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Abstract—High computational demand is known to be a technical 
hurdle for real-time implementation of advanced methods like 
synthetic aperture imaging (SAI) and plane wave imaging (PWI) 
that work with the pre-beamform data of each array element. In 
this paper, we present the development of a software beamformer 
for SAI and PWI with real-time parallel processing capacity. Our 
beamformer design comprises a pipelined group of graphics 
processing units (GPU) that are hosted within the same computer 
workstation. During operation, each available GPU is assigned to 
perform demodulation and beamforming for one frame of pre-
beamform data acquired from one transmit firing (e.g. point 
firing for SAI). To facilitate parallel computation, the GPUs have 
been programmed to treat the calculation of depth pixels from 
the same image scanline as a block of processing threads that can 
be executed concurrently, and it would repeat this process for all 
scanlines to obtain the entire frame of image data - i.e. low-
resolution image (LRI). To reduce processing latency due to 
repeated access of each GPU’s global memory, we have made use 
of each thread block’s fast-shared memory (to store an entire line 
of pre-beamform data during demodulation), created texture 
memory pointers, and utilized global memory caches (to stream 
repeatedly used data samples during beamforming). Based on 
this beamformer architecture, a prototype platform has been 
implemented for SAI and PWI, and its LRI processing 
throughput has been measured for test datasets with 40 MHz 
sampling rate, 32 receive channels, and imaging depths between 
5-15 cm. When using two Fermi-class GPUs (GTX-470), our 
beamformer can compute LRIs of 512-by-255 pixels at over 3200 
fps and 1300 fps respectively for imaging depths of 5 cm and 15 
cm. This processing throughput is roughly 3.2 times higher than 
a Tesla-class GPU (GTX-275). 

Keywords—software beamformer, parallel processing, graphics 
processing units, synthetic aperture imaging, plane wave imaging. 

I. INTRODUCTION 

Ultrasound imaging is conventionally based upon a pulse-
echo sensing mechanism that sequentially acquires image data 
over a group of beam lines. This imaging paradigm can 
typically achieve a frame rate of about 30-40 Hz in existing 
scanners [1]. To increase the imaging frame rate substantially 
without concomitantly reducing the imaging view or image 
quality, it is necessary to make use of alternative imaging 
paradigms. One approach is to use plane wave imaging (PWI) 
principles to simultaneously transmit all the beam-lines and 
then perform parallel receive beamforming on receive [2]. 
Another fast imaging method that has been proposed is the use 
of the synthetic aperture imaging (SAI) technique that 
employs unfocused point-source firings on transmit and detect 
echoes at all transducer channels on receive [3]. Since focused 

beam-lines are not formed physically in SAI, it is possible to 
form an image from each firing; also, high-quality images may 
be obtained computationally via recursive summation of a 
series of low-resolution synthetic aperture images. 

Although PWI and SAI have shown potential in raising the 
frame rate limit, their real-time realization is inherently not a 
trivial implementation task. One technical challenge that 
concerns many system developers is the massive 
computational demand of these fast imaging methods as 
compared to conventional ultrasound image formation [4]. 
Existing ultrasound scanners are usually equipped with field 
programmable gate arrays (FPGA) and digital signal 
processors (DSP) to handle computations related to image 
formation [1]. [5]. Nevertheless, they are merely intended to 
work with the conventional ultrasound imaging paradigm, so 
their computational capacity is not sufficient to facilitate all 
the computation processes required for advanced ultrasound 
imaging methods. Thus, it is necessary to develop another 
real-time computing platform in order to address such a 
computation bottleneck. 

Recently, the emergence of graphics processing units (GPU) 
has spurred the pace of development in ultrasound imaging 
systems. These computing devices, which can be readily 
converted into parallel processors through the use of 
application programming interfaces provided by the vendors, 
have been used to compute color Doppler images [6], render 
three-dimensional images in real-time [7], derive motion 
vector estimates from echocardiography images [8], and 
implement elasticity imaging algorithms [9]. Initial attempts 
have also been made to convert these units into parallel 
computing engines for SAI [10]. 

In this paper, we present the development of a GPU-based 
software beamformer architecture that is intended for use in 
advanced ultrasound imaging. It has been our intent to develop 
a high-speed, programmable beamformer module that can form 
ultrasound images from radiofrequency (RF) data samples 
acquired at the pre-beamform level (i.e. the channel domain). 
This can enable us to realize advanced imaging paradigms that 
work with pre-beamform data, such as SAI and PWI. 

