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Abstract

An approach to improve the reliability of query results 

based on error-prone sensors is to use redundant sensors. 

However, this approach is expensive; moreover, some 

sensors may malfunction and their readings need to be 

discarded. In this paper, we propose a statistical approach 

to decide which sensors to be used to answer a query. In 

particular, we propose to solve the problem with the aid of 

continuous probabilistic query (CPQ), which is originally 

used to manage uncertain data and is associated with a 

probabilistic guarantee on the query result. Based on the 

historical data values from the sensors, the query type, and 

the requirement on the query, we present methods to select 

an appropriate set of sensors and provide reliable answers 

for aggregate queries. Our algorithm is demonstrated in 

simulation experiments to provide accurate and robust 

query results. 

1. Introduction 
Recent advances in sensor technology have made it 

possible to develop low-cost sensors, so that large wireless 

sensor networks with thousands of sensors are well within 

the realm of reality, and these large sensor networks can 

support many new applications. 

One problem with sensor based monitoring is that the 

readings are noisy and error-prone [NN04]. A solution is to 

use multiple sensors to monitor the same region. However, 

this will increase the consumption of scarce network 

bandwidth. Also, since some sensors may not work 

properly, they may generate abnormal readings that skew 

the average value. 

In this paper, we focus on selecting the right set of 

sensors for multiple sensor aggregation in order to obtain 

data values that are precise enough to meet the probabilistic 

requirement of the queries. We partition the sensor network 

into regions and propose an approach to determine (1) the 

sampling period for each region adaptively; (2) the sample 

size and the set of sensors for multiple sensor aggregation 

within a region at a certain sampling time and (3) the set of 

regions to be used to obtain the query result while meeting 

the associated accuracy requirements. This paper is 

organized as follows. In Section 2 we discuss related works. 

Section 3 describes the wireless sensor model as well as the 

underlying sensor data and query models. In Section 4 we 

present our algorithms that solve the problems of sensor 

selection while satisfying the prescribed accuracy 

requirements for a continuous probabilistic query. The 

performance of our algorithms is studied using simulation 

experiments and results are discussed in Section 5. Section 

6 concludes the paper. 

2. Related Works 
Researchers have only started to consider the effect of 

data uncertainty in sensor networks recently. The issues of 

data uncertainty and probabilistic queries are studied 

extensively in [CKP03]. Unlike our paper which assumes a 

wireless sensor network environment, their system model is 

simple and assumes the host communicates directly with 

every sensor source, and their method of reducing 

uncertainty is by sampling hot items more frequently. Our 

approach, on the other hand, selects appropriate sensors to 

improve reliability in sensor readings. Also, unlike our 

paper, they do not study continuous queries, and do not 

allow users to specify probabilistic requirements, which can 

be seen as a quality guarantee on query results. 

The problem of selecting appropriate sensors in a 

wireless environment is usually framed in the context of 

improving accuracy in location tracking. In [EFP03] and 

[LRZ03], mutual information between the distribution of an 

object’s location and the predicted location observed by a 

sensor is used to compute the information gain due to the 

sensor. The sensor with the highest information gain is 

selected to reduce the uncertainty of the sensor reading. 

Another scheme, based on entropy-based selection 

heuristics, is claimed to be computationally more efficient 

than the above mutual-information-based methods 

[WYPE04]. In a previous paper [LCLC04], we proposed 

sensor selection algorithms for common types of 

continuous queries with data uncertainty requirements. 

While that work represents the first comprehensive work 
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on query-based sensor selection methods, it assumes the

regions’ values are stable and no experimental results are

included. In this paper, we assume the region’s value

changes continuously, made many refinements to our

previous work, and present simulation results to

demonstrate the effectiveness of our approach. 

3. System Model and Query Model 
In this section we briefly describe the underlying

system model and the query model. The wireless sensor

system model consists of a base station (BS) and a 

collection of` sensor nodes. It is assumed that the system

environment is divided into a number of regions, each of 

which consists of a node with high computational

capability, called coordinator node that manages nodes in

the same region. BS is responsible for communication

between the coordinator nodes and the users of the system

and it communicates with the coordinator nodes through a 

low bandwidth wireless network and may require the relay

of other sensor nodes and coordinator nodes. We assume

that BS knows the distribution and connections of the

coordinator nodes and what sensor data items are 

represented by each sensor node. Figure 1 illustrates the

overall system structure. 

