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Computing Upper-bounds of the Minimum Dwell Time of Linear

Switched Systems via Homogeneous Polynomial Lyapunov Functions

G. Chesi1, P. Colaneri2, J. C. Geromel3, R. Middleton4, R. Shorten4

Abstract— This paper investigates the minimum dwell time
for switched linear systems. It is shown that a sequence of
upper bounds of the minimum dwell time can be computed
by exploiting homogeneous polynomial Lyapunov functions
and convex optimization problems based on linear matrix
inequalities (LMIs). This sequence is obtained by adopting
two possible representations of homogeneous polynomials, one
based on Kronecker products, and the other on the square
matrix representation (SMR). Some examples illustrate the
use and the potentialities of the proposed approach. It is also
conjectured that the proposed approach is asymptotically non-
conservative, i.e. the exact minimum dwell time is obtained by
using homogeneous polynomials with sufficiently large degree.

I. INTRODUCTION

This work deals with the stability of switched linear systems

under a dwell time constraint. Problems in the design of

switching control systems in which switching takes place

“slowly” between system matrices, arise frequently in prac-

tice, see for instance [1]–[9]. In such problems, one is

faced with determining the minimum time between switching

(i.e. the dwell time) such that that exponential switching is

maintained. It is well known that the computation of the

exact minimum dwell time is demanding. In [10], an upper

bound is computed on the basis of the norm of the transition

matrices associated with the system matrices, and is further

discussed in [11]. More recently, an alternative method based

on convex optimization problems is presented in [12]. In this

paper, the authors use linear matrix inequalities (LMIs) and

one-parameter search techniques to compute a guaranteed

dwell time. The inequalities generate a piecewise quadratic

Lyapunov function v(x), discontinuous at the switching

instants tk, but such that the sequence v(x(tk)), for k =
0, ⋅ ⋅ ⋅ ,∞, converges uniformly to zero.

This paper extends the result in [12] by adopting homo-

geneous polynomial Lyapunov functions, which have been

proposed in the context of time-varying systems [13]. A can-

didate Lyapunov function is looked for by using two possible

representations, the first based on Kronecker products, and

the second based on the square matrix representation (SMR)

introduced in [14]. Both representations lead to sufficient

conditions for stability of the switched linear system under
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a dwell time requirement via LMI feasibility tests, which

are convex optimization problems with LMI constraints. A

bisection search over a scalar parameter produces an upper

bound of the minimum dwell time. The representation based

on Kronecker products enjoys a more explicit formulation,

while the one based on the SMR provides less conservative

results. A number of examples illustrate the proposed ap-

proach, showing that the exact minimum dwell time can be

often obtained.

The paper is organized as follows. In Section II the ba-

sic problem is formulated and some preliminary results

are given. In Section III the proposed condition based on

Kronecker products is derived. Section IV presents the

formulation of this condition by adopting the SMR. Section

V illustrates the proposed approach through a number of

examples. Lastly, Section VI concludes the paper with some

final remarks.

II. PRELIMINARIES

The notation used throughout the paper is as follows: ℝ:

space of real numbers; 0n: origin of ℝn; ℝn
0 : ℝn ∖{0n}; In:

n×n identity matrix; A′: transpose of A; A > 0: symmetric

positive definite matrix A; A ⊗ B: Kronecker product of

matrices A and B; s.t.: subject to.

We consider switched linear systems of the form

ẋ(t) = A�(t)x(t) (1)

where x(t) ∈ ℝ
n, and �(t) is a switching signal taking values

in a finite set S = {1, 2, . . . ,M}. All matrices Ai, i =
1, 2, . . . ,M , are assumed to be Hurwitz, and we characterize

switching rules by saying that the signal �(t) orchestrates

switching between the matrices A1, A2, . . . , AM .

In this work we impose a further restriction on the system

class described by the above equation. More specifically, we

impose restrictions on the set of admissible switching signals

by defining the set

DT = {�(t) : tk+1 − tk ≥ T }

where tk are the commutation instants and T ≥ 0. The mini-

mum dwell time problem is then to compute the minimum T

ensuring exponential stability of system (1) for all possible

�(t) ∈ DT . We define this time as

Tmin = inf{T ≥ 0 : (1) is exponentially stable

for all �(t) ∈ DT }.

