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Abstract—In this paper, we propose a new estimation method
for the parameters of a multivariate Markov chain model. In
the new method, we calculate the correlations of the sequences
first and establish multivariate Markov chain models for those
positively correlated sequences. The parameters are estimated
by minimizing the error of prediction. We apply the method to
demand predictions for a soft-drink company in Hong Kong.
Numerical experiments are given to show the effectiveness of
our proposed method.

Key Words: Multivariate Markov Chain Model, Demand
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I. INTRODUCTION

Markov chain models have been used successfully in
modeling many practical systems such as telecommunica-
tion systems and manufacturing systems [1], [2] and many
other systems [6]. A Markov chain process is a stochastic
process satisfying the “Markov property” [10]. In this paper
we consider discrete-time Markov processes having finite
discrete states for modeling categorical data sequences.
Categorical data sequences (or time series) occur frequently
in many real world applications [5]. Suppose a categorical
data sequence {x1, x2, . . . , xT } having m states is given.
Here xi ∈ M = {1, 2, . . . ,m} and T is the length of
the sequence. The categorical data sequence can also be
represented by a sequence of vectors (the canonical form
representation) {x1,x2, . . . ,xT } where xi = ek (ek is the
unit vector with the kth entry being equal to one) if it is in
state k. This representation facilitates our discussion of the
problem in a Markov chain framework. By making use of the
transition probability matrix, a categorical data sequence of
m states can be modeled by an m-state Markov chain model.
We then extend this idea to model multiple categorical data
sequences. One would expect categorical data sequences
generated by similar sources or same source to be correlated
to each other. Therefore by exploring these relationships, one
can develop a better model for the categorical data sequences
and hence better prediction rules.

Modeling the categorical data sequences is vital for good
predictions and optimal planning in a decision process. We
note that the conventional first-order Markov chain model
for s categorical data sequences of m states has ms states.
The number of parameters (transition probabilities) increases
exponentially with respect to the number of categorical
sequences. This large number of parameters is a major
obstacle and discourages us from using such kind of Markov
chain model directly. According to [3], multivariate Markov
model capturing both the intra- and inter-transition probabil-
ities among the sequences are developed. And the number
of parameters in the model is only (s2m2 + s2). Also a
parameter estimation method based on linear programming
is proposed. Here we still use the multivariate Markov model
(see for [3]). And we propose a new estimation method
for the parameters of the multivariate Markov model. Due
to our purpose of making good predictions, we estimate
the parameters by minimizing the error prediction. We also
give the results by using the method based on nonlinear
programming problems, which is similar to the method
introduced in [3]. Then we apply the model and method
to solve the sales demand prediction problem in a soft-
drink company in Hong Kong. We also compare the results
with the methods in [3] and other new method yields better
results.

The rest of the paper is organized as follows. In Section
2, we first give a review on the Markov chain model. We
then briefly present the multivariate Markov model [3]. In
Section 3, we propose estimation methods for the model
parameters. In Section 4, numerical examples based on sales
demand data are given to demonstrate the effectiveness
of our method. Finally, concluding remarks are given to
summarize the paper and address further research issues in
Section 5.

II. THE MULTIVARIATE MARKOV CHAIN MODEL

In this section we first give a short review on discrete-
time Markov chain. We then briefly present the multivariate
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Markov chain model proposed in [3], [6].
A discrete-time stochastic process is a family of random

variables {Xt, t ∈ N} defined on a given probability space
and indexed by the parameter t ∈ N = {0, 1, 2, · · ·}.
A Markov process is a stochastic process whose condi-
tional probability distribution function satisfies the so-called
“Markov property”. If the state-space of a Markov process
is discrete, the Markov process is a discrete-time stochastic
process and is also called a Markov chain. In this paper
we consider Markov chains having finite number of states
M = {1, 2, 3, · · · ,m}. In generally a categorical data
sequence x1, x2, x3, . . . , xT can be logically represented by
a sequence of vectors x1,x2,x3, . . . ,xT , where T is the
length of the sequence, and xi = ek (ek is the unit vector
with the kth entry being one) if it is in state k. A first-order
discrete-time Markov chain having m discrete states satisfies
the following relationship:

Prob (xt+1 = ext+1 | x0 = ex0 ,x1 = ex1 , . . . ,xt = ext
)

= Prob (xt+1 = ext+1 | xt = ext
)

where xi ∈ M . The conditional probabilities

Prob(xn+1 = exn+1 | xn = exn
)

are called the single-step transition probabilities of the
Markov chain. They give the conditional probability of
making a transition from state i to state j when the time
parameter increases from n to n+1. These probabilities are
independent of n and are written as

pij = Prob (xn+1 = ei | xn = ej), ∀ i, j ∈ M.

