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Abstract—Transcription factors (TFs) play an important role 
in regulating the expression of genes. The accurate 
measurement of transcription factor activities (TFAs) depends 
on a series of experimental technologies of molecular biology 
and is intractable in most practical situations. Some signal 
processing methods for blind source separation have been 
applied in the prediction of TFAs from gene expression data. 
Most of such methods make use of statistical properties of the 
gene expression data only, leading to the inaccurate detection of 
TFAs. In contrast, network component analysis (NCA) can 
provide much improved result through utilizing the structural 
information of the gene regulatory network. However, the 
structure of the gene regulatory network, required by NCA, is 
not available in most practical cases so that NCA is not directly 
applicable. In this paper, we propose to use particle swarm 
optimization (PSO) to find the most plausible network 
structure iteratively from the gene expression data, with the 
assistance of recently developed fast algorithm for network 
component analysis (FastNCA). This novel approach to TFA 
inference can thus take advantage of NCA, even when the 
required network structure is unknown. The effectiveness of 
our novel approach has been demonstrated by applications to 
both simulated data and real gene expression microarray data, 
in the sense that TFAs can be inferred with high accuracy. 

I. INTRODUCTION 
RANSCRIPTION factors (TFs) are protein molecules that 
regulate the transcription of genes through binding to 

the promoter region of the genes [1-2]. Transcription is an 
important biological process which prepares for the 
generation of proteins (final product of gene expression). 
The quantitative regulation of gene transcription depends on 
the transcription factor activities (TFA) [3]. Therefore, 
obtaining accurate TFA is very important in understanding 
how the gene expression is regulated. 
    Currently, measurement of TFA is mainly performed in an 
in vivo system on the interaction among TFs and cis-
regulatory elements [4], which is difficult and of high 
expense, intractable in most practical situations. 

Since in most cases it is not applicable to measure TFA 
directly, we must make inference about TFA indirectly from 
gene expression data which can be obtained through high 
throughput microarray technology or more recently next 
generation sequencing (NGS). With high throughput 
microarray gene expression data, some signal processing 
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methods for blind source separation, such as principal 
component analysis (PCA) [5] and independent component 
analysis (ICA) [6], can be adopted to deduce TFAs. 
However, TFAs inferred from these methods could be so 
inaccurate that they are not acceptable for meaningful 
biological interpretation. This is because the effectiveness of 
such methods depends on mathematical assumptions (e.g. 
ICA requires statistical independence of source signals) 
which are unlikely to be satisfied by the microarray gene 
expression data. 

Contrary to blind source separation approaches which 
assume unrealistic models of transcriptional gene regulation, 
network component analysis (NCA) [7] is an alternative 
approach that does not make unrealistic assumption on the 
independence of TFAs. Instead, NCA makes use of the 
structural information of the gene regulatory network, which 
is available for some species such as yeast through genome-
wide location analysis using ChIP-chip technology. Since 
NCA makes use of relevant biological information and is not 
dependent on unrealistic statistical assumptions, the TFAs 
inferred by NCA are much more accurate [7]. However, the 
original NCA algorithm could be computationally unstable 
and time consuming and may have multiple local solutions. 
To overcome these disadvantages, an improved algorithm 
called FastNCA was developed recently [8]. 

A critical requirement for inferring TFAs using NCA is 
that the TF-gene connectivity structure of the gene 
regulatory network must be known. However, it is quite 
difficult and expensive to get this required network structure 
by ChIP-chip experiments. In fact, such structure so far is 
only available for yeast and E. Coli [9]. In most other 
situations, we have to work without prior knowledge on the 
network structure and thus NCA cannot be applied directly. 
In order to deal with such difficulty, we propose to apply 
NCA on all possible network structures and choose the result 
of the most plausible one. Though this approach is in general 
too time consuming to be applicable, we can apply heuristic 
optimization techniques such as particle swarm optimization 
(PSO) to deduce a nearly optimal network structure without 
exhaustive searching. With the help of the fast NCA 
algorithm FastNCA, such procedure becomes 
computationally feasible. As a recently developed and fast-
developing heuristic optimization technology, PSO has been 
shown to be effective in various applications. In PSO, the 
solution of the optimization problem is searched by a swarm 
of particles with inter-particle communication [10]. It has the 
advantage of simple operation and fast convergence [11]. 
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II. METHODOLOGY 

A. NCA and FastNCA 
From knowledge of systems biology, we observe that 

microarray gene expression data can be considered as the 
integration of TF-gene network and TFAs. This is the 
foundation of network component analysis (NCA). NCA 
assumes the following model: 

 
=X AS                                         (1) 

 
where X  is the microarray data, A  is the matrix of TF-gene 
network, and S  is the TFAs matrix. When noise, denoted as 
Γ , is included in microarray data, the model of NCA will be 
changed to: 
 

= + Γ = + ΓY X AS                              (2) 
 

According to biological knowledge, the connectivity 
matrix A is very sparse with most elements being “0”, 
which means that each gene is regulated by only a small 
number of TFs. Such a sparse structure of A , if known, can 
be utilized by the NCA algorithm to deduce the TFAs ( S ) 
from the microarray gene expression data ( Y ) using 
alternating least squares (ALS) method [12]. 