Our starting point in this paper is the following Theorem

that was given in [12] for guaranteeing a dwell time.
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Theorem 1 (see [12]): Assume that, for given T > 0,

∃Pi :

⎧



⎨



⎩

Pi > 0 ∀i

A′
iPi + PiAi < 0 ∀i

eA
′
iTPje

AiT < Pi ∀i ∕= j.

(2)

Then, the system is exponentially stable for every �(⋅) ∈ DT .

□

The above result deserves a few remarks.

(i) For given Hurwitz matrices Ai, i = 1, 2, . . . ,M , there

always exist T > 0 such that (2) holds. Indeed, as T

goes to infinity, the third inequality reduces to Pi > 0
and the feasibility of the second is guaranteed by

Hurwitz stability of the matrices Ai.

(ii) If the inequalities are always satisfied for T → 0, then,

in the limit, it follows that Pj − Pi → 0 so that the

condition for quadratic stability is recovered, namely

A′
iP + PAi < 0, ∀i

where P > 0 is the limit of Pi as T goes to 0.

(iii) The function

v(x, t) = x′P�(t)x

is a piecewise quadratic Lyapunov function for system

(1) for every �(⋅) ∈ DT .

(iv) Associated with a given a sequence tk, k = 0, 1, . . ., it

is possible to write the discrete-time switched system

x̂(k + 1) = F�̂(k)x̂(k)

where
�̂(k) = �(tk), x̂(k) = x(tk)

F�̂(k) = eA�(tk)(tk+1−tk).

Then, this system is stable under arbitrary switching

under the piecewise quadratic Lyapunov function

w(x̂, k) = x̂′P�̂(k)x̂.

(v) Theorem 1 can be easily adapted to comply with pos-

sible state jumps in the system state. Indeed, assume

that at each commutation instant tk, the system state

is reset according to the rule

x(tk) = S�(tk)x(t
−
k ). (3)

Then stability in DT is guaranteed if there exist

positive definite matrices Pi satisfying

∃Pi :

⎧



⎨



⎩

Pi > 0 ∀i

A′
iPi + PiAi < 0 ∀i

eA
′
iTS′

jPjSje
AiT < Pi ∀i ∕= j.

(4)

(vi) If the sufficient condition stated in Theorem 1 is

feasible for T , then it holds also for T + � for all

� ≥ 0.

The algorithm to find an upper bound of the minimum

dwell time consists in finding the minimum value of T such

that (2) holds. Notice that this computation only involves

the solution of a set of LMIs plus a line search over the

parameter T . However, the sufficient condition stated in

Theorem 1 is not necessary for stability in DT . This means

that a system can be stable in DT and no positive definite

matrices Pi exist satisfying (2). The reason is that the

inequalities define a Lyapunov function v(x) = x′P�(t)x,

which is piecewise quadratic, whereas for stability in DT ,

more complex Lyapunov functions are required. This latter

observation is characterized by the following result which

can be found in [15].

Theorem 2 (see [15]): The system is exponentially stable in

DT if and only if there exist continuous functions vi(x) such

that
⎧







⎨







⎩

vi(x) > 0 ∀x ∕= 0n ∀i

dvi(x)

dt

∣

∣

∣

∣

ẋ=Aix

< 0 ∀x ∕= 0n ∀i

vj(e
AiTx) < vi(x) ∀x ∕= 0n ∀i ∕= j.

(5)

□

Let us observe that each vi(x) in Theorem 2 can be chosen

homogeneous due to the fact that the system is linear.

III. CONDITIONS VIA KRONECKER PRODUCTS

The idea exploited in this paper is to adopt homogeneous

polynomial Lyapunov functions, which have the form

v(x) =
∑

i1 + . . .+ in = 2m
i1 ≥ 0, . . . , in ≥ 0

ci1,...,inx
i1
1 ⋅ ⋅ ⋅xin

n (6)

being x = (x1, . . . , xn)
′ ∈ ℝ

n the function variable, 2m
the degree for a positive integer m, and ci1,...,in ∈ ℝ some

coefficients.

