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Abstract— The Voronoi diagram is an important technique
for answering nearest-neighbor queries for spatial databases. In
this paper, we study how the Voronoi diagram can be used on
uncertain data, which are inherent in scientific and business
applications. In particular, we propose the Uncertain-Voronoi
Diagram (or UV-diagram in short). Conceptually, the data space is
divided into distinct “UV-partitions”, where each UV-partition P
is associated with a set S of objects; any point q located in P has
the set S as its nearest neighbor with non-zero probabilities. The
UV-diagram facilitates queries that inquire objects for having
non-zero chances of being the nearest neighbor of a given query
point. It also allows analysis of nearest neighbor information,
e.g., finding out how many objects are the nearest neighbors in
a given area.

However, a UV-diagram requires exponential construction and
storage costs. To tackle these problems, we devise an alternative
representation for UV-partitions, and develop an adaptive index
for the UV-diagram. This index can be constructed in polynomial
time. We examine how it can be extended to support other related
queries. We also perform extensive experiments to validate the
effectiveness of our approach.

I. INTRODUCTION

The Voronoi Diagram, primarily designed for evaluat-
ing nearest-neighbor queries over two-dimensional spatial
points [1], has raised plenty of research interest. This tech-
nique has been extended to handle different related prob-
lems, including database services in wireless broadcast en-
vironments [2], [3]; high-dimensional query evaluation [4];
continuous location-based services [5]–[7]; and virus spread
analysis among mobile devices [8]. Conceptually, the Voronoi
diagram partitions the data space into disjoint “Voronoi cells”,
so that all points in the same Voronoi cell have the same
nearest neighbor. The task of finding the nearest neighbor of
a query point is then reduced to a point query. Figure 1(a)
illustrates a Voronoi diagram of seven points. Since the query
point q is located in the Voronoi cell of O2, O2 is the nearest
neighbor of q.

Is it possible to use the Voronoi diagram to perform nearest-
neighbor search on objects whose values are imprecise? Data
values can be uncertain for a variety of reasons. Consider
a satellite image, which depicts geographical objects like
airports, vehicles, and people. Using machine learning and

Fig. 1. (a)Voronoi Diagram. (b) UV-Diagram.

human effort (e.g., community-based systems like Wikimapia),
the location of each object on the image can be obtained. Due
to the noisy transmission of satellite data, the quality of these
images can be affected, and we may not be able to obtain
very accurate locations. Moreover, if this location information
is released to the public (e.g, for research purposes), it may
need to be preprocessed for privacy purposes. In fact, recent
proposals like [9], [10] have suggested to represent a user’s
position as a larger region, in order to lower the likelihood
that a user is identified at a particular site. Uncertainty is
also inherent in biological data management. For example,
microscopy images have been actively used to analyze the
thickness of neuron layers in the retina, as well as the extent
of the area of a cell. Due to factors like image resolution and
measurement accuracy, it is hard to obtain exact values of the
objects of interest [11], [12]. For this kind of data, techniques
for evaluating range queries, nearest-neighbor queries, and
joins, have been developed. These queries return answers
with probabilistic guarantees, which reflect the confidence of
answers due to data uncertainty. For these applications, tools
that resemble the Voronoi diagram can be potentially useful.
Specifically, we would like to examine space-partitioning
techniques for performing a Probabilistic Nearest-Neighbor
Query (PNN). Given a query point q, a PNN returns the IDs
of objects with non-zero probabilities for being the closest
to q, as well as their probabilities. In the sequel, we denote
the objects returned by the PNN as answer objects, and their
probability values as qualification probabilities.
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An uncertainty model that has been commonly used is
to assume that an object Oi has an “uncertainty region”
and a probability distribution function (pdf). This means that
the precise position of Oi can only be located inside the
(closed) region, with a pdf that describes the distribution of
the object’s position within the region. The uncertainty region
can have any shape, and the pdf is arbitrary (e.g., it can be
a uniform distribution, Gaussian, or a histogram). Here we
assume that Oi has a two-dimensional circular uncertainty
region. However, our solution can be extended to handle non-
circular-shaped regions.

Our goals are to investigate how such a diagram should be
defined to support nearest-neighbor query execution. Specif-
ically, we propose the Uncertain-Voronoi diagram (or UV-
diagram), where the nearest-neighbor information of every
point in the data space is recorded, based on the uncertain
objects involved. The UV-diagram provides a basis for study-
ing solutions that used the Voronoi diagram for point data. It
could be interesting, for instance, to extend the solution of [2]
to support uncertain data in broadcasting services. Figure 1(b)
illustrates an example of the UV-diagram of seven uncertain
objects, where the space is divided into disjoint regions called
UV-partitions. Each UV-partition P is associated with a set S
of one or more objects. For any point q located inside P , S
is the set of answer objects of q (i.e., each object in S has
a non-zero probability for being the nearest neighbor of q).
The highlighted regions contain points that have two or more
nearest neighbor objects. As an example, since q1 is inside
the dashed region, O4 has a non-zero probability for being the
nearest neighbor of q1; on the other hand, q2 is located inside
the dotted region, and O6 and O7 are the answer objects for
the PNN with q2 as the query point. Observe that the Voronoi
diagram, which indexes on spatial points, is a special case of
the UV-diagram, since a point can be viewed as an uncertainty
region with a zero radius. Figure 1 compares the two diagrams.

Besides answering nearest-neighbor queries, the Voronoi di-
agram is useful for doing data analysis or observing interesting
patterns of nearest-neighbor information. In [8], for example,
the Voronoi diagram is used to investigate the spreading
pattern of bluetooth viruses among mobile users. A UV-
diagram can also provide valuable information about these
“nearest-neighbor patterns”. For instance, in Figure 1(b), if the
dashed region is large, then O4 has high chance to be placed
in different clusters, assuming a nearest-neighbor clustering
algorithm is used. Another interesting query is: given a region
R, display all UV-partitions that intersect with R, as well as
the density of objects that can be the nearest neighbor in each
UV-partition. Through the UV-diagram, a user can visualize
or extract patterns about the nearest-neighbor information.

Drawback of existing solutions. As far as we know, the
only indexing method available for nearest-neighbor search
over uncertain data is to use an index like the R-tree and the
grid. R-tree is a disk-based structure that uses the Minimum-
Bounding Rectangles (MBRs in short) to cluster the un-
certainty regions of the objects, and organizes MBRs in a
hierarchical manner [13]. To evaluate PNN using the R-

tree, a branch-and-prune strategy has been proposed in [14],
where MBRs that may contain answer objects are traversed.
However, this involves a lot of overhead in reading index
nodes and leaf pages [14], [15]. Similar issues also occur with
grids [16].However, retrieving answer objects from the UV-
diagram is essentially a point query search: given a point q,
find the objects associated with the UV-partition that contains
q. Hence, a UV-diagram can support more efficient PNN
search. It is also not clear how an R-tree or grid over uncer-
tain objects can provide pattern analysis of nearest-neighbor
information (e.g., displaying the extent of a UV-partition).

