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On the Robust Stability of Continuous-Time and Discrete-Time 

Time-Invariant Uncertain Systems with Rational Dependence on the 

Uncertainty: a Non-Conservative Condition 

Graziano Chesi 

Abstract- A key problem in automatic control consists of 
investigating robust stability of systems with uncertainty. This 
paper considers linear systems with rational dependence on 
time-invariant uncertainties constrained in the simplex. It is 
shown that a sufficient condition for establishing whether the 
system is either stable or unstable can be obtained by solving 
a generalized eigenvalue problem constructed through homo­
geneous parameter-dependent quadratic Lyapunov functions 
(HPD-QLFs). Moreover, it is shown that this condition is also 
necessary for establishing either stability or instability by using 
a sufficiently large degree of the HPD-QLF. Some numerical 
examples illustrate the use of the proposed approach in both 
cases of continuous-time and discrete-time uncertain systems. 

I. INTRODUCTION 

It is well-known that stability of linear systems with 
time-invariant uncertainty constrained in a polytope is an 
important problem in automatic control. Various methods 
have been proposed for addressing this problem, generally 
exploiting parameter-dependent Lyapunov functions and lin­
ear matrix inequalities (LMIs). For instance, Lyapunov func­
tions with linear dependence are exploited in [15], Lyapunov 
functions with polynomial dependence are considered in [1], 
and homogeneous parameter-dependent quadratic Lyapunov 
functions (HPD-QLFs) are proposed in [11]. Parameter­
dependent Lyapunov functions are considered also in [20] 
which proposes a general framework for LMI relaxations, 
in [18] where homogeneous solutions are characterized, in 
[16] which addresses the case of semi-algebraic sets, in [17], 
[19] where matrix-dilation approaches are considered, and 
in [14] which exploits DIG-scaling in the case of rational 
dependence on the uncertainty. 

Some of these methods provide necessary and sufficient 
conditions for robust stability. However, the necessity is 
achieved for an unknown degree of the polynomials used. 
This implies that, if the system is unstable, no conclu­
sion can be reached. This paper addresses this problem 
via HPD-QLFs for in the case of rational dependence on 
the uncertainty. It is shown that a sufficient condition for 
establishing either stability or instability can be obtained by 
solving a generalized eigenvalue problem (GEVP), which 
belongs to the class of quasi-convex optimization problems. 
Moreover, it is shown that this condition is also necessary 
for establishing either stability or instability by using a 
sufficiently large degree of the HPD-QLF. The idea behind 
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this condition is to exploit the LMI relaxation introduced 
in [9], [11] via the square matricial representation (SMR) 
in order to characterize the instability via the presence of 
suitable vectors in certain eigenspaces. The SMR allows one 
to establish if a polynomial (or a matrix polynomial) is a 
sum of squares (SOS) of polynomials via an LMI, see e.g. 
the pioneering works [13], [9] and the recent works [12], [3]. 
Some numerical examples illustrate the use of the proposed 
approach in both cases of continuous-time and discrete-time 
uncertain systems. This paper re-elaborates and extends the 
results proposed in [7]. 

The paper is organized as follows. Section II introduces 
the problem formulation and the SMR. Section III describes 
the proposed approach. Section IV reports some numerical 
examples. Lastly, Section V concludes the paper with some 
final remarks. 

II. PRELIMINARIES 

A. Problem Formulation 

Notation: 

- N, IR, C: natural, real and complex numbers; 
- IRo: IR \ {O}; 
- In: n X n identity matrix; 
- A > 0: symmetric positive definite matrix; 
- A ® B: Kronecker's product; 
- A', tr(A), det(A): transpose, trace and determinant of 

A; 
- spc(A) = {A E C: det(AI - A) = O}; 
- span(vl, ... ,Vk) = {aivi + ... + akVk, al, ... ,ak E 

IR}; 
sq(p) = (p�, ... ,p�) ' with p E IRq; 

- 8y(p): degree of the polynomial y(p); 
- CT, DT: continuous-time and discrete-time; 
- s.t.: subject to. 