One way to represent homogeneous polynomial Lyapunov

functions is to use Kronecker products. Indeed, for any

matrix (vector) J and positive integer i let us define the

notation

J⊗i =

{

J ⊗ J⊗i−1 if i ≥ 1

1 if i = 0.
(7)

Then, v(x) in (6) can be rewritten as

v(x) =
(

x⊗m
)′
Πx⊗m

for a suitable symmetric matrix Π = Π′ ∈ ℝ
nm×nm

which

contains the coefficients ci1,...,in . Let Ai,⊗m ∈ ℝ
nm×nm

be

the matrix satisfying

dx⊗m

dt
=

dx⊗m

dx
Aix = Ai,⊗mx⊗m ∀x.

It turns out that

Ai,⊗m+1 = Ai,⊗m ⊕Ai
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where the Kronecker sum of two matrices, say X and Y is

defined as

X ⊕ Y = X ⊗ I + I ⊗ Y.

Then, we have the following result.

Theorem 3: Assume that, for given T > 0 and positive

integer m,

∃Πi :

⎧



⎨



⎩

Πi > 0 ∀i

A′
i,⊗mΠi +ΠiAi,⊗m < 0 ∀i

eA
′
i,⊗mTΠje

Ai,⊗mT < Πi ∀i ∕= j.

(8)

Then, (1) is exponentially stable for every �(⋅) ∈ DT .

Proof. Suppose that (8) holds, and define

vi(x) =
(

x⊗m
)′
Πix

⊗m.

Since
(

eAitx
)⊗m

= eAi,⊗mtx⊗m ∀t ≥ 0

it follows that (5) is satisfied thus implying that the system

is exponentially stable for every �(⋅) ∈ DT . □

Remark 1: Let us observe that, for m = 1, (8) coincides

with (2).

Let us indicate with T⊗m the smallest upper bound of Tmin

guaranteed by Theorem 3, i.e.

T⊗m = inf {T ≥ 0 : (8) holds} .

The following result provides a key property of the condition

(8), which allows one to calculate T⊗m via a bisection

search where at each iteration the condition (8) is tested.

Theorem 4: Assume that (8) holds for some T > 0 and

positive integer m. Then, (8) holds also for T + � and m for

all � ≥ 0.

Proof. Suppose that (8) holds, and define vi(x) =
(x⊗m)

′
Πix

⊗m. Consider any � ≥ 0. From the second

inequality one has that

vi(x(�)) ≤ vi(x(0)) ∀x(0)

which implies that

eA
′
i,⊗m�Πie

Ai,⊗m� ≤ Πi.

Pre- and post-multiplying the third inequality of (8) by

eAi,⊗m� and eA
′
i,⊗m� respectively, one gets that

eA
′
i,⊗m(T+�)Πje

Ai,⊗m(T+�) < Πi.

Therefore, the theorem holds. □

The inequalities (8) are characterized by an important prop-

erty for a fixed T . Indeed, denote by Πi,⊗r the positive

definite matrices satisfying (8) for a certain T and m = r.

Then, one can set

Πi,⊗2k+1m = Πi,⊗2km ⊗Πi,⊗2km, ∀k.

This means that if (8) are feasible for m = 2kr, they are also

feasible for m = 2k+1r. In conclusion, the sequence T⊗2kr,

k = 0, 1, ⋅ ⋅ ⋅ is monotonically non-increasing with respect

to k and the limit

T⊗∗r = lim
k→∞

T⊗2kr.

exists. Of course, T⊗∗r is an upper bound of the minimum

dwell time Tmin, for each r. As such

T⊗∗ = min
r>0

T⊗∗r (9)

is also an upper bound of Tmin.

Remark 2: The above result can be strengthened by proving

the monotonicity with respect to k of the sequence of upper

bounds indexed by m = �kr, for � ≥ 2.

Remark 3: The sufficient condition of Theorem 3 lends itself

to be slightly modified so as to cope with the stability

analysis of system (1) under the reset condition (3). As a

matter of fact, it is enough to replace condition

eA
′
i,⊗mTΠje

Ai,⊗mT < Πi ∀i ∕= j

with

eA
′
i,⊗mT (S⊗m

j )′ΠjS
⊗m
j eAi,⊗mT < Πi ∀i ∕= j.

IV. CONDITIONS VIA THE SMR

Any polynomial ℎ(x) of degree 2m in x ∈ ℝ
n can be

written in a more compact and complete way by using the

SMR which was introduced in [14] to establish whether

a polynomial is sum of squares of polynomials (SOS) via

LMIs.

