
Title Real-time GPU-based software beamformer designed for
advanced imagingmethods research

Author(s) Yiu, BYS; Tsang, IKH; Yu, ACH

Citation
The 2010 IEEE International Ultrasonics Symposium, San Diego,
CA., 11-14 October 2010. In Proceedings of IEEE IUS, 2010, p.
1920-1923

Issued Date 2010

URL http://hdl.handle.net/10722/129641

Rights Proceedings of the 2010 IEEE International Ultrasonics
Symposium. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37953886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Real-Time GPU-Based Software Beamformer
Designed for Advanced Imaging Methods Research

Billy Y. S. Yiu, Ivan K. H. Tsang, and Alfred C. H. Yu
Medical Engineering Program,

The University of Hong Kong, Pokfulam, Hong Kong SAR

Corresponding Email: alfred.yu@hku.hk

Abstract—High computational demand is known to be a technical
hurdle for real-time implementation of advanced methods like
synthetic aperture imaging (SAI) and plane wave imaging (PWI)
that work with the pre-beamform data of each array element. In
this paper, we present the development of a software beamformer
for SAI and PWI with real-time parallel processing capacity. Our
beamformer design comprises a pipelined group of graphics
processing units (GPU) that are hosted within the same computer
workstation. During operation, each available GPU is assigned to
perform demodulation and beamforming for one frame of pre-
beamform data acquired from one transmit firing (e.g. point
firing for SAI). To facilitate parallel computation, the GPUs have
been programmed to treat the calculation of depth pixels from
the same image scanline as a block of processing threads that can
be executed concurrently, and it would repeat this process for all
scanlines to obtain the entire frame of image data - i.e. low-
resolution image (LRI). To reduce processing latency due to
repeated access of each GPU’s global memory, we have made use
of each thread block’s fast-shared memory (to store an entire line
of pre-beamform data during demodulation), created texture
memory pointers, and utilized global memory caches (to stream
repeatedly used data samples during beamforming). Based on
this beamformer architecture, a prototype platform has been
implemented for SAI and PWI, and its LRI processing
throughput has been measured for test datasets with 40 MHz
sampling rate, 32 receive channels, and imaging depths between
5-15 cm. When using two Fermi-class GPUs (GTX-470), our
beamformer can compute LRIs of 512-by-255 pixels at over 3200
fps and 1300 fps respectively for imaging depths of 5 cm and 15
cm. This processing throughput is roughly 3.2 times higher than
a Tesla-class GPU (GTX-275).

Keywords—software beamformer, parallel processing, graphics
processing units, synthetic aperture imaging, plane wave imaging.

I. INTRODUCTION

Ultrasound imaging is conventionally based upon a pulse-
echo sensing mechanism that sequentially acquires image data
over a group of beam lines. This imaging paradigm can
typically achieve a frame rate of about 30-40 Hz in existing
scanners [1]. To increase the imaging frame rate substantially
without concomitantly reducing the imaging view or image
quality, it is necessary to make use of alternative imaging
paradigms. One approach is to use plane wave imaging (PWI)
principles to simultaneously transmit all the beam-lines and
then perform parallel receive beamforming on receive [2].
Another fast imaging method that has been proposed is the use
of the synthetic aperture imaging (SAI) technique that
employs unfocused point-source firings on transmit and detect
echoes at all transducer channels on receive [3]. Since focused

beam-lines are not formed physically in SAI, it is possible to
form an image from each firing; also, high-quality images may
be obtained computationally via recursive summation of a
series of low-resolution synthetic aperture images.

Although PWI and SAI have shown potential in raising the
frame rate limit, their real-time realization is inherently not a
trivial implementation task. One technical challenge that
concerns many system developers is the massive
computational demand of these fast imaging methods as
compared to conventional ultrasound image formation [4].
Existing ultrasound scanners are usually equipped with field
programmable gate arrays (FPGA) and digital signal
processors (DSP) to handle computations related to image
formation [1]. [5]. Nevertheless, they are merely intended to
work with the conventional ultrasound imaging paradigm, so
their computational capacity is not sufficient to facilitate all
the computation processes required for advanced ultrasound
imaging methods. Thus, it is necessary to develop another
real-time computing platform in order to address such a
computation bottleneck.