Let us consider the uncertain system 

{ (CT case) ±(t) = A(p)x(t) 
(DT case) x(t + 1) = A(p)x(t) tip E P (1) 

where t E IR is the time, x( t) E IRn is the state, p E IRq is 
the uncertain parameter, and P is the simplex defined as 

P = {p E IRq: t pi = 1, Pi 2:: O} . (2) 
�=l 

The function A : IRq -+ IRnxn is a matrix rational jUnction, 

i.e. a matrix whose entries are rational functions. In particular 
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we express A(P) as follows: 

(3) 

where all the generic entry ai,j(p) with i,j = 1, ... ,n and 
b(p) are polynomials in p. 

Let us define the set of matrices 

A= {A(P) EIRnxn: pEP}. (4) 

In the sequel we will say that: 

- (CT case) A(p) is stable if and only if Re(A) < 0 for 
all A E spc(A(p)); 

- (DT case) A(p) is stable if and only if IAI < 1 for all 
A E spc(A(p)); 

- A is stable if and only if A(p) is stable for all pEP, 
i.e. whenever the following condition holds: 

Re(A) < 0 'VA E spc(A(P)) 'Vp E Pj (5) 

- A (resp., A(p» is unstable if A (resp., A(P» is not 
stable. Hence, A is unstable whenever the following 
condition holds: 

3p E P, A E spc(A(p)): Re(A) � O. (6) 

The aim of this paper is to allows one to establish whether 
A is either stable or unstable, hence providing a solution for 
this decidability problem. 

B. SMR 

Before proceeding we briefly introduce a key tool that 
will be exploited in the next sections to derive the proposed 
conditions. For p E IRn, let y(p) be a homogeneous polyno­
mial of degree 2d, i.e. a polynomial with only monomials of 
degree 2d: 

y(p) = c. . ph ... piq 'tl, ... ,'tq 1 q • (7) 
h+ ... +in=2d il�O, ... ,iq�O 

Let p{d} E IRO"(q,d) be a vector containing all monomials of 
degree equal to d in p, where a(q, d) is the number of such 
monomials given by 

(q + d-1)! a(q, d) = 
(q _ 1)!d! . (8) 

Then, y(p) can be expressed via the square matrix represen­
tation (SMR) introduced in [13] as 

y(p) = p{d}' (Y + L(a)) p{d} (9) 

where Y = Y' E IRO"(p,d)xO"(p,d) is a symmetric matrix such 
that 

(10) 

L(a) = L(a)' E IRO"(p,d)xO"(p,d) is a linear parametrization 
of the set 

and a E IRO".c is a vector of free parameters, where a.c is the 
dimension of the linear subspace £( d) given by 

1 
a.c = 2a(q, d)(a(q, d) + 1) -a(q, 2d). (12) 

The matrices P and P + L( a) are referred to as SMR matrix 
and complete SMR matrix, respectively, of p(x). The matrix 
P is also known as Gram matrix of p( x) . 

The SMR is useful because it allows one to investigate 
positivity of polynomials. Indeed, one can establish whether 
a polynomial is a sum of squares of polynomials (SOS) by 
solving a convex optimization problem with linear matrix 
inequalities (LMIs) as proposed in [13]. Specifically, y(p) is 
SOS if and only if there exists a such that 

Y + L(a) � 0 (13) 

which is an LMI feasibility test since Y is constant and 
L(a) is a linear matrix function. LMI feasibility tests can be 
checked by solving a convex optimization problem, see for 
instance [2]. 

The SMR allows one to represent also matrix homoge­
neous polynomials. Specifically, let us introduce the notation 

� (z, Z) = (z ® In)' Z (z ® In) (14) 

where z is a vector and Z = Z' is a symmetric matrix of 
suitable dimension. Let Y (p) = Y (p)' be a symmetric matrix 
homogeneous polynomial of degree 2d. Then, Y (p) can be 
expressed via the SMR as done in [9] as 

Y(p) = � (p{d}, Z + U(a)) (15) 

where Z = Z' E IRnu(p,d)xnu(p,d) is a symmetric matrix 
such that 

(16) 

U(a) = U(a)' E IRO"(p,d)xO"(p,d) is a linear parametrization 
of the set 

and a E IRO"u is a vector of free parameters, where au is the 
dimension of the linear subspace U (d) given by 

1 
au = 2n (a(q, d)(na(q, d) + 1) -(n + 1)a(q, 2d)) . (18) 

The matrices Z and Z + U (a) are referred to as SMR matrix 
and complete SMR matrix, respectively, of Y(p). 