Indeed, let x{m} ∈ ℝ
d(n,m) be a vector containing a base

for the homogeneous polynomials of degree m in x ∈ ℝ
n,

where

d(n,m) =
(n+m− 1)!

(n− 1)!m!

and let us define the set

ℒm =
{

L = L′ : x{m}′

Lx{m} = 0 ∀x
}

whose dimension is given by

dpar(n,m) =
1

2
d(n,m) (d(n,m) + 1)− d(n, 2m).

Let Lm : ℝ
dpar(n,m) → ℝ

d(n,m)×d(n,m) be any linear

parametrization of the set ℒm. Then, the SMR of ℎ(x) is

given by

ℎ(x) = x{m}′

(H + Lm(�)) x{m}, ∀� ∈ ℝ
dpar(n,m)

where H ∈ ℝ
d(n,m)×d(n,m) is a suitable constant matrix. See

also [16], [17] for details about the SMR, and see [18] where

homogeneous polynomial Lyapunov functions and the SMR

are exploited for establishing robust stability of uncertain

systems with time-varying uncertainties.

Let Ai,{m} ∈ ℝ
d(n,m)×d(n,m) be the matrix satisfying

dx{m}

dx
Aix = Ai,{m}x

{m} ∀x
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which can be computed with the formula given in [19],

[16]. Then we have the following theorem.

Theorem 5: Assume that, for given T > 0 and positive

integer m,

∃Πi, �i, �i,j :
⎧



⎨



⎩

Πi > 0 ∀i

A′
i,{m}Πi +ΠiAi,{m} + Lm(�i) < 0 ∀i

eA
′
i,{m}TΠje

Ai,{m}T < Πi + Lm(�i,j) ∀i ∕= j.
(10)

Then, (1) is exponentially stable for every �(⋅) ∈ DT .

Proof. Suppose that (10) holds, and define

vi(x) = x{m}′Πix
{m}.

We have that

x{m}′

Lm(�)x{m} = 0 ∀�.

Moreover, it can be shown that

(

eAitx
){m}

= eAi,{m}tx{m} ∀t ≥ 0.

Hence, it follows that (5) holds, which implies that the

system is exponentially stable for every �(⋅) ∈ DT . □

Remark 4: Observe that, for m = 1, (10) coincides with (8)

and (2).

To see that the condition (10) is not more conservative than

the condition (8), the following result is noted.

Theorem 6: Assume that, for given T > 0 and positive

integer m, (8) holds. Then, (10) holds for the same T and

m.

Proof. Let Πi be such that (8) holds for T and m. We now

show that there exist Π̃i, �i, �i,j such that (10) holds for the

same T and m.

Define the homogeneous polynomial Lyapunov functions of

degree 2m vi(x) = (x⊗m)
′
Πix

⊗m. We have that (5) holds

with these Lyapunov functions. Now, let us define

Π̃i = K ′
0ΠiK0 (11)

where K0 is the matrix satisfying

x⊗m = K0x
{m} ∀x.

We have that

vi(x) = x{m}′

Π̃ix
{m}

Π̃i > 0.

Then, let us define

Φi = K ′
0

(

A′
i,⊗mΠi +ΠiAi,⊗m

)

K0.

We have that

dvi(x)

dt

∣

∣

∣

∣

ẋ=Aix

= x{m}′

Φix
{m}

Φi < 0

and

∃�i : A′
i,{m}Π̃i + Π̃iAi,{m} + Lm(�i) = Φi

because A′
i,{m}Π̃i + Π̃iAi,{m} and Φi are SMR matrices of

the same homogeneous polynomial. Lastly, let us define

Φi,j = K ′
0

(

eA
′
i,⊗mTΠje

Ai,⊗mT −Πi

)

K0.

We have that

vj(e
AiTx)− vi(x) = x{m}′

Φi,jx
{m}

Φi,j < 0

and

∃�i,j : eA
′
i,{m}T Π̃je

Ai,{m}T − Π̃i − Lm(�i,j) = Φi,j

because eA
′
i,{m}T Π̃je

Ai,{m}T − Π̃i and Φi,j are SMR

matrices of the same homogeneous polynomial. Therefore,

the theorem holds. □

Let us indicate with T{m} the smallest upper bound of Tmin

guaranteed by Theorem 5, i.e.