Figure 1: CPQ Processing in the System

A continuous probabilistic query is submitted by users 

to the sensor network system for the purposes of

continuous monitoring and event detection. We can 

formally define a Continuous Probabilistic Query (CPQ) as 

a probabilistic query repeatedly executed over the time

interval [begin_time, end_time] on objects O1, O2… On.

The answers produced satisfy the CPQ with some

probability specified by users. A Continuous Probabilistic 

Sub-Query i, denoted as CPQi, is a sub-query of CPQ

executed during the interval {begin_time, end_time}.It

accesses item Oi in the list of objects specified by CPQ. It 

returns to CPQ a Gaussian distribution N (ui, i) of Oi.

In this paper, we concentrate on aggregate queries,

such as MIN / MAX aggregate queries which return the 

object that contains the minimum (maximum) value among

objects O1, O2… On with probability guaranteed to be larger

than a threshold value P.

When the base station receives a CPQ, it determines the

set of data items required by the CPQ according to the 

required regions of the query and which coordinator nodes 

are responsible for generating the required data items. The

base station then breaks down the CPQ into sub-queries

{CPQ1, CPQ2… CPQn}. Each sub-query CPQi is then sent

to the coordinator node, which is responsible for reading Oi

and generating a Gaussian distribution for the reading of Oi

to describe its distribution. Each coordinator sends its

results back to the base station, which then computes the

final result and sends it back to the user. Figure 1 illustrates

an example of a CPQ executing on objects O1 and O4 under 

our system model. The CPQ submitted by the user is 

broken down into two sub-queries, CPQ1 and CPQ4, which 

access regions O1 and O4 respectively. The results from

coordinators for O1 and O4 are sent to the Base Station,

which subsequently returns the result to the user.

4. Statistics-based Sensor Selection Scheme
Accessing more sensors can improve the reliability of

query results at the expense of an increased aggregation 

workload. Our goal is to meet the probabilistic requirement

of a continuous query using the minimum number of 

sensors for generating the value of a data item required by a

query. Specifically, what we want to solve is to determine

the sampling period for different regions and to determine 

the set of sensors to participate in sampling for

aggregation of the values at the time when a certain region

is sampled.

4.1 Computing a Region’s Initial Statistical 
Properties

In this step, for each region, we calculate its initial 

statistical properties including the expected value and 

estimated population variance. The population variance for 

each region is kept constant during the query period while 

the expected value will vary at different sampling time as 

the region’s value may change continuously, but it can be

evaluated similarly using the selected sensor set described

in section 4.5. 

For each region Ri required by a sub-query CPQi, the 

coordinator node identifies the set of sensors Si which are 

responsible for generating values for Ri. Then it sends out

data request messages to all these sensors. Each sensor

responds to the request message by returning its latest

sampled data value of Ri to the coordinator. The received

data values from each sensor are first buffered and the 

mean values are calculated by the coordinator until a pre-

determined waiting time has expired. If the variance of the

values from a sensor is higher than a pre-defined threshold,

it is assumed that the sensor is either currently located at a 

high-noise environment or it is currently in an abnormal

state. The sensor will be marked as abnormal and the

coordinator will not consider it for further processing.

Based on the variances of the values from all the 

sensors selected, i
P, the population variance for the region

Ri can be estimated as their average and will play an

important role in the following calculation of the maximum

CPQ

Result

Result

CPQ1

CPQ4

O4O3

Result

User

Base Station 

O1 O2
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allowed variance for different kinds of queries and the

sampling size in section 4.4 and 4.5 respectively.

4.2 Adaptive Sampling Period
Our system model assumes the value of the region

changes continuously. To obtain accurate results for a

continuous query, each region needs to be sampled

periodically. However the simplistic approach of using a

fixed sampling interval for each region can consume

excessive bandwidth if the sampling interval is too small

while accuracy could suffer if itl is too large. 

In this section, we propose sampling with an adaptive

sampling period. In this scheme, a region will only be

sampled when its value is predicted to affect the result of

the query. The key to change the sampling interval is to

increase the sampling period for the regions whose values

have little effect on the query result, and in this paper, we 

will focus on the scheme for the MAX and MIN queries.