The matrix P , formed by placing pij in row i and column j
for all i and j, is called the transition probability matrix. We
note that the elements of the matrix P satisfy the following
two properties:

0 ≤ pij ≤ 1 ∀i, j ∈ M and
m∑

i=1

pij = 1, ∀j ∈ M.

We then apply the multivariate Markov chain model pro-
posed in [3] to represent the behavior of multiple categorical
sequences generated by similar sources or same source. Here
we assume that there are s categorical sequences and each
has m possible states in M . Let x(k)

n be the state vector of
the kth sequence at time n. If the kth sequence is in state j
at time n then

x(k)
n = ej = (0, . . . , 0, 1︸︷︷︸

jth entry

, 0 . . . , 0)T .

In this multivariate Markov chain model, the following
relationship is assumed:

x(j)
n+1 =

s∑
k=1

λjkP (jk)x(k)
n , for j = 1, 2, · · · , s (1)

where λjk ≥ 0, 1 ≤ j, k ≤ s and
s∑

k=1

λjk = 1, for j = 1, 2, · · · , s. (2)

The state probability distribution of the kth sequence at the
(n+1)th step depends on the weighted average of P (jk)x(k)

n .
Here P (jk) is a transition probability matrix from the states
in the kth sequence to the states in the jth sequence, and
x(k)

n is the state probability distribution of the kth sequences
at the nth step. In matrix form, the model can be represented
as follows:

xn+1 ≡
(

x(1)
n+1 x(2)

n+1 . . . x(s)
n+1

)T

=

⎛
⎜⎜⎜⎝

λ11P
(11) λ12P

(12) · · · λ1sP
(1s)

λ21P
(21) λ22P

(22) · · · λ2sP
(2s)

...
...

...
...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x(1)
n

x(2)
n

...

x(s)
n

⎞
⎟⎟⎟⎟⎠

≡ Qxn.

III. ESTIMATIONS OF MODEL PARAMETERS

In this section we introduce some methods for the estima-
tions of P (jk) and λjk. For each data sequence, we estimate
the transition probability matrix by the following method,
see for instance [3]. Given the data sequence, we count the
transition frequency from the states in the kth sequence to
the states in the jth sequence. Hence one can construct a
transition frequency matrix for the data sequences. After
making normalization in each column, the estimates of the
transition probability matrices can also be obtained. More
precisely, we count the transition frequency f

(jk)
ijik

from the

state ik in the sequence {x(k)
n } to the state ij in the sequence

{x(j)
n } and therefore we construct the transition frequency

matrix for the sequences as follows:

F (jk) =

⎛
⎜⎜⎜⎜⎝

f
(jk)
11 · · · · · · f

(jk)
m1

f
(jk)
12 · · · · · · f

(jk)
m2

...
...

...
...

f
(jk)
1m · · · · · · f

(jk)
mm

⎞
⎟⎟⎟⎟⎠ .

From F (jk), we get the estimates for P (jk) as follows:

P̂ (jk) =

⎛
⎜⎜⎜⎜⎝

p̂
(jk)
11 · · · · · · p̂

(jk)
m1

p̂
(jk)
12 · · · · · · p̂

(jk)
m2

...
...

...
...

p̂
(jk)
1m · · · · · · p̂

(jk)
mm

⎞
⎟⎟⎟⎟⎠

where

p̂
(jk)
ijik

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
(jk)
ijik

m∑
ik=1

f
(jk)
ijik

if
m∑

ik=1

f
(jk)
ijik

�= 0

0 otherwise.
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Besides the estimates of P (jk), we need to estimate the
parameters λjk. According to [3], we have seen that the mul-
tivariate Markov chain has a stationary vector x. The vector
x can be estimated from the sequences by computing the
proportion of the occurrence of each state in each of the se-
quences, and let us denote it by x̂ = (x̂(1), x̂(2), . . . , x̂(s))T .
Then one would expect⎛
⎜⎜⎜⎝

λ11P̂
(11) λ12P̂

(12) · · · λ1sP̂
(1s)

λ21P̂
(21) λ22P̂

(22) · · · λ2sP̂
(2s)

...
...