With the biological significance of source signals being 
considered, NCA is a signal separation method suitable for 
transcription factor activity inference from microarray gene 
expression data. However, the original ALS-based NCA 
algorithm has some drawbacks such as instability and 
multiple local solutions. An improved algorithm for NCA, 
called FastNCA, was then developed to overcome these 
drawbacks [8]. By using matrix factorization instead of ALS 
iteration, FastNCA is much faster and more robust. 

B. Objective Function 
    In this paper, FastNCA is applied to the microarray data 
for estimating the connectivity matrix A  and the TFAs 
matrix S , assuming a sparse connectivity structure Z , a 
binary matrix with 1 representing a connection and 0 for no 
connection. To find the most plausible unknown 
connectivity structure, we minimize the objective function 
defined as below: 
    Given Z , suppose A  and S  are determined using 
FastNCA subject to A  conformal with the structure Z , so 
that A  and S  can be regarded as functions of Z  through 
the FastNCA procedure, i.e. ( )= ZA A  and ( )= ZS S . 
Hence, 
 

1
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=
∑
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Y                   (3) 

where iY  is the ith row of Y , ( ( ) ( ))iZ ZA S  is the ith row of 
( ) ( )Z ZA S , F  is Frobenius norm, and N  is the number 

of rows of Y  (number of genes). 
    The objective function ( )f Z  describes the level of 
deviation between the deduced data ( ( ) ( )Z ZA S ) and the 
real data ( Y ). Therefore, a smaller ( )f Z  implies a better 
estimate of the connectivity matrix ( A ) and TFAs matrix 
( S ). 

C. Particle Swarm Optimization (PSO) 
PSO will be applied to find an optimal connectivity 

structure Z  that minimizes the objective function ( )f Z  as 
stated in (3).  This is described as follows: 

 
1. Initialize Z  and its velocity v for each of the M particles, 
and set both the optimal connectivity structure of each 
specific particle, kpbest , and the optimal connectivity 
structure of the whole swarm,  kgbest , as Z . 
2. In the kth iteration, update Z  and v  for each particle as 
 

1 1 2( ) ( )ϕ ϕ+ = + − + −k k k k k kv v pbest Z gbest Z      (4) 
 

1 1+ += +k k kZ Z v                             (5) 
 

where 1ϕ  and 2ϕ  are cognitive confidence coefficients 
determining the particle’s tracking tendency on the local and 
global optimum, respectively, chosen as random numbers 
with uniform distribution over the interval [0, 2]. Such 
settings for 1ϕ  and 2ϕ  guarantee convergence [11]. The 
structure matrix is then transformed to a binary matrix by 
applying a threshold that keeps only a certain pre-defined 
percentage, denoted as s, of all possible connections. 
3. For each particle, apply FastNCA based on the 
connectivity structure 1+kZ  to estimate A  and S , update 

1 1+ +=k kpbest Z  if 1( ) ( )+ <k kf Z f pbest , and update 

1 1+ +=k kgbest pbest  if 1( ) ( )+ <k kf pbest f gbest . 
4. Iterate Procedure 2 and Procedure 3 until convergence. 
 

The procedure is illustrated in the following example. 
 

I. Initialize 5 particles and their related matrices. As an 
example, the first particle is initialized as: 

0

0 0 1
0 1 0
1 0 0

Z
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 0

0.9556 0.7866 0.2235
0.2451 0.6893 0.1158
0.5006 0.3324 0.9652

v
− −⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

, and 

0 0pbest Z= . Set 0 0gbest Z= . 
II. 1st iteration based on (4) and (5): 

1

1.0701 0.0398 0.3401
0.3886 0.6873 0.1643
0.0699 0.5360 2.5187

−⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟−⎝ ⎠

Z ; 
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Assuming the sparse ratio s  to be 0.35, 1Z  is further 
transformed to the binary connectivity structure. 

 1

1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Z . 

III. Apply FastNCA based on 1Z to get the estimate of A  
and S , and then update 1pbest and 1gbest  based on the 
value of the objective function. 
IV. Iterate Procedure II and Procedure III until convergence. 

 
Note that the prerequisite of calculating ( ( ), ( ))f Z ZA S  is 

to know the particular values of ( )ZA  and ( )ZS , which are 
deduced by a NCA algorithm. Because the number of 
particles and iterations is large, the fast execution and 
precise prediction of the algorithm is important. The low 
algorithm complexity, high accuracy of deduction and the 
fast speed of FastNCA make it possible to adopt heuristic 
optimization (i.e.PSO) to find out a suitable TF-gene 
network structure. 