Challenges of constructing UV-diagram. It is not
trivial to generate a UV-diagram, since this involves producing
space partitions based on uncertainty regions, which may
not be points. Unfortunately, efficient computational geome-
try methods for generating the Voronoi diagram (e.g., line-
sweeping [17]) cannot be readily used for creating a UV-
diagram, since these methods are primarily designed for spatial
points, rather than uncertainty regions. Figure 2 depicts the
space partition based on three uncertainty regions represented
as circles. Each UV-partition (named Ri, where i = 1, . . . , 7)
is irregular in shape and contains different answer objects,
listed on the side of the figure. In general, given a set of
uncertain regions, an exponential number of UV-partitions can
be created. For example, Figure 2 shows that for three objects,
there are seven UV-partitions, each of which contains one of
23 − 1 = 7 combinations of the three objects. To make the
problem worse, the number of edges of each UV-partitioncan
also be exponentially large! This makes it computationally in-
feasible to generate and store these partitions. It is also difficult
to find out which of these irregular UV-partitions contain a
given query point. Indeed, our experimental results show that a
brute-force approach of computing and indexing UV-partitions
over 50k objects require about 97 hours. Therefore, a scalable
method for constructing a UV-diagram is highly desirable.

Fig. 2. A UV-Diagram for 3 uncertain objects.

Our solution. In order to avoid computing UV-partitions
directly, we have developed an alternative representation of
UV-partitions. Particularly, we propose the novel concept of
the UV-cell. A UV-cell of an uncertain object Oi is essentially
a region, such that a query point inside Oi’s UV-cell has Oi

as an answer object. Figure 2 illustrates the UV-cells for O1,
O2, and O3. The boundary of each UV-cell is labeled with
the ID of the object. For example, the UV-cell of O2 is a
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region enclosed by solid-line segments. The intersection of
one or more UV-cells constitutes a UV-partition. For instance,
the UV-cells of both O1 and O3 intersect at partitions R5 and
R7. This means when q is located at any of these partitions,
both O1 and O3 are the answer objects. Notice that R7 is
intersected by O2’s UV-cell, and hence O2 is also associated
with R7. Hence, a UV-diagram can be considered as the union
of all objects’ UV-cells. By finding the UV-cells that contain
q, objects with non-zero probabilities can be retrieved.

Although a UV-cell is still expensive to compute, we show
how to represent a UV-cell as a set of “candidate reference
objects”, or cr-objects in short. Conceptually, cr-objects are
those that define the shape of a UV-cell. These objects can be
efficiently obtained. More importantly, by using cr-objects, we
devise a polynomial-time method for constructing an index for
the UV-partitions. We have adopted an adaptive-grid indexing
scheme, which has the advantage of adapting to different
distributions of uncertain objects’ positions. We will give detail
about how this index can be created. Our experimental results
show that for both synthetic and real dataset, this index can
be constructed in a much shorter time. We also demonstrate
how to use this index to support PNN and nearest-neighbor
pattern queries.

The rest of the paper is as follows. Section II summarizes
related work. In Section III we present basic concepts of the
UV-diagram. We explain how to represent UV-cell efficiently
in Section IV, and discuss an adaptive index based on the
UV-diagram in Section V. We present experimental results in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Data Uncertainty Management. Recently, researchers
have proposed to consider uncertainty as a “first-class citizen”
in a DBMS [15], [18]–[20]. Two models can be used to
represent uncertain data: tuple- and attribute- uncertainty.
For tuple-uncertainty, each database tuple has a probability
of being correct [20]. Here we assume attribute-uncertainty,
which represents an attribute as a range of possible values
and a probability distribution function (pdf) bounded in the
range [18]. Common queries for attribute uncertainty include
range queries [21], k-nearest-neighbors [11], skylines [22],
[23] and top-k queries [24].

A few works have been proposed to evaluate PNN queries
over attribute uncertainty. In [14], numerical integration tech-
niques have been presented. Probabilistic verifiers, described
in [15], can generate answer objects’ probability bounds
without performing expensive integration operations. Another
way to compute answer probabilities is based on sampling
[25]. Here we focus on the efficient retrieval of answer objects.
An R-tree-based solution has been proposed in [14], which
uses a branch-and-prune strategy to look for nearest neighbors.
This solution can involve multiple traversals over the R-tree,
resulting in a high I/O cost. With the use of the UV-diagram,
we show how answer objects can be retrieved more efficiently.

Other types of nearest-neighbor queries, like the “group
nearest-neighbors” [26], “reverse-nearest-neighbors” [27],

[28], and “uncertain queries” [29], have also been proposed.
In these works, the R-tree was used to support object retreival.
An interesting direction is to study how to use the UV-diagram
in these solutions.

The Voronoi diagram is an important technique for an-
swering nearest-neighbor queries over spatial points [1]. It has
been extended to support other applications (e.g., [2]–[6]). It
also facilitates the analysis of spreading patterns of mobile
viruses [8]. In [30], the k-th order Voronoi diagram is used to
evaluate a k-NN query. The Voronoi diagram has also been
defined for boundaries of circular objects in [31]. However,
these objects are not uncertain, and the method of [31] cannot
be used to answer PNN queries.

Few works have studied the application of the Voronoi
diagram on uncertain data. [29] consider the “uncertain” near-
est neighbor query (UNN) over spatial points. Different from
PNN, the query is an uncertain region, not a query point. To
evaluate a UNN, the authors propose to use a Voronoi diagram
over 2D points. The portions of the Voronoi cells that overlap
with the query’s uncertainty region are then used to compute
answer probabilities. [32] consider the clustering of uncertain
attribute data, where a Voronoi diagram is constructed for
centroid points. Notice that [29] and [32] do not construct a
Voronoi diagram for uncertain data. On the other hand, the UV-
diagram is a Voronoi diagram tailored for attribute uncertainty.

In [33], [34], the Voronoi diagram was modified to identify
an imprecise object which is surely the nearest object of a
query point q. However, the UV-diagram returns object(s) that
may have chance to be the nearest neighbor of q, and can
be used to answer probabilistic nearest-neighbor queries. We
also study a database index for the UV-diagram, which has
not been examined in these two works.

III. THE UV-DIAGRAM

As mentioned in Section I, we can use a “UV-cell” to derive
a UV-diagram. Section III-A presents the definition of a UV-
cell. We then study a simple method for constructing a UV-cell
in Section III-B. The mathematical formulation of a UV-cell
is described in Section III-C.

A. The UV-cell

As discussed before, a UV-cell of an object is essentially a
region where the object has non-zero chance to be the nearest
neighbor of any query point located inside it. Formally, let
O1, O2, . . . , On be the IDs of a set O of uncertain objects,
and D be a two-dimensional space that contains these objects.
Notice that D can have any shape in general; for the sake of
discussions, we assume that D is a square.

Definition 1: A UV-cell of Oi, denoted by Ui, is a region
in D such that Oi has a non-zero probability to be the nearest
neighbor (NN) of a point q iff q is located in Ui.