...
...

λs1P̂
(s1) λs2P̂

(s2) · · · λssP̂
(ss)

⎞
⎟⎟⎟⎠ X̂ ≈ X̂. (3)

From (3), it suggests one possible way to estimate the
parameters λ = {λjk} as follows. One may consider solving
the following optimization problem (I):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
λ

m∑
i=1

[
s∑

k=1

λjkP̂ (jk)x̂(k) − x̂(j)

]2

i

subject to
s∑

k=1

λjk = 1, and λjk ≥ 0, ∀k.

(4)

It can actually be formulated as quadratic programming
problems. Here we give a new method to estimate the
parameters λ = λjk. As our model can only capture the
positive correlations among those sequences, we first find
the correlations between the sequences and build multivari-
ate Markov chain models for those positively correlated
sequences. Due to our main purpose here is to minimize the
error of prediction, we consider solving λjk by minimizing
the error of prediction.

Here we let Xt = (x(1)
t ,x(2)

t . . . ,x(s)
t )T be the state

probability distribution of the system at time t observed from
the real dataset. And let

P̂ =

⎛
⎜⎜⎜⎝

λ11P̂
(11) λ12P̂

(12) · · · λ1sP̂
(1s)

λ21P̂
(21) λ22P̂

(22) · · · λ2sP̂
(2s)

...
...

...
...

λs1P̂
(s1) λs2P̂

(s2) · · · λssP̂
(ss)

⎞
⎟⎟⎟⎠ .

We then consider solving λij by minimizing the following:

r2 =

√√√√N−1∑
t=1

1
N − 1

||Xt+1 − P̂Xt||22. (5)

Then one may consider solving the following optimization
problem(II):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
λ

N−1∑
t=1

1
N − 1

||Xt+1 − P̂Xt||22

subject to
s∑

k=1

λjk = 1, and λjk ≥ 0, ∀k.

(6)

IV. APPLICATION TO SALES DEMAND PREDICTIONS

In this section, we consider a soft-drink company in
Hong Kong. The company faces an in-house problem of
production planning. An important issue that stands out is
the storage space of its central warehouse, which often finds
itself in the state of overflow or near capacity. The company
is thus in urgent need to study the interplay between the
storage space requirement and the overall growing sales
demand. The products are categorized into six possible
states according to their sales volumes. All products are
labeled as either very fast-moving (very high sales volume),
fast-moving, standard, slow-moving, very slow-moving (low
sales volume) or no sales volume. Such labels are therefore
useful from both marketing and production planning points
of view.

The company got an important customer and would like to
predict sales demand for this customer in order to minimize
its inventory build-up and to maximize the demand satis-
faction for this customer [3]. The company can analyze the
sales pattern of the customer and then develop a marketing
strategy to deal with this customer. In Appendix, we present
the customer’s historical sales demand of five important
products of the company for a year. We expect sales demand
sequences generated by the same customer to be correlated
to each other. Therefore by exploring these relationships,
we develop the multivariate Markov model for such demand
sequences, hence obtain better prediction rules.

First we compute the correlations of the five sequences.
Here we denote a sequence as a vector and the elements in
the vector are the states of the sequence. Then we compute
the correlations of the five vectors and their correlations are
reported in the following 5 × 5 matrix:⎛

⎜⎜⎜⎜⎝
1.0000 0.0652 0.0837 0.0651 −0.0284
0.0652 1.0000 0.0730 0.0359 0.0655
0.0837 0.0730 1.0000 0.1293 0.0773
0.0651 0.0359 0.1293 1.0000 0.7854
−0.0284 0.0655 0.0773 0.7854 1.0000

⎞
⎟⎟⎟⎟⎠ .

From this matrix, we observe that Sequences A, B, C and D
are positively correlated to each other and Sequences B,C,D
and E are positively correlated to each other. Therefore two
multivariate Markov chains can be built for these two sets
of sequences. We first estimate all the transition probability
matrices P (ij) by using the method proposed in Section 3.

Now we estimate the parameters λjk by using the follow-
ing optimization problem (I):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
λ

m∑
i=1

[
s∑

k=1

λjkP̂ (jk)x̂(k) − x̂(j)

]2

i

subject to
s∑

k=1

λjk = 1, and λjk ≥ 0, ∀k.