Figure 2: Different significances in region sampling

Here we use the MAX query as an example to 

illustrate this idea. Figure 2 illustrates the different effect of

the regions’ values to the query result. The effect from

region O3 is larger than that of O2, which in turn is larger

than that of region O1. So the sampling period of O1 will be

larger than O2 while O3 should have the smallest sampling

interval to maintain the accuracy of the result. We now 

demonstrate how to calculate the sampling period for each 

region by first introducing the concept of Predicted

Sampling Time.

 The Predicted Sampling Time (PST) of a region is

the time when the value of that region will affect the result

of a query according to the predicted change rate in the 

regions’ value.

Assume the value of region Oi has a distribution

N( i, i) and the region with the largest value Omax has the

distribution N( MAX, MAX). The rates of change in the

values of these two regions are vi and vmax respectively. We

also assume when the difference of the two regions’ values

exceeds 3 ( MAX + i), the result of the query will be

affected. Then the predicted sampling time for region i can 

be calculated as: 

max max

max

(( 3 ( )),0)i i
i

i

Max
PST

v v

The reason why we select 3 ( MAX + i) as the threshold

is to ensure that the probability is less than 0.3% when one 

region’s value will be inside the 99.7% confidence interval 

of the other region’s value.

Given that the actual rate of change in a region’s value

may be different from the predicted one, setting the

sampling period to be the PST can easily produce an 

incorrect query result. So in the calculation we only use a 

fraction of the PST, which we call prediction factor (PF)
to reduce the effect of the prediction process. Its calculation 

for each region follows: 

1. Told = PSTlast – (Current Sampling Time – Last

Sampling Time).

2. PSTerror = (PSTnew - Told) / Told.

3. if (PSTerror > 0)     PF = PF + 

4. if (PSTerror < 0)     PF = PF - 

Figure 3: Calculation of the Prediction Factor

With the help of the PST and the Prediction Factor, we

can calculate the next sampling period for each region as

below, and SPmin and SPmax are the minimum sampling

period and the maximum sampling period respectively.
O1 O2 O3

min

max

0

0

0

i

i i i i

i

SP if PST

Sampling Period PST PF if PST

SP if PSTData Value

4.3 Region Selection 
Based on the adaptive sampling period decision

scheme, we predict roughly the potential regions which will

affect the query result and take part in the evaluation at

sampling time T. Intuitively; we can calculate the query

result using the information from all the regions in the

system. However, in order to reduce computational

overhead, it is possible to eliminate some regions from the

calculation because their impact on the query result is very 

small. In this section we illustrate this idea by showing how

to minimize the set of regions for MAX and MIN queries.

Assume there are N regions in the system and the

sampling distribution from each region is N(µi, i) (i =

1…N). Here we define µm = Max(µi) (i = 1…N) and X ~ 

N(µm, m). In this region selection step, we compare X with

all the other distributions to test, with a pre-determined

level of significance , whether the information for that 

region should be included into the calculation. Suppose the

distribution of the region for testing is Y ~ N(µi, i) (i =

1…N, i m) and the population variances for all the regions

are unknown but identical, and the sampling size of X and 

Y are n1 and n2 respectively.

Now we consider the hypotheses testing:

H0: 1– 2=0, H1: 1– 2 0 and we ntroducei

1 2

1 2

( )

1 1
w

X Y
T

S
n n

where 2 2
2 1 1 2 2

1 2 2
w

n S n S
S

n n

, 1

2 2

1

11

1
( )

n

i

i

S X
n

X
and 2

2 2

2

12

1
( )

n

i

i

S Y Y
n
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From statistics, we know that T ~ t(n1 + n2 -2) and given

the level of significance , , we get the rejection region

1 1 2 1 1 2

2 2

( , ( 2) ( 2), )W t n n t n n

If the result is inside the rejection region, we will eliminate

this region. By repeating this for all the regions we can

reduce the number of regions to be considered in the

calculation of the query result.

4.4 Deriving Maximum Allowed Variance 
The impact of errors in sampled data values on the

query result depends on the query type. In MAX / MIN

queries, the data being queried are aggregated from

multiple sensors from the same regions by the coordinator

nodes. Thus it is reasonable to assume that the data values

follow normal distributions with specific means and 

variances. Basically, the sub-query CPQi executed at each 

coordinator returns a normal distribution of its sensor 

reading to the base station. The rest of this section

describes how the maximum variance allowed for each 

region comes into play.