Recently, the emergence of graphics processing units (GPU)
has spurred the pace of development in ultrasound imaging
systems. These computing devices, which can be readily
converted into parallel processors through the use of
application programming interfaces provided by the vendors,
have been used to compute color Doppler images [6], render
three-dimensional images in real-time [7], derive motion
vector estimates from echocardiography images [8], and
implement elasticity imaging algorithms [9]. Initial attempts
have also been made to convert these units into parallel
computing engines for SAI [10].

In this paper, we present the development of a GPU-based
software beamformer architecture that is intended for use in
advanced ultrasound imaging. It has been our intent to develop
a high-speed, programmable beamformer module that can form
ultrasound images from radiofrequency (RF) data samples
acquired at the pre-beamform level (i.e. the channel domain).
This can enable us to realize advanced imaging paradigms that
work with pre-beamform data, such as SAI and PWI.

II. BEAMFORMER ARCHITECTURE
A. Hardware Setup

The developed beamformer is implemented by employing a
group of GPUs as the computational platform. As illustrated in
Fig. 1, the GPUs are housed inside a personal computer (PC)
workstation as expansion boards that are connected through

1920 2010 IEEE International Ultrasonics Symposium Proceedings

10.1109/ULTSYM.2010.0485

978-1-4577-0381-2/10/$25.00 ©2010 IEEE

PCI-Express buses with real-time data-transfer bandwidth
(maximum of 8 GB/s for ×16 buses). Their parallel processing
resources are managed through a software-based application
programming interface known as CUDA (compute unified
device architecture; NVIDIA, Santa Clara, USA) [11]. As will
be shown in Sec. III, our beamformer architecture is
compatible with both Tesla-class and Fermi-class GPUs
(NVIDIA), and a combination of GPUs in these two classes
may be used as the computational hardware for this
beamformer.

 The aim of our GPU-based beamformer is to perform real-
time processing using advanced imaging schemes like SAI and
PWI. During operation, it takes in raw RF data from each
array element and calculates beamformed images in real-time.
The pre-beamform data is presumed to be first stored in the
PC’s random access memory (RAM). They are streamed into
each GPU on a frame-by-frame basis (controlled by a master
central processing unit (CPU)) to facilitate beamforming of
multiple image frames in parallel. The beamformed image
results are then transferred to the PC display and the storage
device for archival.

The advantages of using GPUs for this work are two-folded.
First, their hardware architecture, comprising hundreds of
processor cores, has been specifically developed to facilitate
single-instruction, multiple-thread (SIMT) computations. This
parallelism can help accelerate the beamforming operation of
multiple image pixels without running into power wall issues
faced by conventional microprocessors. Second, the software-
based programmability of GPUs (via the C++ language) may
represent a more accessible alternative over FPGAs that need
to be configured using low-level hardware description
languages like VHDL or modified high-level languages like
SystemC (both have limited syntax functionality) [12].
B. Software Architecture

Our beamformer has been programmed on the basis of a
frame-based pipelining approach where each available GPU in
the group is assigned to process one frame of pre-beamform
data at any given time. For fast imaging paradigms like SAI
and PWI, this approach is essentially equivalent to assigning
each GPU to compute a low-resolution image (LRI) from the
pre-beamform pulse-echoes of one firing. It is worth noting
that the beamformer’s frame processing capacity (i.e. the

number of LRIs that can be computed in parallel) directly
scales with the number of GPUs in the group.

For the processing of each frame, a two-stage approach has
been adopted by the beamformer to derive the LRI value at
every pixel position. In the first stage, the analytic form of pre-
beamform data is computed for each array channel through the
use of Hilbert transform. Subsequently, a delay-and-sum
procedure is carried out to add the relevant analytic samples of
different channels and thereby obtain the beamformed value of
every LRI pixel. The beamforming delays of all channels are
dynamically calculated for each image location based on the
nominal pulse-echo flight-time for that location. The SIMT
processing architecture for each stage are described as follows.