Hence, Oi cannot be q’s nearest neighbor if q is outside Ui.
The UV-cell can be used to recover the UV-partitions (i.e.,
disjoint regions of a UV-diagram). In fact, a UV-partition that
contains q is the intersection of all UV-cells that contain q.
This is because the objects associated with these UV-cells have
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non-zero qualification probabilities. Thus, given the UV-cells
of all objects, we can use them to find out which object(s)
is/are the nearest neighbor of q with non-zero probabilities.

Notice that if there is at least one uncertain object in domain
D, any point in D must be covered by at least one UV-cell.
In particular, if Oi is the only object in domain D, then its
UV-cell is exactly D.
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Fig. 3. The UV-edge.

We now study the relationship between a query point and
UV-cells. Let p be a point in D, and let distmin(Oi, p) and
distmax(Oi, p) be the minimum and the maximum distances
of object Oi from p respectively. Figure 3 illustrates two
uncertain objects, Oi and Oj . For any point p on the solid
line shown, we require the following property to hold:

distmin(Oi, p) = distmax(Oj , p) (1)

We call this solid line the “UV-edge of Oi with respect to
Oj”, denoted by Ei(j). A special property of this edge is that
any point p at the region on the side of Ei(j) closer to Oj has
its maximum distance from Oj , i.e., distmax(Oj , p), shorter
than its minimum distance from Oi, i.e., distmin(Oi, p). On
the other hand, if p is on the opposite side of Ei(j), then
distmax(Oj , p) ≥ distmin(Oi, p).

The UV-edge allows us to decide whether an object is
an answer object (i.e., an object with non-zero qualification
probabilities). In Figure 3, q0 is on the right of Ei(j), which
is also closer to Oj than Oi. Thus, distmax(Oj , q0) <
distmin(Oi, q0). In other words, Oj is always closer to q0

than Oi, and Oi has no chance to be the nearest neighbor
of q0. As another example, q1 is on the left of Ei(j).
Since distmin(Oi, q1) ≤ distmax(Oj , q1), Oi has a non-zero
qualification probability. Hence, given Ei(j), if the query point
is on the right of Ei(j), Oi can be pruned.

B. Constructing a UV-cell

We now present a simple method of constructing a UV-cell.
Let us define the following:

Definition 2: A possible region of object Oi, denoted by
Pi, is an area that completely covers the UV-cell of Oi.
An example of an object’s possible region is the domain D,
since D must cover any UV-cell.

Definition 3: The outside region of UV-edge Ei(j), de-
noted by Xi(j), is the region on one side of Ei(j) such that
for any point q ∈ Xi(j), Oj is always closer to q than Oi.

In Figure 3, the outside region of the UV-edge Ei(j) is the
area on the right of the solid line. Notice that since q0 is in
the outside region of Ei(j), Oj is closer to q0 than Oi, and
thus Oi cannot be q0’s nearest neighbor.

Algorithm 1 UV-cell Generation
Input: Uncertain objects O = {O1, O2, . . . , On}
Output: U1, U2, . . . , Un

1: for each Oi ∈ O do
2: Let Pi ← D;
3: for each Oj ∈ O ∧ j �= i do
4: Ei(j)← UV-edge of Oi w.r.t. Oj ;
5: Xi(j)← outside region of Ei(j);
6: Pi ← Pi −Xi(j);
7: end for
8: Ui ← Pi;
9: end for

10: return U1, U2, . . . , Un

Given an object Oi, if we know all the outside regions
Xi(j) (where j = 1, . . . , n ∧ j �= i), then Oi’s UV-cell
can be constructed by excluding all these regions from D.
Algorithm 1 illustrates the basic method for constructing UV-
cell for n objects. The possible region of each object Oi is
first initialized as the whole space (Step 2). Then, for each Oj ,
we compute the UV-edge of Oi and its corresponding outside
region (Steps 4 and 5). The possible region, which contains all
the points that may have Oi as one of their nearest neighbors,
is then “reduced” by the outside region that overlaps with it
(Step 6). The UV-cell of Oi is then assigned to be the final
possible region (Step 8).

The order of selecting the object for refining Oi’s possible
region (Steps 4-6) does not affect the correctness of the algo-
rithm. This is because the UV-cell is produced by “shrinking”
the possible regions by using the outside regions of other
objects. Moreover, as we will see, not all objects are useful
in shaping the UV-cell. Once all the UV-cells are generated,
then they can be used to answer PNN queries. Table I shows
the symbols used in this paper.

Notation Meaning
Objects and query

D Domain space (a square)
O A set of uncertain objects (O1, O2, . . . , On)

(ci, ri) Center and radius of Oi

q Query point of a PNN
UV-diagram

Cir(c, r) A circle centered at c with radius r
dist(q, ci) Euclidean distance between q and ci

distmin(q, Oi) min. distance of Oi from q
distmax(q, Oi) max. distance of Oi from q

Ui UV-cell of Oi

Pi Possible region of Oi

Ei(j) UV-edge of Oi w.r.t. Oj

Xi(j) Outside region of Oi w.r.t. Oj

Fi r-objects of Oi, where Fi ⊆ O
Ci cr-objects of Oi, where Ci ⊆ O
M max. no. of non-leaf nodes
Tθ split threshold

TABLE I
NOTATIONS AND MEANINGS.
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C. The Shape of a UV-cell

Let us assume that the uncertainty region of Oi is a circle,
with center ci and radius ri. (Later we discuss how other
shapes can be supported.) We only present the general case
(ri > 0); the special case (i.e., ri = 0) is discussed in our
report [35]. For any point d ∈ D, we observe from Figure 3
that:

distmin(Oi, q) =

{
dist(q, ci)− ri q /∈ Cir(ci, ri)
0 otherwise

(2)

distmax(Oj , q) = dist(q, cj) + rj (3)

where Cir(ci, ri) denotes a circle with center ci with radius
ri. Since ri > 0, distmax(Oj , q) must also be positive. Thus,
by substituting Equations 2 and 3 into Equation 1, we have:

dist(q, ci)− dist(q, cj) = ri + rj (4)

Let the coordinates of ci and cj be (xi, yi) and (xj , yj). Let
fx = 1

2 (xi + xj) and fy = 1
2 (yi + yj). Let cosθ =

(xj−xi)
dist(ci,cj)

and sinθ =
(yj−yi)

dist(ci,cj)
. Then, Equation 4 becomes:

x2
θ

a2
− y2

θ

b2
= 1 (5)

where

• a =
ri+rj

2 , c =
dist(ci,cj)

2 , and b =
√

c2 − a2;
• xθ = (x− fx) cos θ + (y − fy) sin θ;
• yθ = (fx − x) sin θ + (y − fy) cos θ.

Essentially, Equation 5 is a hyperbolic equation, with ci and
cj as the foci, rotated by θ in an anti-clockwise sense [36].
Figure 3 illustrates that the UV-edge of Oi w.r.t. Oj (the solid
line) is a hyperbola.