(7)

By solving the above nonlinear programming problems,
one can get a multivariate Markov model for sequences
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A,B,C,D:⎧⎪⎪⎨
⎪⎪⎩

x
(1)
t+1 = 0.7500P̂ (12)x

(2)
t + 0.2500P̂ (14)x

(4)
t

x
(2)
t+1 = 1.0000P̂ (22)x

(2)
t

x
(3)
t+1 = 0.2698P̂ (32)x

(2)
t + 0.7032P̂ (34)x

(4)
t

x
(4)
t+1 = 0.5000P̂ (41)x

(1)
t + 0.5000P̂ (42)x

(2)
t

We can also get a multivariate Markov model for sequences
B,C,D,E:⎧⎪⎪⎨

⎪⎪⎩
x

(2)
t+1 = 0.5000P̂ (22)x

(2)
t + 0.5000P̂ (25)x

(5)
t

x
(3)
t+1 = 0.1131P̂ (32)x

(2)
t + 0.8869P̂ (34)x

(4)
t

x
(4)
t+1 = 1.0000P̂ (42)x

(2)
t

x
(5)
t+1 = 0.6250P̂ (52)x

(2)
t + 0.3750P̂ (55)x

(5)
t

Now we estimate the parameters by using our new method.
Here we have to solve the following nonlinear programming
problem (II):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r2 = min
λjk

N−1∑
t=1

1
N − 1

||Xt+1 − P̂Xt||22

subject to
s∑

k=1

λjk = 1; and λjk ≥ 0,∀k.

By solving upper nonlinear programming problem, we get
the multivariate Markov model for sequences A,B,C,D:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
(1)
t+1 = 0.4282P̂ (11)x

(1)
t + 0.5718P̂ (12)x

(2)
t

x
(2)
t+1 = 0.3696P̂ (21)x

(1)
t + 0.4481P̂ (22)x

(2)
t + 0.1823P̂ (24)x

(4)
t

x
(3)
t+1 = 0.2945P̂ (31)x

(1)
t + 0.1400P̂ (32)x

(2)
t + 0.0336P̂ (33)x

(3)
t

+0.5319P̂ (34)x
(4)
t

x
(4)
t+1 = 0.0450P̂ (41)x

(1)
t + 0.0002P̂ (42)x

(2)
t + 0.0461P̂ (43)x

(3)
t

+0.9087P̂ (44)x
(4)
t

Similarly, the multivariate Markov chain models for
sequences B,C,D,E:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(2)
t+1 = 0.7391P̂ (22)x

(2)
t + 0.0095P̂ (23)x

(3)
t + 0.2514P̂ (24)x

(4)
t

x
(3)
t+1 = 0.1796P̂ (32)x

(2)
t + 0.2375P̂ (33)x

(3)
t + 0.0950P̂ (34)x

(4)
t

+0.4879P̂ (35)x
(5)
t

x
(4)
t+1 = 0.0444P̂ (42)x

(2)
t + 0.5377P̂ (44)x

(4)
t + 0.4179P̂ (45)x

(5)
t

x
(5)
t+1 = 0.0321P̂ (53)x

(3)
t + 0.6056P̂ (54)x

(4)
t + 0.3623P̂ (55)x

(5)
t

Next we use the multivariate Markov model, to predict
the next state x̂t at time t which can be taken as the state
with the maximum probability, i.e.,

x̂t = j, if [x̂t]i ≤ [x̂t]j ,∀1 ≤ i ≤ m.

To evaluate the performance and effectiveness of our multi-
variate Markov chain model, a prediction result is measured
by the prediction accuracy r defined as

r1 =
1
T

×
T∑

t=1

δt × 100%,

where T is the length of the data sequence and

δt =
{

1, if x̂t = xt

0, otherwise.

As we are going to predict the next state, the more states
are the same with the given states, the better the method is.
Then we can get that the larger r1 is, the better the method
is.

To further differentiate the power of the methods, we can
also consider the error as follows:

r2 =

√√√√ 1
N − 1

×
N−1∑
t=1

||Xt+1 − P̂Xt||22.

Our purpose is to minimize the prediction accuracy, so the
less r2 is, the better the method is.

Now we give the values of r1 and r2 for these Markov
models of four sequences. For the sake of comparison,
we give the results of the first-order Markov chain model
(Model (0)), the multivariate Markov chain model getting
from the nonlinear programming problem (Model (I)) and
our proposed model (Model (II)). The results are reported
in Tables 1,2,3 and 4.