As in the scalar case, the SMR allows one to establish 
whether Y (p) is SOS, i.e. there exist matrix homogeneous 
polynomials Y1 (p), ... , Yk (p) of suitable dimension and 
degree such that 

k 
Y(p) = LYi(p)'Yi(p). (19) 

i=l 
Indeed, Y (p) is SOS if and only if there exists a such that 
[9] 

Z + U(a) � 0 (20) 

£(d) = { L = L': p{d}' Lp{d} = o} , (11) which is an LMI feasibility test. 
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The reader is also referred to [10], [11], [5], [12] for details 
and algorithms on the SMR and its use for detecting SOS 
polynomials. See also the survey paper [3]. 

III. PROPOSED RESULTS 

A. Reformulation via Matrix Homogeneous Polynomials 

In this section we provide an equivalent formulation of 
the problem described in Section II-A by using matrix 
homogeneous polynomials. 

First of all, let us observe that, in order for A to be stable 
and bounded, the polynomial b(p) in (3) can be supposed to 
satisfy 

b(p) > 0 'tip E P 
without loss of generality. 

Let us rewrite A (p) as 

(21) 

(22) 

where mA is the maximum of the degrees of the numerators 
in A(p), i.e. 

mA = . max 8ai,j(p) t=l, ... ,n 
(23) 

j=l, ... ,n 
and Ai(p) E JRnxn is a matrix polynomial of degree i in p. 
We define the new function 

(24) 

It follows that M(p) E JRnxn is a matrix homogeneous 
polynomial of degree mAo Moreover, it can be verified that 

1 A(p) = b(p) M(p) 'tip E P. (25) 

Taking into account the condition (21), it follows that 

where 

A is stable {::::::} M is stable 

M={M(p)EJRnxn: P E P} . 
B. HPD-QLFs 

(26) 

(27) 

In order to introduce the proposed result, let us briefly 
recall the definition of homogeneous parameter-dependent 
quadratic Lyapunov functions (HPD-QLFs) and the stability 
result proposed in [9], [11], [6], [12]. 

For m E N let us define the linear subspace 

S(m) = {8 = 8': � (p{m} , 8) does not contain 

monomials pi! ... P�q with at least one ij odd} . (28) 

Let 8((3) = 8((3)' E JRnu(p,m)xnu(p,m) be a linear 
parametrization of S(m), and let us define the matrix func­
tion 

(29) 

The candidate HPD-QLFs of degree m can be written as 

v(x,p) = x' P(p, (3)x (30) 

for some (3. 
Let us define the integer 

(CT case) d = mA 
(DT case) d = 2mA 

and the matrix function 

(CT case) Q(sq(p),(3) = -B'G - GB 
(DT case) Q(sq(p), (3) = (Li=l pnd G - B'GB 

for B = M(sq(p)) and G = P(sq(p), (3). 
Let R((3) be a SMR matrix of the matrix 

Q(sq(p), (3), i.e. a symmetric function satisfying 

� (p{m+d}, R((3)) = Q(sq(P), (3) 

(31) 

(32) 

form 

(33) 

and let U(a) = U(a)' E JRnu(p,m+d)xnu(p,m+d) be a linear 
parametrization of the set U (m + d) defined in (17). 

The following theorem provides is given in [11], [6], [12] 
and investigates stability of the set Min (27) via HPD-QLFs. 

Theorem 1: [11], [6], [12] The set M in (27) is stable if 
and only if there exists m such that the following LMIs hold 
for some a, (3: 

{ 8((3) > 0 
R((3) + U(a) > o. 