One important observation about MAX/MIN queries

is: as the variance of the sampled data values decreases, the 

maximum and minimum become more distinct. In the

example of two data values, the probability of O1 being the

maximum data object is:

dsdttfsfp
s

)()( 211

Where f1(s) and f2(t) are the probability density functions

for O1 and O2 respectively. It can be seen from Figure 4 

that the variance decreases with increases in p1. It is 

consistent with the fact that O1 is more likely to be the

maximum. For the case of multiple data values, suppose the 

size of the calculation set is N, the probability of Oi being

the maximum is:

1 1

{ } ( ( ) ( ) )
N N

s
MAX

i i j i j

j j i j j i

P P O O f s f t dt ds

where the probability density functions are: 

2

2

2

2

1
)( i

is

i

i esf  and 2

2

2

2

1
)( j

jt

j

j etf

Figure 4: MAX and MIN queries

The algorithm below finds the maximum allowed

variance for each region to satisfy the requirement that the 

probability of the region holding the maximum or

minimum value is larger than P.

1. Set req’s as P

i
for each region. 

2. If (Type is MAX) N

j = 1 j i

P = ( ( ) ( ) )
s

i jf s f t dt ds

else N

j = 1 j i

P = ( ( ) 1 ( ) )
s

i jf s f t dt ds

3. Find kmax, the index of the max
1 2( , ,..., )n

k

P

4. Adjust variance requirement of the kmax
th sensor:

max maxk k

5. Repeat 2 to 4 until P( 1, ,…, )  P%

6. Return 1, ,…, , as req’s

Figure 5: Algorithm for determining the MAV

Although this algorithm will be executed in the base 

station which is supposed as a powerful PC, one 

disadvantage is that there is a loop from step 2 to step 4.

The time to execute the steps in the loop depends on the

number of regions taking part in the calculation and the

step length . If the step length is large, the query

accuracy cannot be guaranteed, while if it is small, the 

process will consume a long time which is a vital 

disadvantage in a real time system. An important

observation about kmax is that it always lies in the regions

with top values, because only the regions with top values

will affect the query result greatly. It is possible to derive

an optimization algorithm such that all the variances req’s

are constants while just letting the top two regions’

variances be variables. In this way, with a suitable

optimization condition, we get the variances satisfying the

query condition efficiently. Suppose the regions with top

two values satisfy S1 ~ N(µ1, 1) and S2 ~ N(µ2, 2)

respectively. We define:
21

1

1
( )

2 2
1 2

21

1 1
( , ) ( ( ))

22

s
s

F e ds

1 2

1 ,

 ( , ) ( ( ) ( ) )
N

s
MAX

i i

j j i j k

jP F f s f t dt ds

Here we suppose

1 ,

( ( ) ( )
N s

i j

j j i j k

f s f t dt ds)
is a 

constant C (in fact, with the increase of 1 and 2. C will 

increase, but the increase will be small). Our goal is to get

the 1 and 2 when

Pi
MAX = F( 1, ) C = P 

where P is the accuracy requirement for the query.

Considering the condition that the sum of sensors to be

selected should be smallest, we need to minimize
2 2

1 2
1 2 1 2 2 2

1 2

( ) ( )
( , )

P P

s sO N N

and 1 2
1 2

1 2

( , ) 2
P P

O
 only when 1 2

2

1

P

P

Data Value

O2 O1
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Here Ns1 and Ns2 are the sampling size for region 1 and

region 2 respectively, and details about calculating the

sampling size can be found in section 4.5. 

With the simple approximations of (x) and the

relationship between 1 and 2, function F ( 1, ) is 

changed to a uni-variable function F ( ).

0.1 (4.4 ) 0 2.2

( ) 0.49 2.2 2.6

0.50 2.6

x x for x

x for

for x

x

With the condition Pi
MAX = F( 1, ) C, then we can 

use dichotomy method to get the 1 satisfying:

1

1

( )

( )

MAX

i

MAX

i

P F C

P F C

In this way, it will be more efficient to evaluate the

required variances because only parts of the regions will

take part in the evaluation and more importantly, we can 

get rid of the step 3 in the previous algorithm in which we

have to find the region whose impact to the query result is

the maximum one.

4.5 Determining Sample Size and the Set of
Sensors

In this step, based on the information of the variance

req transmitted from the base station, the coordinator node

in each region determines the sample size and the set of 

sensors to be sampled to meet the confidence requirement

of data being queried.