1) Analytic Signal Conversion: Fig. 2a gives a conceptual
illustration of how this stage is implemented in the GPU-based
beamformer. As can be seen, one block of threads in the GPU
is assigned to compute the analytic signal for one channel of
pre-beamform RF data. This thread-block allocation scheme is
intended to facilitate efficient use of the GPU’s shared
memory (high-speed on-chip memory allocated for each
thread block) and reduce the processing latency (an issue to be
discussed in further details in Sec. II-C). Each thread in the
block is instructed to carry out a Hilbert transform operation

Fig. 1. Hardware setup for the GPU-based software beamformer. During
operation, data is streamed into the RAM block inside a PC workstation. The
host CPU then distributes each frame of pre-beamform data into a GPU to
perform beamforming.

Fig. 2. Multi-thread processing architecture of the GPU-based beamformer.
During analytic signal conversion (a), latency is reduced by copying an entire
channel of pre-beamform data to the thread block’s shared memory. For the
delay-and-sum stage (b), the position of sample in each channel to be beam-
summed in a thread is denoted by a dashed curve in the analytic data array.

1921 2010 IEEE International Ultrasonics Symposium Proceedings

and in turn derive the analytic signal sample at one index
position in the channel’s analytic data array. Note that the
Hilbert transform is implemented as a many-tap finite-
impulse-response (FIR) filter that has an impulse response
equal to the definition of the discrete Hilbert transform [13].
As such, each analytic data sample is essentially equivalent to
the FIR filter output for a finite window of pre-beamform data
in the corresponding channel.

2) Delay-and-Sum Operation: Fig. 2b illustrates how
delay-and-sum beamforming is performed in the GPU-based
beamformer to obtain the LRI pixel values. In this processing
stage, each block of threads is allocated to compute one
scanline of LRI pixel values. For each individal thread, it is
instructed to calculate a single LRI pixel value via the
following three-step procedure:

a) Estimate the beamforming delays for all channels with
respect to the pixel position for that thread;

b) Retrieve the corresponding data sample in each channel
of the pre-beamform analytic signal array based on the
delays;

c) Obtain the LRI value by multiplying an apodization
weight to the retrieved set of analytic data samples and
summing the apodized values.

It should be noted that the beamforming delays for this
operation may be calculated differently depending on the
imaging scheme. For PWI and SAI, the delays correspond to
two-way propagation between the transmit source and the
receive element position [2], [3]. Another point worth noting
is that although pre-defined apodization weights are used in
the current version of the beamformer, it is possible to extend
the software architecture to adaptively compute these weights
depending on the pre-beamform signal statistics. As such, our
beamformer may potentially be used to investigate various
adaptive beamforming algorithms [14].
C. Processing Speed Optimization

To reduce latency overheads in GPU-based parallel
processing, efficient management of memory access is known
to be crucial given that each memory read-write operation may
require up to several hundred clock cycles [11]. In general,
this task can be facilitated through agile use of GPU’s two-tier
memory structure that comprises: 1) shared memory for each
thread block (small in size, but with fast access speed); 2)
texture and global memory residing in the GPU’s device core
(slower access speed, but may improve if cached).

In the first stage of our beamformer (Fig. 2a), processing
latency is lowered by using the shared memory to store an
entire channel of pre-beamform data and thereby facilitating
fast data access by each thread in a block. Note that the Hilbert
transform filter coefficients are also stored in the shared
memory to accelerate the analytic signal computation process.
For the delay-and-sum stage (Fig. 2b), latency is kept low by
either: 1) creating texture memory pointers to cache data
samples that are repeatedly fetched to different threads, or 2)
simply exploiting the global memory cache (only available in
Fermi-class GPUs). The shared memory is used in this stage to
store the apodization weights. It should be noted that the

shared memory size in currently-available GPUs is not large
enough to store all the data samples needed for beam-
summing in each thread block.