C. Establishing Stability and Instability 

Let us define 

T((3) = � (K, Idq Q9 8((3)) 
where K is the matrix satisfying 

We have that 

p Q9 ... Q9 p Q9p{m} = Kp{m+d}. 
'-v-' 

d times 

t. (p{m+d), T(P)) � (t, p1) d P(sq(P), Pl. 

Let us define the optimization problem { 8((3) > 0 
'f/* = sup 'f/ s.t. R((3) + U(a) - 'f/T((3) > 0 

0l,{3,'1 tr(8((3)) = 1. 

(34) 

(35) 

(36) 

(37) 

(38) 

Let a* , (3* be optimal values of a, (3 in (38), and let us define 

v = R((3*) + U(a*). (39) 

Let Cl, ... ,Cr be the eigenvectors of the non-positive eigen­
values of V, i.e. 

{ C�Ci = 1 
(40) V Ci = AiCi for some Ai E JR, Ai ::; O. 

The following result provides a necessary and sufficient 
condition for establishing whether A is either stable or 
unstable. 

Theorem 2: The set A is stable if and only if there exists 
m such that 'f/* > O. Moreover, A is unstable if and only 
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if there exist m and (u,y) E IRg x 1R� such that A(e(u)) is 
unstable and 

{m+d} to. { } U '<Y Y E span Cl, • • •  , Cr 
where e : IRg -+ P is the function ( q ) -1 

e(u) = � u� sq(u). 

(41) 

(42) 

Proof. Let us consider the stability statement, and let us 
observe that K in (36) is a full column rank (see e.g. [11]), 
which directly implies from (35) that 

T((3) > 0 � 8((3) > o. (43) 

Therefore, from (43) and Theorem lone has that M is stable 
if and only if there exists m such that 1]* > o. Indeed, let 
us observe that the constraint tr( 8 ((3)) = 1 is not restrictive 
since 8((3), R((3), U(a and T((3) are linear functions, and 
it is introduced in order to normalized the solution of (38). 
Then, since (26) holds, we conclude that A is stable if and 
only if there exists m such that 1]* > O. 

Let us consider the instability statement. The sufficiency 
is obvious because, if A(e(u)) is unstable and e(u) E p, 
then A is unstable for definition. Hence, let us consider the 
necessity and let us assume that A is unstable. From the 
stability statement we have 1]* ::; 0, and from (26) we have 
that also M is unstable. Let us suppose for contradiction 
that, for all m, (41) does not hold. 

Let us consider firstly the CT case. This supposition 
implies that Re(A) < -0.51]* for all A E spc(M(p)) for 
all pE P. In fact, from (29}-(33), (37) and Lemma 3 in 
[11], the first two constraints in (38) imply 

{ P(p) > 0 
Q(p) - 1]P(p) > 0 Vp E P. (44) 

Consequently, there exists c > 0 such that M(p) + 0.5(1]* + 
c)1 is stable for all pEP. Let us replace M(p) with M(P)+ 
0.5(1]* + c)1 in our original problem. It follows that the new 
set M is stable, and the new solution of (38), which we refer 
to as 1]#, satisfies 1]# = -c. But since c > 0 this implies that 
(34) is not satisfied for any m, hence contradicting Theorem 
1. 

Let us consider now the DT case. The supposition that 
(41) does not hold for any m implies that IAI < VI - 1]* for 
all A E spc(M(p)) for all pEP. Consequently, one has that 
there exists c E (0, 1) such that M(p) (c.JI _1]*)-1 is stable 
for all pEP. Let us replace M(P) with M(p) (c.JI _1]*)-1 
in our original problem. It follows that the new set M is 
stable, and the new solution of (38), which we refer to as 1]#, 
satisfies 1]# = 1 -c2• But since c E (0, 1) this implies that 
(34) is not satisfied for any m, contradicting again Theorem 
1. 0 

Theorem 2 requires to solve (38), which is a generalized 
eigenvalue problem (GEVP) and hence a quasi-convex opti­
mization problem [2]. The pairs (u, y) in IRg x 1R� satisfying 
(41) can be found with the technique in [8], [4], [12] which 
amounts to finding the roots of a polynomial obtained via 

pivoting. The vectors Cl, • • •  , Cr can be obtained once (38) 
has been solved, being eigenvectors of V. 