Equation 5 shows that a UV-cell is composed of the intersec-
tions of one or more UV-edges, which are hyperbolas. Since
a hyperbola is a conic curve, an UV-edge must be concave in
shape. In Figure 2, apart from the edges of the domain space,
the UV-cells of the three objects have concave edges. Note
that Equation 5 has two curves, which represent the UV-edges
for each pair of objects involved. For example, in Figure 3,
the solid line is the UV-edge of Oi w.r.t. Oj , and the dotted
line is the UV-edge of Oj w.r.t. Oi.

If two objects overlap, then dist(ci, cj) < ri + rj , and in
Equation 5, b is not real. Physically, this means Ei(j) cannot
be found, and we can treat Xi(j) as a zero-area region.

Let us revisit Algorithm 1. Step 4 is done using Equation 5.
Step 5 is performed by observing that the outside region of
a UV-edge must be convex in shape. To perform Step 6 (i.e.,
cutting the possible region by an outside region), we compute
the intersections of hyperbola equations by using linear algebra
techniques [36], which are detailed in our report [35].

Non-circular uncertainty regions. Algorithm 1 can
be extended to support non-circular uncertainty regions. In
particular, we convert the (non-circular) uncertainty region to
a circle that minimally contains it. With a larger (circular)
uncertainty region, the object has more chance to be the
nearest neighbor of any given point, thereby increasing the

UV-cell size. Then Algorithm 1 can be used to construct
an approximate UV-diagram for these uncertainty regions. A
correctness proof of this conversion can be found in [35].

Complexity. The problem of Algorithm 1 is that it is very
costly. For each object, its UV-edge with respect to other
objects is used to refine its possible region (Step 6). This
requires computing the intersections of all edges of the current
possible region (Pi) with a new UV-edge Ei(j) from Oj . Note
that Ei(j), a hyperbolic curve, can create three new edges with
each concave edge of Pi. In the worst case, the number of
edges of Pi increases by three times whenever a new UV-
edge is considered in Step 6. As a result, the number of
edges of the UV-cell is O(3n) (the detailed proof is shown in
[35]). Moreover, computing intersections between hyperbolas
is complex. In fact, this needs 97 hours to create a UV-diagram
of 50K objects in our implementation. Let us investigate how
to tackle these problems.

IV. EFFICIENT UV-CELL GENERATION

Since generating a UV-cell is inefficient, our strategy is
to avoid computing it directly. Instead, we represent a UV-
cell as a set of cr-objects, which can be efficiently derived.
Section IV-A outlines the algorithm of yielding cr-objects. We
explain the preparation phase of this algorithm in Sections IV-
B, and two techniques for finding these objects quickly, in
Sections IV-C and IV-D.

A. r-Objects and cr-Objects

Recall from Algorithm 1 that the UV-cell of an object Oi,
i.e., Ui, is the result of repeatedly subtracting the outside
region of other objects (i.e., Xi(j)) from its possible region,
Pi. In fact, not all outside regions are useful for refining Pi.
In particular, if the UV-edge of Oi corresponding to Oj , i.e.,
Ei(j), does not intersect with Pi, then Pi cannot be shrinked
by Xi(j). We call an object Oj a reference object (or r-object)
of Oi, if Oj defines an edge of Oi’s UV-cell. We also denote
Fi ⊆ O to be the set of r-objects of Oi. The set Fi contains
objects whose outside regions are responsible for defining the
UV-cell of Oi. In Figure 2, for example, the set of r-objects
of O3, i.e., F3, is to {O1, O2}.

Given that the r-objects for each object is known, our
solution (to be shown in Section V) can use r-objects to
develop an alternative representation of the UV-diagram. This
solution is much cheaper than Algorithm 1, which requires
exact UV-cells to be computed. However, finding Fi itself is
difficult, because we do not know the UV-cell of Oi. Our
strategy is to find a small set Ci of objects, where Fi ⊆ Ci.
We call Ci the candidate reference objects (or cr-objects in
short). We next show how Ci can be derived without acquiring
the exact UV-cell of Oi. In Section V, we study an indexing
solution based on cr-objects.

Algorithm 2 outlines the three steps required for deriving the
cr-objects for Oi. Step 1 (initPossibleRegion) creates
a possible region Pi based on a small number of objects. In
Step 2, the “index level” pruning (or indexPrune) yields a
set I of objects that may contribute edges to the UV-cell. Step
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3 applies “computational level” pruning (or compPrune) on
I , and produces Ci. Here we assume that an R-tree index
has been built on the uncertain objects’ uncertainty regions.
Each object’s information (e.g., uncertainty region and pdf),
is stored in the disk.

Algorithm 2 Deriving cr-objects
Input: Uncertain object Oi

Output: cr-object Ci

1: Pi ← initPossibleRegion(Oi, O − {Oi})
2: (Pi, I)← indexPrune(Pi, O)
3: Ci ← compPrune(Pi, I)

B. Step 1: Generating a Possible Region

In Step 1 of Algorithm 2), we retrieve a small number of
objects, called seeds, from the set O−{Oi}. These seeds are
used to generate an “initial” possible region, using a routine
similar to Steps 3 to 7 of Algorithm 1. This region is used by
other pruning methods to produce cr-objects.

Seeds have to be selected with care. If seeds are randomly
selected, a big initial region can be produced. This region
may be intersected by many outside regions, resulting in
poor pruning efficiency. To produce small regions, we issue
a k-Nearest-Neighbor Query (k-NN) on the R-tree, using the
center ci of Oi’s uncertainty region as the query point. The k
objects, whose uncertainty regions’ minimum distances from
ci are the shortest, are obtained. We then select ks out of k
objects to be the seeds. This is done by dividing the domain
D into ks sectors centered at ci. For each partition, the object
closest to ci is assigned as a seed.

The above method does not guarantee that all ks seeds can
be found (e.g., no seeds can be found if a sector is empty).
Even if this happens, however, we can still obtain an initial
possible region without affecting the latter steps. This region
may be larger though. In our experiments, ks = 8, and in most
cases all seeds can be found. For each object, evaluating a k-
NN query requires O(n) times, selecting seeds costs O(k)
times, and constructing an initial region needs O(1) times.
Hence, the cost of this step is O(n + k).

C. Step 2: Index Level Pruning

Once the possible region has been initialized, we perform
I-pruning (Step 2 of Algorithm 2), in order to remove ob-
jects that cannot constitute an UV-edge to the UV-cell. To
understand this step, let us consider an object Oi, its possible
region Pi, and another object Oj , which has not yet been
considered in refining Pi. Our goal is to establish the necessary
and sufficient condition(s) for Oj to have effect on the shape
of Pi.

Lemma 1: Pi = Pi −Xi(j) if and only if for every point
p on the boundary of Pi, distmax(p, Oj) > distmin(p, Oi).

Essentially, if we want to examine whether Oj has any effect
on Pi, it suffices to consider the points on Pi’s boundary,
instead of all points in Pi. Its proof is simple and can be
found in our report [35]. The following lemma forms the basis
of I-pruning.
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Fig. 4. Our pruning methods.