D. Framework of the algorithm 
The whole execution procedure is illustrated in Fig.1. 
 

 
 

Fig. 1.  Execution flow graph of the whole algorithm 

III. EXPERIMENTS AND RESULTS 

A. Data Description 
In our experiments, we use both simulated microarray 

data and real microarray data. The sizes of the two types of 
microarray data are both 100 25× . Hence, the microarray 
data have 100 genes and 25 sample points. The numbers of 
TFs related to the two microarray data are both 16. 

B.  Results on Simulated Data 
Based on our test of the optimization performance of PSO, 

300 particles and 200 iterations are adopted in our 
experiments. The simulated microarray data do not include 
noise. The sparse ratio of the simulated TF-gene network is 
s = 0.0875. After convergence of the PSO, we get the 
estimate of both the connectivity matrix A  and the TFA 
matrix S , denoted as Â and Ŝ , respectively. Because the 
order of the rows of Ŝ  and that of S  may be different, we 
need to determine which row of Ŝ  is the estimate of a 
particular original TFA. It can be done by finding the row of 
Ŝ  that is mostly correlated to this specific TFA. 
Mathematically, the estimate of the kth original TFA ks  can 
be determined as 

 

1 2
k

{ , , , }
arg max (s , )

∈
=

M
kg corr

s s s s
s                       (6) 

 
where ˆ js  is the jth estimated TFA, M  is the number of 

TFAs, and k ˆ(s , )jcorr s  is the correlation coefficient between 

ks  and ˆ js . Replace k ˆ(s , )jcorr s  with rho . The result is 
shown in Table I. 
 

TABLE I 
CORRELATION RESULTS FOR SIMULATED DATA 

ks  kg  rho  

1s  12ŝ  0.8889 

2s  14ŝ  0.9613 

3s  16ŝ  0.9945 

4s  4ŝ  0.8149 

5s  8ŝ  0.8679 

6s  2ŝ  0.9896 

7s  12ŝ  0.7498 

8s  6ŝ  0.8609 

9s  8ŝ  0.9803 

10s  15ŝ  0.9990 

11s  10ŝ  0.9917 

12s  5ŝ  0.9456 

13s  1ŝ  0.9768 

14s  9ŝ  0.9889 

15s  3ŝ  0.9733 

16s  13ŝ  0.9955 

 
From Table I, we see that there exist repetitions for two 

estimated TFAs – 12ŝ and 8ŝ , each of which should be 
assigned to the estimate of only one of the original TFA. 
After eliminating repetitions, we get estimates for 14 TFAs, 
with high correlation with their original TFAs (absolute 
correlation coefficient above 0.8). The detection ratio is 

Obtain the structure related to every particle 

Initialize particles 

Execute FastNCA and calculate the objective function 
related to every structure 

Apply PSO to all particles 

Calculate the objective function related to all structures of 
particles, update local and global optimum 

Check convergence 
criterion 

Output global optimum 

Satisfied 

Not Satisfied 
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87.5% (14/16). 

C. Results on Real Microarray Data 
The real microarray data is from a microarray experiment 

of E. Coli [13]. The biological background is that E. Coli 
carbon source transmits from glucose to acetate. The sparse 
ratio of TF-gene connectivity matrix is 0.0388. The noise 
ratio is 0.3031. 
     We run PSO 4 times. The result is shown in Table II. We 
observe that there always exist TFAs which are not detected 
in each experiment. However, only TFA15 is not detected in 
all experiments. Through integrating the results of 4 
experiments, we detect other TFAs. So the detection ratio of 
original TFAs is 93.75% (15/16). The detected TFAs (circle) 
are compared with their corresponding original TFAs (star) 
in Fig 2. 
 

TABLE II 
PSO PREDICTION FROM E. COLI MICROARRAY DATA 

Experiment No. 1 2 3 4 

Number of TFAs 
not detected 4 5 3 5 

List of not 
detected TFAs  

TFA1, 
TFA4 

TFA15, 
TFA16 

TFA3, 
TFA4, 
TFA8, 
TFA9, 
TFA15 

TFA2, 
TFA8, 
TFA15 

TFA7, 
TFA9, 
TFA12, 
TFA14, 
TFA15 

 
Fig. 2.  Comparison of detected TFAs with real TFAs 

From Fig. 2, we can see that the predicted normalized 
TFAs almost overlap with the real normalized TFAs. 

IV. CONCLUSION 
In this paper, we consider the problem of estimating 

transcription factor activities (TFAs) from microarray gene 
expression data by integrating FastNCA (a recently 
developed fast network component analysis algorithm) and 
particle swarm optimization (PSO) to search for the optimal 
TF-gene network and estimate TFAs simultaneously. 
Experiments on both simulated data and real microarray data 
demonstrate that our method can estimate the unknown 
TFAs accurately. Our future work is to improve the method 
in order to make it work robustly for more complicated 
biological networks. 
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