III. PROTOTYPE IMPLEMENTATION

A. PC Backbone
Based on our beamformer architecture, we have assembled a

prototype PC platform that can support different GPU group
sizes. This prototype operates on a motherboard with three
PCI-Express×16 expansion slots (P6T Deluxe; ASUSTek,
Taipei, Taiwan), and it uses a quad-core, 2.66 GHz CPU as the
host controller (i7-920; Intel Corporation, Santa Clara, USA). 6
GB of DDR3 RAM is included in the prototype PC to store
pre-beamform data prior to processing.
B. GPU Computational Platform

In this work, we have used the prototype PC to experiment
with four different GPU groupings: 1) a single Tesla-class
GTX-275 GPU; 2) a single Fermi-class GTX-470 GPU; 3) two
GTX-470 GPUs; 4) one GTX-275 alongside one GTX-470.
Specifications for these two GPU models are readily available
from the manufacturer, so they will not be repeated here.
Nevertheless, three important differences should be noted
between them. First, GTX-470 has more processor cores (448
vs. 240), but it runs at a slower clock rate than GTX-275 (1.215
GHz vs. 1.404 GHz). Second, GTX-470 includes a level-two
global memory cache (768 kB) that is not found in GTX-275,
but its texture memory filling rate is slower (34 billion/sec vs.
50.6 billion/sec). Third, GTX-470 allocates 48 kB of shared
memory for every 32 cores, and this should be contrasted
against GTX-275 that assigns 16 kB for every 8 cores.
C. Beamformer Software

The GPU-based beamformer is coded in C++ via a
functional programming approach, and various CUDA
syntaxes and functions (ver. 3.0) are invoked to realize multi-
thread processing on the GPUs. In the analytic signal
conversion stage of the beamfomer, a 51-tap FIR filter is
implemented for the Hilbert transform, and its coefficients are
computed during beamformer initialization. This filter order is
empirically chosen to achieve accurate Hilbert transform
results. In the delay-and-sum stage, SAI or PWI is assumed to
be the imaging paradigm, so the beamforming delays are
computed as the two-way pulse-echo propagation times (for a
nominal acoustic speed of 1540 m/s). Also, a Hanning window
is used as the apodization weight.

IV. PERFORMANCE ASSESSMENT

A. Overview of Methodology
To evaluate the computational performance of our GPU-

based beamformer prototype, a series of processing trials has
been carried out. These trial runs are conducted on SAI and
PWI test data acquired using a pre-beamform data acquisition
system [15] that is connected to a reconfigured research
scanner (Sonix-RP; Ultrasonix, Richmond, Canada). The RF
sampling rate for the test datasets is 40 MHz, and each frame of
pre-beamform data (i.e. for each transmit firing) comprises 32
receive channels. With these data, we have used our
beamformer to compute a series of LRIs for imaging depths
between 5-15 cm (260 additional RF samples acquired per

1922 2010 IEEE International Ultrasonics Symposium Proceedings

channel for every 1 cm increase in imaging depth). Each LRI
has a pixel dimension of 512-by-255 (for all imaging depths
examined). The execution time of each processing stage is
recorded using CUDA’s built-in timing functions, and the
measurements are averaged over 30 trials. The processing
frame rate is then calculated based on the total execution time
of the beamformer.
B. Results and Discussion

For the GPU groupings considered in our beamformer
prototype, Fig. 3a plots their processing frame rate as a
function of imaging depth. As can be seen, the dual GTX-470
configuration (black curve) has achieved the highest processing
frame rate. It is capable of computing over 3200 and 1300 LRIs
per second respectively for imaging depths of 5 cm (used in
carotid studies) and 15 cm (needed for cardiac studies). This
processing throughput is roughly 3.2 times higher than the
single GTX-275 setup (light-gray curve with circle markers).
Another point worth noting is that for the hybrid configuration
(GTX-275 + GTX-470), its processing frame rate may be
improved after an optimization procedure that reduces the GPU
idle time due to pipelining synchronization between the two
GPU models (see dark-gray curve with triangle markers).

For Figs. 3b and 3c, GTX-470 has expectedly yielded a
shorter execution time for the two beamforming stages (see
dark curves) as compared to GTX-275 because more parallel
processing cores are available in the new Fermi-class GPUs
(448 vs. 240). Also, the advantage of using shared memory in
the analytic signal conversion stage (to store the entire channel
of pre-beamform data for a thread block) can be observed by
noting the few-fold reduction of execution time for both GPU
models (see asterisk-marked curves in Fig. 3b). For the delay-
and-sum stage (Fig. 3c), the performance difference between
using texture memory pointers and global memory for data
caching is found to be insignificant.