Product A Product B Product C Product D
Model (0) 46% 45% 63% 51%
Model (I) 50% 45% 63% 38%
Model (II) 51% 51% 63% 53%

Table 1. Values of r1 in the Sales Demand Data.

Product A Product B Product C Product D
Model (0) 0.7789 0.7891 0.7344 0.7765
Model (I) 0.7780 0.7891 0.7323 0.8516
Model (II) 0.7702 0.7852 0.7316 0.7760

Table 2. Values of r2 in the Sales Demand Data.

Product B Product C Product D Product E
Model (0) 45% 63% 51% 53%
Model (I) 47% 63% 37% 53%
Model (II) 49% 63% 52% 54%

Table 3. Values of r1 in the Sales Demand Data.

Product B Product C Product D Product E
Model (0) 0.7891 0.7344 0.7765 0.7704
Model (I) 0.7912 0.7333 0.8554 0.8008
Model (II) 0.7868 0.7310 0.7731 0.7640

Table 4. Values of r2 in the Sales Demand Data.

From Table 1, we can find that for products A, B and
D, the values of r1 calculated from our proposed method
are the largest, so our method is the best among these three
methods. Although the value of r1 for product C keeps the
same, the value itself is large however. Moreover, similar
conclusions can be obtained from Table 3.

From Table 2, we can see that by using our method, the
values of r2 for products A,B,C and D are the least. This
means that the prediction accuracy of our proposed method
is the best. Similar conclusions can be drawn from Table 4.
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V. CONCLUDING REMARKS

In this paper, we give a new method to estimate the
parameters of a multivariate Markov model proposed in
[3]. In the proposed method, we do not have to use the
estimation of the stationary vector, which may have large
error when the period of the given data sequence is not
long enough. Additionally, we build Markov models among
those positively correlated sequences. As in [3], all the data
sequences are assumed to be positively correlated and this
is not necessarily true in practice. Then we can avoid the
error caused by those negative associations to certain extent.
Moreover, according to the numerical results of the data
sequences of the soft-drink company in Hong Kong, our
proposed estimation method is better in prediction error.

The followings are some future research issues. We can
extend the method to high-order case [7] and also other types
of multivariate Markov chain models [8], [9]. By using the
same thought, we can give new estimations of the parameters
λjk. Then we can compare the new high-order Markov
models with old one to see which one is better. Apart from
demand prediction, one can also derive optimal inventory
policy for the products using the idea in [4].

VI. APPENDIX

Sales Demand Sequences of the Five Products

Product A: 6 6 6 6 2 6 2 6 2 2 6 2 6 6 2 6 2 4 4 4 5 6 6 1 2 2 6 6 6 2 6 2 6 6 2 6

2 2 6 2 1 2 2 6 6 6 2 1 2 6 2 6 6 2 2 6 2 2 2 6 2 6 2 2 2 2 2 6 2 2 6 6 6 6 1 2 2 6

2 2 2 2 6 2 2 2 2 3 3 2 3 2 6 6 6 6 2 6 2 6 6 2 6 2 6 6 2 6 6 2 2 3 4 3 3 1 3 1 2 1

6 1 6 6 1 6 6 2 6 2 6 2 2 2 6 6 1 6 2 6 1 2 1 6 2 6 2 2 2 2 6 6 1 6 6 2 2 6 2 2 2 3

4 4 4 6 4 6 1 6 6 1 6 6 6 6 1 6 2 2 2 6 6 6 6 2 6 6 2 2 6 2 6 2 2 2 6 2 2 2 6 6 6 6

3 2 2 6 2 2 2 2 2 2 6 2 6 2 2 2 6 2 2 6 6 2 6 6 6 2 2 2 3 3 3 4 1 6 6 1 6 6 1 6 1 6

6 6 6 1 6 6 6 2 1 2 2 2 2 2 2 3 6 6 6 6 6 2 6

Product B: 1 6 6 1 6 1 1 1 1 1 1 6 6 6 1 2 1 6 6 1 1 1 6 6 2 1 6 6 1 1 1 6 1 2 1 6

2 2 2 2 2 6 1 6 6 1 2 1 6 6 6 1 1 1 6 6 1 1 1 1 6 1 1 2 1 6 1 6 1 1 6 2 6 2 6 6 6 3