Lemma 2: Given an object Oi with center ci and radius ri,
let d be the maximum distance of Pi from ci. Let Cout be a
circle, with center ci and radius 2d − ri. For another object
Oj , if cj /∈ Cout, then Pi = Pi −Xi(j).

Proof: Denote Cin be a circle with center ci and radius
d. Figure 4(a) illustrates Oi, its possible region Pi (in solid
lines), Cin and Cout. Let us suppose on the contrary that Pi

is not equal to Pi−Xi(j), i.e., Pi can be reshaped by the UV-
edge of Oj . Then, using Lemma 1, there must exist a point p
on the boundary of Pi such that:

distmax(p, Oj) ≤ distmin(p, Oi) (6)

Using Equations 2 and 3, we have:

dist(p, cj) + rj ≤ dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) + rj ≤ 2dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) ≤ 2dist(p, ci)− ri

⇒ dist(ci, cj) ≤ 2dist(p, ci)− ri (7)

since dist(ci, cj) ≤ dist(p, cj)+dist(p, ci) due to the triangu-
lar inequality. Now, dist(p, ci) ≤ d, so Equation 7 becomes:

dist(ci, cj) ≤ 2d− ri (8)

This implies that cj is in the circle Cout, contradicting the
assumption of Lemma 2. Hence, this lemma is correct.

The I-pruning method uses Lemma 2 by issuing a circular
range query, centered at ci with radius 2d− ri, on the dataset.
This operation can be easily implemented by using the R-tree
created for the uncertain objects. The range query first uses the
R-tree to filter all objects that do not overlap with the range.
For the remaining objects, they are removed if their centers
are beyond the circular range. Hence, in this phase, a cost of
O(n) is needed for each object.

D. Step 3: Computational Level Pruning

Next, we discuss a simple method, based on distance
comparison, for checking whether object Oj can affect the
possible region of object Oi. We call this method C-pruning
(Step 3 of Algorithm 2). Lemma 3, discussed below, serves as
the foundation of C-pruning.
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Lemma 3: Given an uncertain object Oi(ci, ri) and Pi’s
convex hull CH(Pi), let v1, v2, . . . , vn be CH(Pi)’s ver-
tex. If another object Oj’s center cj is not in any of
{Cir(vm, dist(vm, ci))}n

m=1, then Pi = Pi −Xi(j).
Proof: First, the convex hull CH(Pi), which completely

contains Pi, must also be Oi’s possible region. For every point
p on CH(Pi)’s boundary, suppose cj is located outside the
circle Cir(p, dist(p, ci)). Then we have:

dist(p, cj) > dist(p, ci)

⇒ dist(p, cj) + rj > dist(p, ci)− ri

⇒ distmax(p, Oj) > distmin(p, Oi) (9)

Second, Lemma 1 states that if distmax(p, Oj) >
distmin(p, Oi), then CH(Pi) = CH(Pi)−Xi(j). Therefore,
if cj is outside Cir(p, dist(p, ci)) for every p on CH(Pi)’s
boundary, Oj can be safely pruned.

For convenience, let Cir(p, dist(p, ci)) be a d-bound
(where d = dist(p, ci)). We also define a set S of d-bounds
for every point p in Ui. We now show that instead of checking
all the d-bounds in S, it is only necessary to check those d-
bounds constructed for the vertices of CH(Pi). Specifically,
the d-bounds of the vertices must contain all other d-bounds
of all points on the boundary of CH(Pi). To see this, let
dk be the distance of vertex vk from Oi’s center. We extend
each vertex vk by the distance dk to obtain a new vertex v′j
(black dot in Figure 4(b)). These new vertices are connected
to form a polygon. We use e1 and e2 to represent the d-bounds
Cir(v1, d1) and Cir(v2, d2), respectively.

We next show that, for any point v′ on CH(Pi)’s
edge v1v2, Cir(v′, dist(v′, ci)) ⊆ e1 ∪ e2. (We let e′ =
Cir(v′, dist(v′, ci))). We draw a line c1c

′
1, which is perpen-

dicular with v1v2 and v′1v
′
2, and intersects them at points c1

and c′1 respectively. As v1v2 is the perpendicular bisector of
cic

′
1, we see that cic

′
1 is the common chord of e1, e2 and e′.

Since e1 or e2 is bigger than e′, e′ is contained by e1 or e2.
Hence, to check whether Oj can refine Pi, we just need

to check the set of d-bounds S′ = {Cir(vm, dist(vm, ci))}
(where S′ ⊆ S). If cj is located outside all d-bounds in
S′, then CH(Pi) = CH(Pi) − Xi(j). Finally, since Pi is
completely covered by CH(Pi), Pi = Pi −Xi(j) must also
be true. This completes the proof.

Step 3 of Algorithm 2 uses Lemma 3 to prune unqualified
objects returned by I-pruning. This can be done efficiently,
because only the vertices of CH(Pi) are used. Moreover,
|CH(Pi)| is small, since the possible region is only derived
by eight seeds. The complexity of this phase is O(n).

We consider the objects that are not pruned away in this step
as cr-objects (i.e., Ci). The overall complexity of Algorithm 2,
for generating Ci’s of n objects, is O(n(n + k)). Here one
may consider to use Ci to generate the exact UV-cell of Oi.
However, our experiments showed since |Ci| may be large,
generating the UV-cell can still be costly. Next, we show how
to use Ci directly to construct an index for the UV-diagram.

V. THE UV-INDEX

We now present a index, called UV-index, based on the
UV-diagram. Designing the UV-index presents a few technical
challenges. The extremely large number of UV-partitions and
UV-edges make it infeasible to compute and store a UV-
partition. Moreover, the sizes and distributions of the UV-
partitions vary significantly (see Figures 1 and 2). Our index
solves these problems, and still yields a high query perfor-
mance. We examine the UV-index and PNN evaluation in
Section V-A. We then discuss the construction of the UV-
index in Section V-B. We study how to extend the UV-index
to support other queries in Section V-C.

A. An Adaptive Grid for UV-partitions

Fig. 5. UV-index: (a) Structure, (b) Overlap checking.

Index Structure. The UV-index adopts a framework
similar to a quad-tree [37], in order to index the irregular
and non-overlapping UV-partitions. Figure 5 (a) illustrates this
index. 1 Each non-leaf node, 16 bytes each, records a pointer to
each of its four child nodes, where the square region spanned
by each child node is one-fourth of that of its parent. The
region covered by the root node is the whole domain D. Each
leaf node stores all the objects whose UV-cells overlap with
the region defined for the node. To save space, a node’s region
is not stored, since we can easily derive the dimension of the
region based on the level of the node in the tree. Also, due to
approximation, a UV-cell that does not overlap with the leaf
node’s region may be included. However, a UV-cell that truely
overlaps with the region will not be excluded. For each leaf
node l, we store a linked list of disk pages, which contain
tuples < ID,MBC,pointer >, where:

• ID is the identity of object Oi whose UV-cell may overlap
with the region covered by l;

• MBC is the circle that minimally bounds the uncertainty
region of Oi; and

• pointer stores the disk page address of the object.