V. CONCLUSION

Our GPU-based beamformer has demonstrated a processing
frame rate of over 1000 fps when two Fermi-class GPUs are
used. Its processing capacity can expectedly increase further if
additional GPUs are included in the system hardware. As such,
with the advent of GPUs, it becomes possible to use standalone
PC workstation as a real-time processor for advanced imaging
methods that work with pre-beamform data.

ACKNOLWEDGEMENTS

We wish to thank Prof. Paul Cheung and Mr. Harry Chiu at
HKU for their enthusiastic support on the project. This work is
supported in part by the Hong Kong Innovation and
Technology Fund (ITS/492/09, InP/210/10, InP/211/10).

REFERENCES
[1] G. York and Y. Kim, “Ultrasound processing and computing: review and future

directions”, Ann. Rev. Biomed. Eng., vol. 1, pp. 559-588, 1999.

[2] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-
wave compounding for very high frame rate ultrasonography and transient
elastography”, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 56, pp. 489-
506, 2009.

[3] J. A. Jensen, S. I. Nikolov, and K. L. Gammelmark, "Synthetic aperture ultrasound
imaging," Ultrasonics, vol. 44, pp. e5-e15, 2006.

[4] S. I. Nikolov, B. G. Tomov, and J. A. Jensen, “Real-time synthetic aperture
imaging: opportunities and challenges”, Proc. Asilomar Conf. Signals Syst. Comp.,
pp. 1548-1552, 2006.

[5] C. Basoglu, R. Managuli, G. York, and Y. Kim, “Computing requirements of
modern medical diagnostic ultrasound machines”, Parallel Comput., vol. 24, pp.
1407-1431, 1998.

[6] L. W. Chang, K. H. Hsu, and P. C. Li, “Graphics processing unit-based high-
frame-rate color Doppler ultrasound processing”, IEEE Trans. Ultrason. Ferroelec.
Freq. Contr., vol. 56, pp. 1856-1860, 2009.

[7] A. F. Elnokrashy, A. A. Elmalky, T. M. Hosny, M. A. Ellah, A. Megawar, A.
Elsebai, A. B. M. Youssef, and Y. M. Kadah, “GPU-based reconstruction and
display for 4D ultrasound data”, Proc. IEEE Ultrason. Symp., pp. 189-192, 2009.

[8] G. Kiss, E. Nielsen, F. Orderud, and H. G. Torp, “Performance optimization of
block matching in 3D echocardiography”, Proc. IEEE Ultrason. Symp., pp. 1403-
1406, 2009.

[9] N. Deshmukh, H. Rivaz, and E. Boctor, “GPU-based elasticity imaging
algorithms”, Proc. Int. Conf. Med. Imag. Comp. & Comp. Assist. Interven., 2009.

[10] D. Romero, O. Martinez, C. J. Martin, R. T. Higuti, and A. Octavio, “Using GPUs
for beamforming acceleration in SAFT imaging”, Proc. IEEE Ultrason. Symp., pp.
1334-1337, 2009.

[11] NVIDIA Co. CUDA Programming Guide. Santa Clara, USA: 2010.

[12] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-
intensive applications with GPUs and FPGAs”, Proc. IEEE Symp. App. Spec.
Process., pp. 101-107, 2008.

[13] T.K. Moon and W.C. Stirling, Mathematical Methods and Algorithms for Signal
Processing. Upper Saddle River, USA: Prentice-Hall Inc., 2000.

[14] J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to
medical ultrasound imaging”, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol.
54, pp. 1606-1613, 2007.

[15] I. K. H. Tsang, B. Y. S. Yiu, D. K. H. Cheung, H. C. T. Chiu, C. C. P. Cheung, and
A. C. H. Yu, “Design of a multi-channel pre-beamform data acquisition system for
an ultrasound research scanner”, Proc. IEEE Ultrason. Symp., pp. 1840-1843,
2009.

(a) Processing Frame Rate (b) Execution Time: Analytic Signal Conversion (c) Execution Time: Delay-and-Sum

Fig. 3. Performance results of our GPU-based beamformer as a function of imaging depth: (a) processing frame rate, shown for single- and dual-GPU setups; (b)
execution time of analytic signal conversion; (c) execution time of delay-and-sum. “Tesla” and “Fermi” respectively denote GTX-275 and GTX-470 GPUs.

1923 2010 IEEE International Ultrasonics Symposium Proceedings

