. We follow
the approach of letting RSU to aid the signature verification
process. We show that our schemes satisfy the security and
privacy requirements. In terms of effectiveness, we show that
our solution gives lower message overhead and at least 45
% higher successful rate than previous works. We are also
the first to propose a group communications protocol to allow
known vehicles to form a group for secure communications.
Note that in the early stage of VANET deployment, we may
not have RSUs in all road sections. However, our protocols
can be completed within the coverage of one RSU, so can
still be applied. Individual vehicles just cannot communicate
on those sections of roads without RSUs, however, vehicles
in the same group can still communicate without RSU. We
are extending our group communications protocol to allow
dynamic membership.

REFERENCES

[1] F. Wang, D. Zeng, and L. Yang, “Smart Cars on Smart Roads: an IEEE
Intelligent Transportation Systems Society Update,”IEEE Pervasive
Computing, Vol. 5, No. 4, pp. 68 – 69, 2006.

[2] H. Oh, C. Yae, D. Ahn, and H. Cho, “5.8 GHz DSRC Packet
Communication System for ITS Services,” inProceedings of the IEEE
VTC ’99, Sept. 1999, pp. 2223 – 2227.

[3] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509Public Key
Infrastructure Certificate and CRL Profile,”IETF RFC2459, 1999.

[4] P. P. Tsang and S. W. Smith, “PPAA: Peer-to-Peer Anonymous
Authentication,” inProceedings of ACNS ’08, 2008, pp. 55 – 74.

[5] C. Zhang, X. Lin, R. Lu, and P. H. Ho, “RAISE: An Efficient RSU-
aided Message Authentication Scheme in Vehicular Communication
Networks,” in Proceedings of the IEEE ICC ’08, May 2008, pp. 1451
– 1457.

[6] National Highway Traffic Safety Administration U.S. Department of
Transportation, “Vehicle Safety Communications Project Report,” Apr.
2006.

[7] C. Zhang, R. Lu, X. Lin, P. H. Ho, and X. Shen, “An Efficient Identity-
based Batch Verification Scheme for Vehicular Sensor Networks,” in
Proceedings of the IEEE INFOCOM ’08, Apr. 2008, pp. 816 – 824.

[8] A. Wasef and X. Shen, “PPGCV: Privacy Preserving Group Commu-
nications Protocol for Vehicular Ad Hoc Networks,” inProceedings of
the IEEE ICC ’08, May 2008, pp. 1458 – 1463.

[9] H. Wen, P. H. Ho, and G. Gong, “A Novel Framework for Message
Authentication in Vehicular Communication Network,” inProceedings
of the IEEE GLOBECOM ’09, Dec. 2009, pp. 1 – 6.

[10] A. Wasef and X. Shen, “MAAC: Message Authentication Acceleration
Protocol for Vehicular Ad Hoc Networks,” inProceedings of the IEEE
GLOBECOM ’09, Dec. 2009, pp. 1 – 6.

[11] B. K. Chaurasia, S. Verma, and S. M. Bhasker, “Message broadcast in
VANETs using Group Signature,” inProceedings of the IEEE WCSN
’09, Dec. 2008, pp. 131 – 136.

[12] Y. Hao, Y. Cheng, and K. Ren, “Distributed Key Management with Pro-
tection Against RSU Compromise in Group Signature Based VANETs,”
in Proceedings of the IEEE GLOBECOM ’08, Dec. 2008, pp. 1 – 5.

[13] A. Studer, E. Shi, F. Bai, and A. Perrig, “TACKing Together Efficient
Authentication, Revocation, and Privacy in VANETs,” inProceedings
of the IEEE SECON ’09, June 2009, pp. 1 – 9.

[14] R. Lu, X. Lin, H. Zhu, and X. Shen, “SPARK: A New VANET-based
Smart Parking Scheme for Large Parking Lots,” inProceedings of the
IEEE INFOCOM ’09, Apr. 2009, pp. 1413 – 1421.

[15] R. A. Popa, H. Balakrishnan, and A. J. Blumberg, “VPriv:Protecting
Privacy in Location-Based Vehicular Services,” inProceedings of the
18th USENIX Security Symposium, Sept. 2009.

[16] A. Menezes, “An Introduction to Pairing-Based Cryptography,” in 1991
Mathematics Subject Classification, Primary 94A60, 1991.

[17] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” in Proceedings of Asiacrypt ’01, 2001, pp. 514 – 532.

[18] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” IETF
RFC3174, 2001.

[19] W. Mao, “Modern Cryptography: Theory and Practice,” book, July 2003.
[20] M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm

for Designing Efficient Protocols,” inProceedings of the CCS ’93, 1993,
pp. 67 – 73.

[21] D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,”Journal of Cryptography, Vol. 769, pp. 123 – 128,
2000.

14

APPENDIX - ATTACKS TO IBV PROTOCOL

In this section, we first describe the IBV protocol. Then,
we describe in details three security problems of the protocol
- privacy violation, anti-traceability attack and impersonation
attack.

A. The IBV Protocol

Before network deployment, the TA sets up the parameters
using the following steps:

1) TA choosesG and G that satisfy the bilinear map
properties.

2) TA randomly pickss1, s2 ∈ Zq as its master keys.
These two master keys are preloaded into each vehicle’s
tamper-proof hardware device.