T{m} = inf {T ≥ 0 : (10) holds} . (12)

The following result is analogous to Theorem 4 and allows

one to calculate T{m} via a bisection search where at each

iteration the condition (10) is tested.

Theorem 7: Assume that (10) holds for some T > 0 and

positive integer m. Then, (10) holds also for T + � and m

for all � ≥ 0.

Proof. Suppose that (10) holds, and define vi(x) =
x{m}′

Πix
{m}. Consider any � ≥ 0. From the second

inequality one has that

vi(x(�)) ≤ vi(x(0)) ∀x(0)

which implies that

eA
′
i,{m}�Πie

Ai,{m}� ≤ Πi.

Pre- and post-multiplying the third inequality of (10) by

eAi,{m}� and eA
′
i,{m}� respectively, one gets that

eA
′
i,{m}(T+�)Πje

Ai,{m}(T+�)

< Πi + eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�.

Lastly, let us observe that

x{m}′

eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�x{m}

=
(

eAi�x
){m}′

Lm(�i,j)
(

eAi�x
){m}

= 0

which implies that

eA
′
i,{m}�Lm(�i,j)e

Ai,{m}� ∈ ℒm.

Hence,

∃�̃i,j : Lm(�̃i,j) = eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�

and, therefore, the theorem holds. □
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Remark 5: For the stability analysis of system (1) under the

reset condition (3), it is enough to replace, in the statement

of Theorem 5, the condition

eA
′
i,{m}TΠje

Ai,{m}T < Πi + Lm(�i,j) ∀i ∕= j

with

eA
′
i,{m}T S̃′

jΠjS̃je
Ai,{m}T < Πi + Lm(�i,j) ∀i ∕= j

where S̃j is the matrix satisfying

(Sjx)
{m} = S̃jx

{m}.

Similarly to T⊗m, the upper bound T{m} in (12) is charac-

terized by a monotonicity property. Indeed, it can be shown

that

T{�m} ≤ T{m} ∀� ≥ 1.

Analogously to the limit T⊗∗ defined for T⊗m, we define

the limit T{∗} for T{m}, which is also given by

T{∗} = lim
s→∞

T (s) (13)

where

T (s) = min
{

T{1}, T{2}, . . . , T{s}

}

. (14)

Lastly, it is worth discussing the conservatism of the pro-

posed approach. Since the upper bound T{m} in (12) is

obtained by exploiting the SMR for establishing positivity

of homogeneous polynomials, the conservatism of T{m} is

related to the possibility of expressing positive homogeneous

polynomials as SOS, see for instance [20]–[22], [16].

More specifically, for a fixed value of m, T{m} is the best

upper bound obtainable with a homogeneous polynomial

Lyapunov function of degree 2m provided that the homo-

geneous polynomials in (5) are positive if and only if they

are SOS.

In particular, it is possible to show that T{m} coincides with

such a best upper bound in the case of second order systems.

Moreover, since any positive homogeneous polynomial can

be expressed as ratio of two SOS homogeneous polynomials,

it is conjectured that T{∗} coincides with Tmin.

V. EXAMPLES

In this section, some examples are presented to illustrate

the usefulness of our computational method. The obtained

bounds are compared with the one provided in the pioneering

paper [10], i.e.

THM = max
i

inf
�>0,�>0

{

�

�
: ∥eAit∥ ≤ e�−�t, ∀t > 0

}

.

In addition, we consider

TLB = min

{

T ≥ 0 s.t. max
q

∣

∣

∣

∣

∣

�q

(

M
∏

p=1

eBp�

)∣

∣

∣

∣

∣

< 1,

∀� > T

}

where �q denotes a generic eigenvalue and

{B1, B2, ⋅ ⋅ ⋅ , BM} are matrices corresponding to any

permutation among those of the set {A1, A2, ⋅ ⋅ ⋅ , AM}. Of

course

TLB ≤ Tmin,

i.e. TLB is a lower bound of the minimum dwell time.

Despite all our attempts, we were not able to work out a

third order example with T{∗} > Tmin.