II. BEAMFORMER ARCHITECTURE 
A. Hardware Setup 

The developed beamformer is implemented by employing a 
group of GPUs as the computational platform. As illustrated in 
Fig. 1, the GPUs are housed inside a personal computer (PC) 
workstation as expansion boards that are connected through 
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PCI-Express buses with real-time data-transfer bandwidth 
(maximum of 8 GB/s for ×16 buses). Their parallel processing 
resources are managed through a software-based application 
programming interface known as CUDA (compute unified 
device architecture; NVIDIA, Santa Clara, USA) [11]. As will 
be shown in Sec. III, our beamformer architecture is 
compatible with both Tesla-class and Fermi-class GPUs 
(NVIDIA), and a combination of GPUs in these two classes 
may be used as the computational hardware for this 
beamformer. 

 The aim of our GPU-based beamformer is to perform real-
time processing using advanced imaging schemes like SAI and 
PWI. During operation, it takes in raw RF data from each 
array element and calculates beamformed images in real-time. 
The pre-beamform data is presumed to be first stored in the 
PC’s random access memory (RAM). They are streamed into 
each GPU on a frame-by-frame basis (controlled by a master 
central processing unit (CPU)) to facilitate beamforming of 
multiple image frames in parallel. The beamformed image 
results are then transferred to the PC display and the storage 
device for archival. 

The advantages of using GPUs for this work are two-folded. 
First, their hardware architecture, comprising hundreds of 
processor cores, has been specifically developed to facilitate 
single-instruction, multiple-thread (SIMT) computations. This 
parallelism can help accelerate the beamforming operation of 
multiple image pixels without running into power wall issues 
faced by conventional microprocessors. Second, the software-
based programmability of GPUs (via the C++ language) may 
represent a more accessible alternative over FPGAs that need 
to be configured using low-level hardware description 
languages like VHDL or modified high-level languages like 
SystemC (both have limited syntax functionality) [12]. 
B. Software Architecture 

Our beamformer has been programmed on the basis of a 
frame-based pipelining approach where each available GPU in 
the group is assigned to process one frame of pre-beamform 
data at any given time. For fast imaging paradigms like SAI 
and PWI, this approach is essentially equivalent to assigning 
each GPU to compute a low-resolution image (LRI) from the 
pre-beamform pulse-echoes of one firing. It is worth noting 
that the beamformer’s frame processing capacity (i.e. the 

number of LRIs that can be computed in parallel) directly 
scales with the number of GPUs in the group. 

For the processing of each frame, a two-stage approach has 
been adopted by the beamformer to derive the LRI value at 
every pixel position. In the first stage, the analytic form of pre-
beamform data is computed for each array channel through the 
use of Hilbert transform. Subsequently, a delay-and-sum 
procedure is carried out to add the relevant analytic samples of 
different channels and thereby obtain the beamformed value of 
every LRI pixel. The beamforming delays of all channels are 
dynamically calculated for each image location based on the 
nominal pulse-echo flight-time for that location. The SIMT 
processing architecture for each stage are described as follows. 

1) Analytic Signal Conversion: Fig. 2a gives a conceptual 
illustration of how this stage is implemented in the GPU-based 
beamformer. As can be seen, one block of threads in the GPU 
is assigned to compute the analytic signal for one channel of 
pre-beamform RF data. This thread-block allocation scheme is 
intended to facilitate efficient use of the GPU’s shared 
memory (high-speed on-chip memory allocated for each 
thread block) and reduce the processing latency (an issue to be 
discussed in further details in Sec. II-C). Each thread in the 
block is instructed to carry out a Hilbert transform operation 

Fig. 1. Hardware setup for the GPU-based software beamformer. During 
operation, data is streamed into the RAM block inside a PC workstation. The 
host CPU then distributes each frame of pre-beamform data into a GPU to 
perform beamforming. 