3) TA then computesPpub1 = s1P and Ppub2 = s2P as
its public keys. The parameters{G, GT, q, P , Ppub1 ,
Ppub2} are then preloaded into all RSUs and OBUs.

4) TA also assigns each vehicle a real identityRID ∈ G

and a passwordPWD. The drivers are informed about
them during network deployment or during vehicle first
registration.

When a vehicle starts up, the driver first inputs itsRID
and PWD into the tamper-proof device. If they are valid,
the tamper-proof device starts its role in generating pseudo
identities, secret keys and message signing. VehicleVi’s
pseudo identity is generated asIDi = (IDi1, IDi2) where
IDi1 = rP and IDi2 = RID ⊕ H(rPpub1) where r is a
per-session random nonce. Its secret key is then generated as
SKi = (SKi1, SKi2) whereSKi1 = s1IDi1 and SKi2 =
s2H(IDi1||IDi2). HereH(.) is a MapToPoint hash function
as in our schemes. When vehicleVi wants to send the message
Mi, it generates the signatureσi = SKi1+h(Mi)SKi2 where
h(.) is a one-way hash function such as SHA-1.Vi then
broadcastsIDi, Mi andσi to the RSU.

The RSU verifies the signatureσi by checking whether
ê(σi, P) = ê(IDi1, Ppub1)ê(h(Mi)H(IDi1||IDi2), Ppub2).

Proof of correctness:
L.H.S.
= ê(SKi1 + h(Mi)SKi2, P)

= ê(SKi1, P)ê(h(Mi)SKi2, P)

= ê(s1IDi1, P)ê(h(Mi)s2H(IDi1||IDi2), P)

= ê(IDi1, s1P)ê(h(Mi)H(IDi1||IDi2), s2P)

= R.H.S. �

Having the pseudo identityIDi of vehicleVi, the TA can
trace its real identity by using theTA RID Tracing Routine:
IDi2⊕H(s1IDi1) = RID⊕H(rPpub1)⊕H(s1rP) = RID.

B. Privacy Violation

Any vehicle can obtainIDi = (IDi1, IDi2) from Vi’s
transmissions. Alsos1 is preloaded into each vehicle’s tamper-
proof device during network deployment. Thus any vehicle can
obtainVi’s RID by following theTA RID Tracing Routine.

C. Anti-Traceability Attack

We describe how a vehicle can make the TA unable to trace
its real identity from its message sent under the IBV protocol.
We denote this kind of attack as an anti-traceability attack.

Assume that in a certain session, the attacking vehicle
Va generates its pseudo identity asIDa = (IDa1, IDa2)
whereIDa1 = rP and IDa2 = GARBAGE ⊕ H(aPpub1)
where GARBAGE ∈ G and r is again a per-session
random nonce.Va then proceeds to generate its secret keys
SKa = (SKa1, SKa2) whereSKa1 = s1IDa1 andSKa2 =
s2H(IDa1||IDa2), sign the messageMa by generating the
signatureσa = SKa1 + h(Ma)SKa2 and send outIDa, Ma

andσa to the RSU.
Note that the RSU can verify the mes-

sage successfully because ê(σa, P) =
ê(IDa1, Ppub1)ê(h(Ma)H(IDa1||IDa2), Ppub2). Assume
that at a later time,Va’s messageMa causes an accident
on the road. The RSU forwardsVa’s pseudo identity
to the TA and wants it to help to revealVa’s real
identity. However, upon computingIDa2 ⊕ H(s1IDa1) =
GARBAGE ⊕ H(rPpub1) ⊕ H(s1rP) = GARBAGE, the
TA finds thatGARBAGE does not match any record at the
TA. Va can thus escape from its guity of causing the accident.

D. Impersonation Attack

We describe how a vehicle can send messages on behalf of
another under the IBV protocol. We denote this kind of attack
as an impersonation attack.

Assume that at a certain instance, vehicleVi with real iden-
tity RIDi generates its pseudo identityIDi = (IDi1, IDi2),
secret keysSKi and signs messageMi by generating the
signature σi as usual. WhileVi is transmitting, an at-
tacker Va recordsIDi. After some while,Va generates the
messageMa. It generates its pseudo identity asIDa =
(IDa1, IDa2) = IDi = (IDi1, IDi2) and its secret keys as
SKa = (SKa1, SKa2) where SKa1 = s1IDa1 = s1IDi1

andSKa2 = s2H(IDa1||IDa2) = s2H(IDi1||IDi2). It then
signs the messageMa by generating the signatureσa =
SKa1 + h(Ma)SKa2 and sends outIDa, Ma andσa to the
RSU.

Similar to the anti-traceability attack, upon receiving
Va’s message, the RSU can verify it successfully because
ê(σa, P) = ê(IDi1, Ppub1)ê(h(Ma)H(IDi1||IDi2), Ppub2).
Assume at a later time,Va’s messageMa causes an accident
on the road. The RSU forwardsVa’s pseudo identityIDa

as shown in its message to the TA and wants to reveal its
real identity. After computingIDa2 ⊕ H(s1IDa1) = IDi2 ⊕
H(s1IDi1) = RIDi ⊕H(rPpub1)⊕H(s1rP) = RIDi, both
the RSU and the TA think thatMa is being sent byVi because
Vi’s instead ofVa’s identity is traced. ThusVa can escape from
and pass its guity of causing the accident toVi.