We allocate a maximum of M non-leaf nodes that can be
stored in the main memory. The leaf nodes, which contain the
lists of pages, are stored in the disk.

1Our design adopts quad-tree rather than R-tree. While R-tree MBRs may
overlap, quad-tree grids do not. Issuing a point query on non-overlapping
UV-partitions in quad-tree is thus more convenient than R-tree.
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PNN processing with UV-index. We first use q as the
query point, and traverse the index, to find out the leaf l whose
region contains q. We then retrieve the disk pages associated
with l, which contains the ID and the MBC of the objects
stored in the pages. Since these objects may have their UV
cells overlap with the region of l, it is also possible that q is
located in their respective UV-cells. Let L be the set of objects
associated with l, and A be the answer objects of q. Our goal is
to retrieve A from L, where A ⊆ L. To do this, we perform a
verification method of [14]: based on the MBC’s of the objects
in L, find out the minimum of the maximum distances of these
objects from q. We call this distance dminmax. Any object with
the minimum distance larger than dminmax is removed, since
this object cannot have a non-zero qualification probability.
The remaining objects must be the answer objects, whose
probabilities are computed and returned to the user.

B. Index Construction

Recall that a UV-cell can be represented by a set of cr-
objects, Ci. Let us examine how this facilitates the construc-
tion of the UV-index.

Algorithm 3 InsertObj
Input: cr-objects Ci; Node g;

1: if (CheckOverlap(Ci, g.region) = true) then
2: if g is a non-leaf node then
3: for k = 1 to 4 do
4: InsertObj(Ci, hk);
5: end for
6: else
7: state← CheckSplit(Ci, g);
8: switch (state)
9: case NORMAL:

10: g.list.add(i, MBC(Oi), ptr(Oi));
11: break;
12: case OVERFLOW:
13: Allocate new page for g;
14: g.list.add(i, MBC(Oi), ptr(Oi));
15: break;
16: case SPLIT:
17: delete g.list;
18: for k = 1 to 4 do
19: Assign hk as child of g;
20: end for
21: nonleafnum ← nonleafnum + 1;
22: break;
23: end if
24: end if

Framework. Let g be the grid node being examined, and
hk (where k = 1, . . . , 4) be the four child nodes of g. We
define a variable nonleafnum, which indicates the number of
non-leaf nodes allocated to the index and has an initial value
of 1. Originally, the root of the grid is a leaf node, whose
region covered (root.region) is the domain D.

We use Algorithm 3 (InsertObj) to insert an object Oi

to the index. This algorithm, whose inputs are Ci and node g,
is a recursive procedure, where InsertObj(Ci, root) is
first invoked. In Step 1, CheckOverlap investigates if the
UV-cell represented by Ci overlaps with the region of grid g.

If so, we check whether g is a non-leaf node. If this is true,
InsertObj is called recursively (Steps 2-4). Otherwise, we
perform CheckSplit (Step 7), which returns:
1. NORMAL (Steps 9-11): g’s pages still have space left, and
so (i, MBCi, ptr(Oi)) is inserted to g’s page, where ptr(Oi)
is the pointer to Oi’s uncertainty region and pdf.
2. OVERFLOW (Steps 12-15): g’s pages are full, and a new
disk page has to be associated with g, before the information
about Oi is inserted to the new page.
3. SPLIT (Steps 16-22): g’s pages are full. The page list g
is removed. Then, g becomes the parent of four nodes (hk),
which have been previously generated by CheckSplit. The
region of each child node hk covers each of the four quarters
of the region defined for g. Also, nonleafnum is incremented
by a value of 1. Essentially, The information about the UV-
cells previously associated with g are now represented by its
child nodes, and g becomes a non-leaf node.

Decision on Splitting. When g’s pages are full, either
Oi’s information is inserted to a new page (OVERFLOW), or
split into four child nodes (SPLIT). Ideally, the region of the
leaf node that covers q is completely covered by a true UV-
partition. This guarantees that the set of objects returned by
the UV-index is the true answer objects. The UV-index, which
contains grids, is just an approximation of the UV-diagram.
Apparently, the more the splitting is performed, the closer the
index can resemble the actual UV-diagram, and yield better
query performance.

In fact, splitting is not always useful. Suppose that g.region
is associated with 100 UV-cells. Moreover, g.region is com-
pletely covered by each of these UV-cells. Then it is not
necessary to redistribute g into four child nodes. If splitting is
performed in this case, then the UV-cells associated with each
child node are exactly the same. Thus, more space is wasted
to store duplicated information about the UV-cells. This can
happen if the corresponding 100 objects of these UV-cells are
close to each other. Then, these UV-cells have similar shapes
and significant overlapping. To decide whether to split, we
define split fraction, θ, as follows:

θ =
mink=1,...,4 |hk.list|

|g.list| (10)

which is the minimum fraction of UV-cells in one of the child
nodes hk that are also in g (note that the UV-cells associated
with hk must be the subset of the ones attached to g). A
small θ means that the number of UV-cells overlapping with
hk.region is small compared with that of g. We now define a
splitting condition of a node:

Split if θ < Tθ

where Tθ ∈ [0, 1] is called the split threshold. A larger value
of Tθ implies a higher tendency of splitting.

Algorithm 4 (CheckSplit) implements these ideas. Steps
1-3 return NORMAL if the pages of g are not full. Steps 4-5
return OVERFLOW if the number of non-leaf nodes allocated
is higher than M . In Steps 7-16, we compute the value of θ,
by creating four nodes hk (Step 7), and checking the overlap
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of each UV-cell with hk.region (Steps 11-12). If the splitting
condition is satisfied (Step 17), then the SPLIT decision is
returned, where Algorithm 3 (Steps 18-19) will assign the
nodes hk to be the child nodes of g. Otherwise, the child
nodes are deleted and an OVERFLOW decision is made (Steps
20-21).

Algorithm 4 CheckSplit
Input: cr-objects Ci; node g;
Outputs: NORMAL, SPLIT, OVERFLOW;

1: if there is space on any disk page of g.list then
2: return NORMAL;
3: end if
4: if nonleafnum + 1 > M then
5: return OVERFLOW;
6: else
7: Create nodes hk (k = 1, . . . , 4) with hk.region equal to each

quarter of g.region;
8: Let A← Oi ∪ g.list;
9: for each Oj ∈ A do

10: for each hk do
11: if (CheckOverlap(Cj , hk .region)) = true then
12: hk .list.add(j, MBC(Oj), ptr(Oj));
13: end if
14: end for
15: end for
16: Let θ ← (mink=1,...,4 |hk.list|)/|g.list|;
17: if θ < Tθ then
18: return SPLIT;
19: else
20: delete hk, where k = 1, . . . , 4;
21: return OVERFLOW;
22: end if
23: end if

Algorithm 5 CheckOverlap
Input: cr-objects Ci; Region r;
Output: true if Ui and r overlap, false otherwise;

1: for each Ok ∈ Ci do
2: if r ⊆ Xi(k) then // Use 4-point testing
3: return false;
4: end if
5: end for
6: return true;

Overlap Checking. Algorithm 5 tests if the UV-cell of an
object Oi overlaps with a grid g’s region r. For every cr-
object Ok ∈ Ci, if any of their corresponding outside region
(Xi(k)) totally contains r, then CheckOverlap returns
false (Steps 1-3). Otherwise, true is returned (Step 6).
To prove the correctness we use the following lemma:

Lemma 4: If region r is totally covered by Xi(k), where
Ok ∈ Ci, then r must not overlap with the UV-cell Ui.