Fig. 2. Multi-thread processing architecture of the GPU-based beamformer.
During analytic signal conversion (a), latency is reduced by copying an entire 
channel of pre-beamform data to the thread block’s shared memory. For the 
delay-and-sum stage (b), the position of sample in each channel to be beam-
summed in a thread is denoted by a dashed curve in the analytic data array. 
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and in turn derive the analytic signal sample at one index 
position in the channel’s analytic data array. Note that the 
Hilbert transform is implemented as a many-tap finite-
impulse-response (FIR) filter that has an impulse response 
equal to the definition of the discrete Hilbert transform [13]. 
As such, each analytic data sample is essentially equivalent to 
the FIR filter output for a finite window of pre-beamform data 
in the corresponding channel.  

2) Delay-and-Sum Operation: Fig. 2b illustrates how 
delay-and-sum beamforming is performed in the GPU-based 
beamformer to obtain the LRI pixel values. In this processing 
stage, each block of threads is allocated to compute one 
scanline of LRI pixel values. For each individal thread, it is 
instructed to calculate a single LRI pixel value via the 
following three-step procedure: 

a) Estimate the beamforming delays for all channels with 
respect to the pixel position for that thread; 

b) Retrieve the corresponding data sample in each channel 
of the pre-beamform analytic signal array based on the 
delays;  

c) Obtain the LRI value by multiplying an apodization 
weight to the retrieved set of analytic data samples and 
summing the apodized values. 

It should be noted that the beamforming delays for this 
operation may be calculated differently depending on the 
imaging scheme. For PWI and SAI, the delays correspond to 
two-way propagation between the transmit source and the 
receive element position [2], [3]. Another point worth noting 
is that although pre-defined apodization weights are used in 
the current version of the beamformer, it is possible to extend 
the software architecture to adaptively compute these weights 
depending on the pre-beamform signal statistics. As such, our 
beamformer may potentially be used to investigate various 
adaptive beamforming algorithms [14]. 
C. Processing Speed Optimization 

To reduce latency overheads in GPU-based parallel 
processing, efficient management of memory access is known 
to be crucial given that each memory read-write operation may 
require up to several hundred clock cycles [11]. In general, 
this task can be facilitated through agile use of GPU’s two-tier 
memory structure that comprises: 1) shared memory for each 
thread block (small in size, but with fast access speed); 2) 
texture and global memory residing in the GPU’s device core 
(slower access speed, but may improve if cached).  

In the first stage of our beamformer (Fig. 2a), processing 
latency is lowered by using the shared memory to store an 
entire channel of pre-beamform data and thereby facilitating 
fast data access by each thread in a block. Note that the Hilbert 
transform filter coefficients are also stored in the shared 
memory to accelerate the analytic signal computation process. 
For the delay-and-sum stage (Fig. 2b), latency is kept low by 
either: 1) creating texture memory pointers to cache data 
samples that are repeatedly fetched to different threads, or 2) 
simply exploiting the global memory cache (only available in 
Fermi-class GPUs). The shared memory is used in this stage to 
store the apodization weights. It should be noted that the 

shared memory size in currently-available GPUs is not large 
enough to store all the data samples needed for beam-
summing in each thread block.  

III. PROTOTYPE IMPLEMENTATION

A. PC Backbone 
Based on our beamformer architecture, we have assembled a 

prototype PC platform that can support different GPU group 
sizes. This prototype operates on a motherboard with three 
PCI-Express×16 expansion slots (P6T Deluxe; ASUSTek, 
Taipei, Taiwan), and it uses a quad-core, 2.66 GHz CPU as the 
host controller (i7-920; Intel Corporation, Santa Clara, USA). 6 
GB of DDR3 RAM is included in the prototype PC to store 
pre-beamform data prior to processing.  
B. GPU Computational Platform 

In this work, we have used the prototype PC to experiment 
with four different GPU groupings: 1) a single Tesla-class 
GTX-275 GPU; 2) a single Fermi-class GTX-470 GPU; 3) two 
GTX-470 GPUs; 4) one GTX-275 alongside one GTX-470. 
Specifications for these two GPU models are readily available 
from the manufacturer, so they will not be repeated here. 
Nevertheless, three important differences should be noted 
between them. First, GTX-470 has more processor cores (448 
vs. 240), but it runs at a slower clock rate than GTX-275 (1.215 
GHz vs. 1.404 GHz). Second, GTX-470 includes a level-two 
global memory cache (768 kB) that is not found in GTX-275, 
but its texture memory filling rate is slower (34 billion/sec vs. 
50.6 billion/sec). Third, GTX-470 allocates 48 kB of shared 
memory for every 32 cores, and this should be contrasted 
against GTX-275 that assigns 16 kB for every 8 cores. 
C. Beamformer Software 