We first determine the sample size. Suppose the

sample size is ns and the approximate mean value

is
s

i

n

i

k

s

s
n

S
1

1
, where 1 ki n and ki kj for all i j. We

know that if all Ski follow an identical distribution N(µ, 2),

then S follows the normal distribution N(µ, 2/ns), where µ

is the expected value and is the region’s estimated

population variance calculated in section 4.1. To satisfy the

accuracy requirement, we need to choose an ns value

satisfying the constraint
sn req. So we set the sample

size as
22

reqsn .

Next we determine the set of sensors to be sampled.

For each sensor, we calculate the difference between the 

sensor data and the expected value for the region and set it

as the criteria for sorting the sensors in each region for

selection.

di = si - E(s)

We sort the sensors in ascending order of di. At each 

sampling time, with a certain variance req, the coordinator

will calculate the sampling size ns and select the top ns

sensors to sample.

Since the selected sensor could be in an error state

during the sampling period, so at each sampling time, when 

the coordinator collects all the possible sensor data with a 

small delay, it re-calculates di to see whether a sensor’s 

value exceeds the expectation a pre-fixed threshold, if the 

threshold is exceeded, we assume that the sensor is in error 

at the sampling time, and the coordinator will send a new

request information to other sensor candidates in the sorted

list and it will also re-sort the sensor list for the further use.

5. Performance Evaluation 

Parameter Baseline Value
Continuous query length 1000 sec 

Initial calculation period 100 sec 

Sensor sampling interval 5 sec 

Accuracy Requirement 95%

Variance Change Step ( ) 0.3

Number of regions 1 ~ 4 

No. of sensors in each region U [100,150] 

region value’s difference 2% ~ 10% 

Sensor error variance range 5% ~ 25% 

Table 1: Experiment Parameters

In this section we evaluate the performance of our 

scheme using a number of simulation experiments. We

compare our scheme with a baseline method where sensors

are selected randomly. In Figure 6, we demonstrate the

percentage of the sensors selected based on our algorithm.

For simplicity, we assume there are two regions in the

system in considering a MAX / MIN query and the actual

value for these two regions do not change. The model of

the sensor’s value at time t, St is defined as follows:

~ (0, )

t t

actual

t

t

actual

S S error

error N

S

t

St
actual is the region’s actual value at time t and errort

satisfy normal distribution N (0, ). is called the

sensor’s Error Variance Percentage which is the

percentage of the region’s actual value and decides the size

of the , in this experiment we suppose it satisfies

uniformly distributed U [0%, 15%]. It can be seen from

Figure 6 that the sensor selection percentage is sensitive to

the difference between the two regions’ value. The 

selection percentage can be reduced dramatically to 5% of

the total number of sensors when the difference is about

10% of the region’s value. On the other hand, even when 

the difference is as small as 2%, we still can reduce the

selected percentage to 65%. More importantly, accuracy of 

the query result is maintained. Figure 7 shows that our

scheme outperforms random sensor selection consistently;

it is able to maintain the required accuracy requirement of 

95% even though the difference of the regions values is

only 2%. Figure 8 demonstrates that while accuracy for

random selection of sensors decreases with increasing

sensor error variance, the accuracy for our scheme is

basically unaffected by the sensor’ error variance because it 

only selects the sensors whose values are closed to the 
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expected values of the regions. Of course there is an 

additional cost when the sensors’ error variance increases. 

This is illustrated in Figure 9, which shows the relationship

between the percentage of sensors selected and the sensor’s 

Error Variance Percentage. As expected, a region’s

selection percentage increases with the sensors’ error

variance.

Figure 6: Percentage of Sensor Selected vs. Difference in

Regions’ Values

Figure 7: Accuracy vs. Difference in Regions’ Values

Figure 8: Accuracy vs. Sensor Error Variance Percentage 

Figure 9: Percentage of Sensors Selected vs. Sensor Error 

Variance

6. Conclusion 
With prices of sensors continuously dropping, we 

expect that more applications will deploy large sensor

networks for monitoring purposes. In this paper, we exploit

the availability of low-cost sensors and develop a 

comprehensive scheme that selects appropriate sensors to

provide reliable query results. We devise a probabilistic

approach to select sensors intelligently to efficiently

execute CPQs for these common aggregate query types.

Our simulation results show that we meet the required

accuracy requirements with a much smaller set of sensors

than random selection of sensors. 
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