In order to clarify the construction of (38), let us consider 
a simple situation with n = 2, q = 2, mA = 1 and m = 0 
in the CT case. We can select p{m} = 1 and p{m+d} = 
(Pl,P2)'. A parametrization 8((3) for the set S in (28), the 
matrix K in (36) and the matrix T((3) in (35) are hence 

8((3) = (� �:) 
K=12 

T((3) = 12 Q9 8((3). 
Let us consider another situation with n = 2, q = 2, mA = 1 
and m = 1 in the CT case. We can select p{m} = (Pl,P2)' 
and p{m+d} = (P�,PIP2'P�)'. A parametrization 8((3), the 
matrix K and the matrix T((3) are hence 

8((3) = ( �1 �: %7 -g7 ) 
* * (34 (35 
* * * (36 

K= ( � � � ) 0 1 0  
0 0 1  

T((3) = K' (12 Q9 8((3)) K. 
The matrices R((3) and U(a) can be computed with simple 
algorithms, see for instance [12] for details. 

Let us conclude this section by remarking that the pro­
posed condition provides a solution for the decidability 
problem of establishing whether A(p) is either stable or 
unstable. Indeed, for any chosen degree m of the HPD­
QLF, Theorem 2 allows one to establish either stability (if 
1]* > 0) or instability (if (41) holds). Moreover, the theorem 
guarantees that, for a finite m, one of these conditions is 
satisfied. 

IV. EXAMPLES 

Here we present some illustrative examples of the pro­
posed approach. 

A. Example 1 

Let us consider in the CT case the uncertain system 

where 

x = G(e)x 

( -0.5 0 1.5e
2
- 0.5 ) 

G(e) = 0 -3 

1 - e 2 - 1.50 -1 
and e E IR is an uncertain parameter satisfying 

eE [0, 1]. 

Let us define 

p = (e,I - e)'. 
1370 



We have that n = 3, q = 2, b(p) = 1, mA = 1 and 

M(P) = 0 -3PI - 3P2 2PI + 2P2 . 
( -0.5pI - 0.5p2 0 PI - 0.5p2 ) 

P2 0.5pI + 2P2 -PI - P2 
Let us use m = 1. We find that the solution of (38) 

satisfies 'fJ* < o. Then, Theorem 2 proves that A is unstable, 
in particular we obtain 

e(u) = (0.4336,0.5664)' 
spc(A(e(u))) = {0.0436, -0.6142, -3.9293}. 

Some details are: (3 E �14; a E �15; U is found from (41) 
with the technique in [8], [12] by finding the roots of a 
quadratic polynomial. 

B. Example 2 

Let us consider (1) in the DT case with A(p) given by 

AI,I(p) 
AI,2(p) 
AI,3(p) 
A2,I(p) 
A2,2(p) 
A2,3(p) 
A3,I(p) 
A3,2(P) 
A3,3(p) 

-0.2PI + 004p2 - 0.2P3 
0.6pI - 0.3p2 + 1.6P3 
O.lpI + 0.3p2 + 1.4P3 
PI - 0.7p2 - 0.7p3 
Oo4PI - 0.5p2 + 0.8p3 
-Oo4PI + 0.7p2 - 0.lp3 
1.3PI - 0.7p2 + 0.6p3 
O.lpI - 1.7P2 - 1.1p3 
0.4PI + 1.4P2 - 004p3. 

Hence, we have n = 3, q = 3, b(P) = 1, mA = 1 and 

M(p) = A(p). Let us use m = O. We find that the solution 
of (38) satisfies 'fJ* < O. Then, Theorem 2 proves that A is 
unstable, in particular we obtain 

e(u) = (004443,0.0000,0.5557)' 
spc(A(e(u))) = {-1.322, 0.7549 ± 0.2254}. 

Some details are: (3 E �5; a E �81; U is  found from (41) 
with the technique in [8], [12] by finding the roots of a 
quadratic polynomial. 