The GPU-based beamformer is coded in C++ via a 
functional programming approach, and various CUDA 
syntaxes and functions (ver. 3.0) are invoked to realize multi-
thread processing on the GPUs. In the analytic signal 
conversion stage of the beamfomer, a 51-tap FIR filter is 
implemented for the Hilbert transform, and its coefficients are 
computed during beamformer initialization. This filter order is 
empirically chosen to achieve accurate Hilbert transform 
results. In the delay-and-sum stage, SAI or PWI is assumed to 
be the imaging paradigm, so the beamforming delays are 
computed as the two-way pulse-echo propagation times (for a 
nominal acoustic speed of 1540 m/s). Also, a Hanning window 
is used as the apodization weight. 

IV. PERFORMANCE ASSESSMENT

A. Overview of Methodology 
To evaluate the computational performance of our GPU-

based beamformer prototype, a series of processing trials has 
been carried out. These trial runs are conducted on SAI and 
PWI test data acquired using a pre-beamform data acquisition 
system [15] that is connected to a reconfigured research 
scanner (Sonix-RP; Ultrasonix, Richmond, Canada). The RF 
sampling rate for the test datasets is 40 MHz, and each frame of 
pre-beamform data (i.e. for each transmit firing) comprises 32 
receive channels. With these data, we have used our 
beamformer to compute a series of LRIs for imaging depths 
between 5-15 cm (260 additional RF samples acquired per 
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channel for every 1 cm increase in imaging depth). Each LRI 
has a pixel dimension of 512-by-255 (for all imaging depths 
examined). The execution time of each processing stage is 
recorded using CUDA’s built-in timing functions, and the 
measurements are averaged over 30 trials. The processing 
frame rate is then calculated based on the total execution time 
of the beamformer. 
B. Results and Discussion 

For the GPU groupings considered in our beamformer 
prototype, Fig. 3a plots their processing frame rate as a 
function of imaging depth. As can be seen, the dual GTX-470 
configuration (black curve) has achieved the highest processing 
frame rate. It is capable of computing over 3200 and 1300 LRIs 
per second respectively for imaging depths of 5 cm (used in 
carotid studies) and 15 cm (needed for cardiac studies). This 
processing throughput is roughly 3.2 times higher than the 
single GTX-275 setup (light-gray curve with circle markers). 
Another point worth noting is that for the hybrid configuration 
(GTX-275 + GTX-470), its processing frame rate may be 
improved after an optimization procedure that reduces the GPU 
idle time due to pipelining synchronization between the two 
GPU models (see dark-gray curve with triangle markers). 

For Figs. 3b and 3c, GTX-470 has expectedly yielded a 
shorter execution time for the two beamforming stages (see 
dark curves) as compared to GTX-275 because more parallel 
processing cores are available in the new Fermi-class GPUs 
(448 vs. 240). Also, the advantage of using shared memory in 
the analytic signal conversion stage (to store the entire channel 
of pre-beamform data for a thread block) can be observed by 
noting the few-fold reduction of execution time for both GPU 
models (see asterisk-marked curves in Fig. 3b). For the delay-
and-sum stage (Fig. 3c), the performance difference between 
using texture memory pointers and global memory for data 
caching is found to be insignificant.

V. CONCLUSION

Our GPU-based beamformer has demonstrated a processing 
frame rate of over 1000 fps when two Fermi-class GPUs are 
used. Its processing capacity can expectedly increase further if 
additional GPUs are included in the system hardware. As such, 
with the advent of GPUs, it becomes possible to use standalone 
PC workstation as a real-time processor for advanced imaging 
methods that work with pre-beamform data.  
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(a) Processing Frame Rate (b) Execution Time: Analytic Signal Conversion (c) Execution Time: Delay-and-Sum 

Fig. 3. Performance results of our GPU-based beamformer as a function of imaging depth: (a) processing frame rate, shown for single- and dual-GPU setups; (b) 
execution time of analytic signal conversion; (c) execution time of delay-and-sum. “Tesla” and “Fermi” respectively denote GTX-275 and GTX-470 GPUs. 
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