Proof: We want to show that if ∃Ok , such that r ⊆
Xi(k), then r ∩ Ui = φ. Suppose we have such an object
Ok. Now, let us denote Xi(j) to be D − Xi(j). Then, Ui

is essentially the intersection of all the regions Xi(j), for all
objects in O, i.e.,

Ui = ∩|O|
j=1∧j �=iXi(j) (11)

Moreover, since r ⊆ Xi(k), we have

r ∩Xi(k) = φ

⇒ (r ∩Xi(k)) ∩|O|
j=1∧j �=i∧j �=k Xi(j) = φ

⇒ r ∩ (Xi(k) ∩|O|
j=1∧j �=i∧j �=k Xi(j)) = φ

⇒ r ∩ Ui = φ

from Equation 11. Hence, the lemma is correct.
To check whether a region r is in the outside region of

Xi(j) (Step 2), it is not necessary to generate and test with
the UV-edge Ei(j). Instead, we can check this efficiently by
using a 4-point test. To understand this method, observe that
r is a square, and the UV-edge of Oi w.r.t. Oj is concave
in shape. If all its four corner points are confirmed to be in
Xi(j), then we can conclude that r ⊆ Xi(j). For example,
Figure 5(b) shows that the region of g1 must not overlap with
Ui, since all the four corner of g are located on the outside
region of one of the UV-edges. Moreover, checking whether a
point is in Xi(j) is easy, because we can simply check if the
point’s minimum distance from Oi is larger than its maximum
distance from Oj . Hence, we use the four-point test in Step 2.

Notice that Algorithm 5 may incorrectly judge that Ui

overlaps with r. Figure 5(b) shows that Ui does not overlap
with the region of grid g2. However, some corners of g2.region
are not on the outside region of two of the UV-edges of
Ui. If this is true for all UV-edges of Ui, then Ui would
be decided to be associated with g2! The consequence is
that, during query evaluation, Oi will be retrieved from g2.
This increases the query evaluation time since Oi is not in
g2. However, query accuracy is not affected. In fact, our
experimental results show that |Ci| is small with effective
pruning, and the scenario in Figure 5(b) is rare. Since checking
with Ci is much more efficient than testing with UV-cells, this
extra cost is worthwhile. Hence, we use Algorithm 5 to do
overlap checking.

Since |Ci| = O(n), Algorithm 5 needs O(n) times to
complete. Algorithm 4 uses O(n2) times, mainly for perform-
ing splitting and overlap checking with four child nodes. For
Algorithm 3, each UV-cell, in the worst case, needs to perform
overlap and split tests with M non-leaf nodes. Hence, its total
complexity is O(Mn2). The index has a maximum height of
M/4, if, the data distribution is very skewed, and splitting
always happen in one single quadrant. However, all non-leaf
nodes, 16-byte long, can all be put to the main memory. Thus
the tree height has little effect on query performance.

C. Nearest-Neighbor Pattern Analysis

The UV-diagram index can be easily used to retrieve distri-
bution and pattern information about nearest neighbors, which
is useful for statistical analysis (e.g., [8]). Let us describe these
“pattern-analysis” queries:

1. UV-cell retrieval. This returns the information about Oi’s
UV-cell (e.g., its area and extent). For example, suppose a user
wants to know the approximate area of the region where Oi

can be the nearest neighbor. Then, a query that returns the UV-
cell Ui of Oi can be useful. To process this query, we scan the
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leaf nodes that are associated Ui, and compute the total area
of the regions covered by these leaf nodes. The process can
be sped up by computing and storing these area information
offline. A similar procedure can also be used to support the
operation of displaying the approximate shape of the UV-cell
on the user’s screen.

2. UV-partition retrieval. Given a region R, retrieve all
UV-partitions inside R, and the approximate “density” of
each partition Ri (which is equal to the number of objects
associated with Ri, divided by the area of Ri). This allows
a user to examine the density distribution of the nearest
neighbors in his/her interested area. To support this query, we
append a counter to each leaf node, and record the number of
objects at that node offline. Then, a range query with range R
is issued over the adaptive grid; all regions of the leaf nodes
that overlap with R, and their density values, are returned.

VI. EXPERIMENTAL RESULTS

We now report the results on different datasets. Section VI-
A describes settings, and Section VI-B discusses the results.

A. Setup

We use Theodoridis et al’s data generator 2 to obtain 30k
objects, which are uniformly distributed in a 10k×10k space.
Each object has a circular uncertainty region with a diameter of
40 units, and a Gaussian uncertainty pdf. For each uncertainty
pdf, its mean is the center of the circle, and its variance is
the square of one sixth of the uncertainty region’s diameter.
We represent an uncertainty pdf as 20 histogram bars, where a
histogram bar records the probability that the object is in that
area. We also use three real datasets of geographical objects in
Germany3, namely utility, roads, and rrlines, with respective
sizes 17K, 30K, 36K. These objects are represented as circles
before indexing, and has the same uncertainty pdf information
as that of the synthetic data.

To compare with R-tree, we use a packed R*-tree [38] to
index uncertain objects. The R-tree uses 4k disk pages, and
has a fanout of 100. We keep all its non-leaf nodes in the
main memory. For the UV-index, each non-leaf node has four
4-byte pointers to its children. We also set M , the number of
non-leaf nodes in the main memory, to be 4000, and Tθ to be
1. In our experiments, the amount of memory occupied by the
R-tree is higher than that of the UV-index. The leaf nodes of
both indexes, as well as the uncertainty information about the
objects, are stored in the disk.

We examine the running time of 50 PNN queries, whose
query points are uniformly distributed in the domain. For
simplicity, we use the numerical integration method of [14] to
implement probability computation of answer objects. If faster
methods such as [15] are used, the fraction of time spent on
retrieving answer objects from the index will be higher, and
thus it would be important to optimize the index (which is the
focus of our work). All our programs were implemented in
C++ and tested on a Core2 Duo 2.66GHz PC.

2http://www.rtreeportal.org/software/SpatialDataGenerator.zip
3http://www.rtreeportal.org/

B. Results

1. Sensitivity Testing. We perform a sensitivity test on the
value of Tθ (the splitting threshold). Under a wide range of
Tθ, the indexes only have a slight difference. For very small
values of Tθ (e.g., 0.2), however, the adaptive grid tends not
to split, and degrades into long linked lists of pages. In our
experiments, we set Tθ to be 1.