C. Example 3 
Let us consider in the CT case the uncertain system 

;i; = G((})x 

where 

with 

C l 0 �J Go = � -2 
0 

Gl(8) � 

( � 0 81 ) 
(}I -:2 
0 

C381 0 J8l

) 
G2((}) = � 0 

-(}1(}2 

and () = ((}b (}2)' E �2 is an uncertain parameter satisfying 

(}I + (}2 :::; 1, (}i � 0 Vi = 1,2. 

Let us define 

P = ((}b (}2, 1 - (}I - (}2)'. 

We have n = 3, q = 3, b(P) = 1, mA = 2 and 

MI,I(P) 
MI,2(p) 
MI,3(p) 
M2,I(P) 
M2,2(P) 
M2,3(p) 
M3,I(p) 
M3,2(p) 
M3,3(p) 

-4p� - 2PIP2 - 2PIP3 - p� - 2P2P3 - p� 
o 

p� + PIP2 + PIP3 
o 

-p� - 3PIP2 - 3PIP3 - 2p� - 4P2P3 - 2p� 
-PIP2 - p� - P2P3 
3p� + 6PIP2 + 6PIP3 + 3p� + 6P2P3 + 6p� 
-PIP2 2 2 2 2 2 -PI - PIP2 - PIP3 - P2 - P2P3 - P3· 

Let us use m = O. We find that the solution of (38) 
satisfies 'fJ* < O. Then, Theorem 2 proves that A is unstable, 
in particular we obtain 

e(u) = (0.5959,0.3263,0.0779)' 
spc(A(e(u))) = {0.0167, -1.4232, -2.9494}. 

Some details are: (3 E �5; a E �81; U is found from (41) 
with the technique in [8], [12] by finding the roots of a 
quadratic polynomial. 

Next, we change the entry (1,3) of GI ((}) from (}I to -(}I 
and repeat the investigation. With m = 0 we find 'fJ* > 0, 
hence implying from Theorem 2 that A is stable. 

D. Example 4 

Let us consider in the CT case the uncertain system 

;i; = G((})x 

where 

G( (}) = (}2 -5 - (}2 4 - 4(}2 
( -1 - 4(}2 0 1 - 2(}1 - 2(}2 ) 

2(}1 2 + 2(}1 -2 

and () = ((}b (}2)' E �2 is an uncertain parameter satisfying 

Let us define 

4 
A(p) = LPiG((}(i») 

i=1 
where P = (Pb ... ,P4)' E P and 

(}(I) = ( � ) , (}(2) = ( � ) 
(}(3) = ( � ) , (}(4) = ( � ) . 
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We have n = 3, q = 4, b(p) = 1, rnA = 1 and 

MI,I(p) -PI - P2 - 5P3 - 5P4 
MI,2(p) 0 
MI,3(p) PI - P2 - P3 - 3P4 
M2,1(P) P3 + P4 
M2,2(p) -5PI - 5P2 - 6P3 - 6P4 
M2,3(p) 4PI + 4P2 
M3,I(p) 2P2 + 2P4 
M3,2(p) 2PI + 4P2 + 2P3 + 4P4 
M3,3(p) -2PI - 2P2 - 2P3 - 2p4. 

Let us use rn = 1. We find that the solution of (38) 
satisfies 'r/* < O. Then, Theorem 2 proves that A is unstable, 
in particular we obtain 

e( u) (0.6300,0.3562,0.0010,0.0128)' 
spc(A(e(u))) {0.2072, -1.1456, -7.1305}. 

Some details are: j3 E ]R41; a E ]R255; U is found from 
(41) with the technique in [8], [12] by finding the roots of a 
quadratic polynomial. 

V. CONCLUSION 

This paper has proposed a necessary and sufficient con­
dition for establishing either stability or instability of lin­
ear systems with rational dependence on uncertainties con­
strained in the simplex. This condition is built by using HPD­
QLFs, and amounts to solving a GEVP, which is a quasi­
convex optimization problem. Some numerical examples 
have illustrated the proposed approach in both cases of 
continuous-time and discrete-time uncertain systems. 
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