A. Example 1

Consider

A1 =

[

0 1
−2 −1

]

, A2 =

[

0 1
−9 −1

]

.

We get the following upper bounds:

m T⊗m T{m}

1 0.6222 0.6222
2 0.6216 0.6079
3 0.6207 0.6073
4 0.6197 0.6073

In this example THM = 2.2321 and TLB = 0. It turns

out that the true minimum dwell time Tmin coincides with

the T{∗}. Indeed, this is confirmed by finding a switching

sequence with tk+1 − tk = 0.6073 − � yielding a non

asymptotically stable system. For instance, it can be easily

verified that taking the periodic signal of period t1 + t2

�(t) =

{

1, t ∈ [0, t1)
2, t ∈ [t1, t1 + t2)

with t1 = 0.8800 and t2 = 0.6073, the associated periodic

system ẋ(t) = A�(t)x(t) is not asymptotically stable (the

maximum modulus of the characteristic multipliers is equal

to one). Therefore, Tmin = T{∗} = T{4} = 0.6073.

B. Example 2

Consider

A1 =

[

−1 −1
1 −1

]

, A2 =

[

−1 2
−3 −1

]

,

A3 =

[

1 1
−3 −2

]

.

We get the following upper bounds:

m T⊗m T{m}

1 0.6437 0.6437
2 0.6281 0.3629
3 0.4607 0.3510
4 0.3747 0.3510

In this example THM = 2.9816 and TLB = 0. Analogously

to Example 1, it can be easily verified that taking the periodic

signal of period t1 + t3

�(t) =

{

1, t ∈ [0, t1)
3, t ∈ [t1, t1 + t3)

with t1 = 0.3510 and t3 = 0.4700, the associated periodic

system ẋ(t) = A�(t)x(t) is not asymptotically stable (the

maximum modulus of the characteristic multipliers is equal

to one). Therefore, Tmin = T{∗} = T{4} = 0.3510.
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C. Example 3

Consider

A1 =

⎡

⎣

−1 −1 1
−1 −1 0
−2 1 −1

⎤

⎦ , A2 =

⎡

⎣

−1 0 6
−2 −1 −5
0 3 −1

⎤

⎦ .

We get the following upper bounds:

m T⊗m T{m}

1 1.9135 1.9135
2 1.9108 1.9065
3 1.9087 1.9023
4 1.9070 1.8997

In this example THM = 15.7089 and TLB = 1.8788. Proba-

bly T{4} is not tight this time, nevertheless it is expected that

one can reach Tmin for values of m larger than 4. Observe

that, clearly, Tmin ∈ [TLB, T{4}] = [1.8788, 1.8997].

D. Example 4

Consider

A1 =

⎡

⎣

−1 1 0
0 −2 −1
−1 0 −2

⎤

⎦ , A2 =

⎡

⎣

−1 0 1
−1 −1 0
0 1 −1

⎤

⎦ ,

A3 =

⎡

⎣

−1 0 6
−1 −1 −5
0 1 −1

⎤

⎦ .

We get the following upper bounds:

m T⊗m T{m}

1 0.3930 0.3930
2 0.2616 0.0549
3 0.0027 0.0000
4 0.0000 0.0000

Hence T{∗} = 0. In this example THM = 2.2395. Of course

Tmin = TLB = 0.

VI. CONCLUSIONS

This paper has addressed stability of switched linear systems

under a dwell time constraint. LMI conditions have been

proposed to compute upper bounds of the minimum dwell

time, based on the use of Kronecker products and the SMR

of homogeneous polynomials. The examples show that the

exact minimum dwell time can be arbitrarily approached by

increasing the degree of the homogeneous polynomial. This

is in accordance with our conjecture that the proposed LMI

conditions are not conservative for dwell time investigations

of switched linear systems. Further work will be devoted

to prove this conjecture and to derive upper bounds of the

degree of the homogeneous polynomial Lyapunov function

required to achieve non-conservatism.
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Cambridge University Press, Cambridge, 1988.
[21] B. Reznick. Some concrete aspects of Hilbert’s 17th problem.

Contemporary Mathematics, 253:251–272, 2000.
[22] G. Chesi. On the gap between positive polynomials and SOS of

polynomials. IEEE Trans. on Automatic Control, 52(6):1066–1072,
2007.

2492