2. Query Performance. We compare the PNN performance
of the UV-index and the R-tree on uncertain objects. Fig-
ure 6(a) shows the query running time (Tc) against synthetic
datasets, with sizes from 10K to 80K . The running time of
both queries increase, because with a larger dataset, potentially
more objects qualify as query answers, which increase the
time for index retrieval and probability computation. The UV-
diagram outperforms R-tree in all cases. For example, when
|O| = 60K , the UV-diagram needs about 50% of the time
needed by the R-tree.

To understand why our method performs better, let us
first consider the traversal time of the UV-index, which is
composed of the time costs for visiting non-leaf and leaf
nodes. Since its non-leaf traversal time takes little time in all
experiments (up to 3.9 μs), we only present the I/O overhead.
In Figure 6(b) we compare the I/O performance of the UV-
index and the R-tree. The UV-index requires significantly less
number of I/Os than the R-tree (e.g., when |O| = 70K , the
UV-index consumes about one-seventh of the I/Os needed by
the R-tree). When the R-tree is used to process a PNN query,
plenty of leaf nodes needed to be retrieved. For the UV-index,
we only need to look for the leaf node that contains the query
point. Since the number of disk pages for each leaf node is also
small, a high I/O performance can be attained. Also notice that
the number of I/Os for the R-tree increases with |O|, whereas
that of the UV-diagram is relatively stable.

Figure 6(c) shows the time components of Tq: (1) index
traversal; (2) retrieval of objects’ pdf; and (3) probability com-
putation. While object retrieval and probability computation
times are similar for both indexes, R-tree requires a much
higher index traversal time. This explains the difference in
Figure 6(a). In Figure 6(d) we can see that the query time of
both indexes increases with uncertainty region size, since the
larger the region, the more probable that the corresponding
object is a PNN answer. Again, due to the superiority of I/O
performance of the UV-diagram, it performs better than the
R-tree.

For real datasets, Table II shows that the UV-diagram
consistently attains a higher query performance than the R-
tree. Since the trends of other results are similar to those of
synthetic data, they are omitted here.

Dataset |O| Tq(UVD)(ms) Tq(R-tree)(ms) Tc(s) pc

utility 17K 89 141 784 89%
roads 30K 82 135 2207 88%
rrlines 36K 107 159 2723 86%

TABLE II
EXPERIMENT RESULT ON REAL DATASETS.
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diagram construction issues. Let us denote Basic as the method
which constructs a UV-cell using Algorithm 1, and then
indexes the UV-cells with an adaptive grid. An alternative is
to collect cr-objects through I-pruning and C-pruning (Algo-
rithm 2), compute UV-cells and obtain the r-objects, and then
index them with Algorithm 3. We call this second method
ICR(I- and C-pruning with Refinement). The third technique,
called IC, only uses cr-objects in Algorithm 3. We assume that
the R-tree for uncertain objects is available for use by these
methods. For generating initial possible regions (used in IC
and ICR), we set k to 300 for performing the k-NN search.
Then, the domain D is divided into eight 45o sectors to obtain
the seeds.

Figure 7(a) describes the development time (Tc) of a UV-
index for the three methods. Basic increases sharply with
the dataset size; handling a 50K dataset requires about 97
hours. This is because constructing a UV-cell requires an
exponential amount of time and numerous complex hyperbola
intersections. For IC and ICR, the use of I- and C-pruning
significantly reduces the number of objects examined. Their
effects are shown in Figure 7(b), where pc, the pruning ratio,
denotes the fraction of objects from O that has been filtered.

At |O|=40k, I-pruning and C-pruning achieve a pruning ratio
of 90.9% and 95.5% respectively. Hence, a large portion of
objects are removed before being considered for constructing
the UV-cell. Next, we focus on IC and ICR.

IC vs. ICR. As shown in Figure 7(c), IC performs much
better than ICR. For example, at |O| = 70K , the construction
time of IC is about 10% of that of ICR. To understand why, we
analyze their time components in Figures 7(d) and (e). Here we
do not show the initial possible region computation time, since
it is only about 0.5% of the I- and C-pruning time. Recall the
difference between the two methods is that ICR needs to find
out the exact r-objects (by constructing an exact UV-cell based
on the objects returned by pruning), while IC does not. For
ICR, Figure 7(d) shows the fraction of the construction time
spent on: (i) I- and C-pruning, (ii) generating r-objects, and
(iii) indexing UV-cells. For most datasets, ICR spends most
of the time to generate exact r-objects, which is very costly.
For IC, r-object is not produced (Figure 7(e)). Instead, the
cr-objects produced by the pruning methods are immediately
passed to Algorithm 3 for indexing. Although there are more
cr-objects than r-objects, the fact is that the indexing time does
not increase much.

3. UV-Diagram Analysis. Next, we examine the UV-
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In Figure 7(f), the construction time of ICR increases
sharply with the objects’ uncertainty region sizes. With larger
uncertainty regions, it is more likely that these regions overlap
with each other, making it harder to prune the objects, so that
more time is needed to generate r-objects. On the other hand,
IC is relatively insensitive to the change of uncertainty region
sizes. For real datasets, IC also achieves high pruning ratio
and low construction time (Table II).

We have also measured the query times between the indexes
created by IC and ICR. Their performance is almost identical,
with a difference of less than 0.01 I/Os. Hence, in other
experiments, we assume that IC is used.

Skewness. We next examine the effect of object positions’
distribution on the UV-index. Figure 7(g) shows the con-
struction time under different variances (σ) of the uncertainty
regions’ centers: Tc is higher when data is more skewed (i.e.,
with a smaller variance). In a dense area where uncertainty
regions have high degree of overlap, an object’s UV-cell is
likely small and associated with many r-objects. Thus Tc is
increased. In the most skewed dataset that we tested (σ =
1500), Tc is around an hour, which is still acceptable if the
index is constructed offline.

UV-Partition Query. Finally, we examine the efficiency
of our index for answering the UV-partition query. In Fig-
ure 7(h), the retrieval time of UV-partitions (Tq) increases with
the size of query range R, since more UV-partitions are loaded
with larger R. In these experiments, Tq is small.

VII. CONCLUSIONS

The UV-diagram is a variant of the Voronoi Diagram
designed for uncertain data. To tackle the complexity of
constructing and evaluating a UV-diagram, we introduce the
concept of UV-cells and cr-objects. We propose an adaptive
index for the UV-diagram, and develop efficient algorithms
for building it. As our experiments show, this index efficiently
supports PNNs and other UV-diagram-related queries.

We plan to extend various Voronoi-diagram-based solutions
to handle uncertain data. Also, it would be interesting to
study how the UV-diagram can be extended to support multi-
dimensional data and incremental updates. Currently, we are
investigating the use of the UV-diagram to support other
queries (e.g., reverse nearest-neighbor queries).
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