6 6 1 6 6 2 2 2 3 2 2 6 6 6 1 1 6 2 6 6 2 6 2 6 6 1 3 6 6 1 1 1 2 2 3 2 2 6 2 2 2 1

6 1 6 1 1 6 2 1 1 1 2 2 1 6 1 1 1 1 2 6 1 1 1 1 6 1 6 1 2 1 6 1 6 6 1 6 1 2 2 2 2 3

3 2 2 2 6 6 6 6 2 1 1 6 1 1 1 6 1 6 1 6 1 6 1 1 6 6 2 1 1 6 6 1 1 2 6 2 6 6 6 1 2 6

1 6 1 1 1 1 6 1 6 1 1 6 6 1 6 6 1 6 1 6 6 1 1 6 6 2 2 2 2 2 2 2 2 2 6 6 6 6 1 6 6 6

1 6 6 1 6 6 1 1 6 1 3 3 3 5 1 6 6 6 6 6 6 6 6

Product C: 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 2 6 6 6 6 2 6 6 6 2 2 6 6 6 6 6 6 6 1 6 2

6 6 6 6 6 6 6 6 2 6 6 1 2 6 1 6 6 1 6 2 6 6 6 6 6 6 6 2 6 6 6 2 6 6 1 6 6 6 6 6 6 6

3 3 6 3 2 1 2 2 1 6 6 1 6 1 6 6 6 6 6 6 1 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 2 6 6 6 6 6

6 6 6 2 2 6 6 2 6 1 2 6 6 6 2 6 6 2 6 6 2 6 1 6 2 6 2 1 2 6 6 2 2 6 2 6 2 2 6 2 6 6

6 2 2 2 6 6 2 6 6 2 2 6 1 2 1 2 6 6 2 2 6 6 1 2 2 1 6 2 6 2 2 1 1 5 6 3 6 1 6 6 1 2

2 6 1 6 2 6 6 1 6 2 6 2 6 6 6 1 6 1 6 6 2 2 2 1 2 3 6 1 6 1 6 1 6 1 6 6 6 1 1 6 6 6

6 6 1 6 6 6 1 6 1 1 6 6 6 6 6 6 6 6 1 6 6 1 6

Product D: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 6 3 4 4 3 3 3 3 3 2 6 6 3 4 4 4 4 3

4 2 6 2 2 6 2 2 6 6 3 4 5 4 4 6 3 6 6 6 2 6 2 6 6 2 2 6 4 4 5 4 3 4 3 4 4 6 2 6 6 2

2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 5 5 5 4 4 4 3 6 2 6 6 2 6 2 6 2 2 6 2 6 6 2 6 4 4 4

4 4 4 6 3 6 6 2 6 2 6 2 6 2 6 6 2 2 2 2 2 2 2 2 2 3 3 3 5 5 4 5 3 3 3 6 2 6 6 2 2 6

2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 4 6 6 2 6 2 6 2 2 2 2 2 2 2 5 5 4 4 5 5

2 6 2 6 6 2 6 2 6 2 2 3 3 4 4 5 4 4 4 3 4 3 6 2 6 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5

4 4 4 3 2 2 2 6 2 2 2 6 2 6 2 6 2 2 2 2 2 3 2

Product E: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 2 3 4 4 3 4 4 3 3 2 2 6 3 4 4 4 4 3

4 2 3 2 2 6 3 3 6 6 3 4 5 4 5 3 3 2 6 6 2 6 2 6 6 2 2 6 4 4 4 4 4 4 5 4 4 6 2 6 6 2

2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 4 4 4 4 4 4 4 6 2 6 6 2 6 2 6 6 6 6 2 6 2 2 6 4 4 4

4 4 4 6 3 3 6 2 2 2 6 2 6 2 2 2 2 2 2 2 2 2 2 2 2 3 6 4 5 5 5 5 2 4 6 6 2 6 6 2 2 6

2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 3 3 6 2 6 2 2 2 6 3 2 2 2 2 5 5 4 4 4 4

3 6 2 6 6 2 6 2 6 2 2 3 3 4 4 5 4 4 4 4 4 3 6 2 6 2 2 2 6 2 2 2 2 2 2 2 3 4 4 4 4 5

4 4 4 3 2 2 2 6 6 6 2 6 2 6 2 6 2 2 2 2 2 2 2

6=very fast-moving, 5 = fast-moving, 4 = standard, 3 = slow-moving, 2 = very

slow-moving and 1= no sales volume.
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