
Title High throughput short read alignment via bi-directional BWT

Author(s) Lam, TW; Li, R; Tam, A; Wong, S; Wu, E; Yiu, SM

Citation
The IEEE International Conference on Bioinformatics and
Biomedicine (BIBM 2009), Washington, DC., 1-4 November 2009.
In Proceedings of BIBM, 2009, p. 31-36

Issued Date 2009

URL http://hdl.handle.net/10722/129577

Rights IEEE International Conference on Bioinformatics and
Biomedicine. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37953834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

High Throughput Short Read Alignment via
Bi-directional BWT

T.W. Lam∗, Ruiqiang Li†, Alan Tam∗, Simon Wong∗, Edward Wu∗, S.M. Yiu∗

∗Dept of Computer Science, University of Hong Kong, Hong Kong. {twlam,sltam,ckwong3,mkewu,smyiu}@cs.hku.hk
†Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China. lirq@genomics.org.cn

Abstract—The advancement of sequencing technologies has
made it feasible for researchers to consider many high-
throughput biological applications. A core step of these applica-
tions is to align an enormous amount of short reads to a reference
genome. For example, to resequence a human genome, billions of
reads of 35 bp are produced in 1-2 weeks, putting a lot of pressure
of faster software for alignment. Based on existing indexing
and pattern matching technologies, several short read alignment
software have been developed recently. Yet this is still strong
need to further improve the speed. In this paper, we show a new
indexing data structure called bi-directional BWT, which allows
us to build the fastest software for aligning short reads. When
compared with existing software (Bowtie is the best), our software
is at least 3 times faster for finding unique best alignments, and
25 times faster for finding all possible alignments. We believe
that bi-directional BWT is an interesting data structure on its
own and could be applied to other pattern matching problems.

Availability: http://www.bio5.cs.hku.hk:8080/P2BWT, where two
human genomes are indexed for alignment.

Index Terms—short read alignment; BWT; indexing data
structure

I. INTRODUCTION

The advancement of sequencing technologies (e.g. Illu-
mina Genome Analyzer, Roche 454, and Applied Biosystems
SOLiD) has made it feasible to produce tens of millions
of reads with length 35-50bp (short reads) in a single run.
Generating reads for a mammalian genome can now be done
in just 1-2 weeks at a very low cost. This provides an excellent
platform for many exciting high-throughput biological applica-
tions, such as genome resequencing [1], [2], [3], [4], mapping
DNA-protein interactions [5], whole-transcriptome sequencing
[6], and whole-genome expression profiling [7].

A core and the first step of these applications is to align
the short reads to a reference genome. As the reads are so
short and modern sequencing technologies have very low
error rate, existing applications usually require alignments
allowing at most two mismatches. What is special about short
read alignment is its enormous volume, often in the range
of millions to billions. For example, to resequence a human
genome with 15× coverage, one might face 1.5 billions reads

of length 35. A practical alignment software must be extremely
fast.

Existing software: Prior to our work, there are four major
tools for aligning short reads to a reference genome, namely
Maq [8], SOAP [9], ZOOM [10], and Bowtie [11]. We have
evaluated the tools using three sets of human short reads
(obtained from NCBI), each containing one million reads of
length 35bp. The reference sequence is the human genome. We
consider alignments with up to two mismatches. Bowtie is the
fastest; in our experiments (see Section V for details), Bowtie’s
average rate is about 200 seconds for one million reads if we
only want to obtain the unique best alignment (see Section II
for definition) while the average rate increases substantially to
more than 8,000 seconds if we need to locate all occurrences
of each read. For 1.5G reads, it would take a few days and
more than 100 days for Bowtie to find the unique best hit and
all occurrences, respectively. With the launch of 1000 human
genome project, more and more such reads will be produced
in a short period of time. A more efficient alignment tool is
always desired even if we can use clusters to speed up the
alignment in parallel.

Our contributions: In short read alignment applications,
millions or billions of reads are aligned with the same refer-
ence sequence. Indexing the reference sequence is a common
technique to speed up the alignment process. All the above
existing tools are built on well-developed indexing and pattern
matching technologies. SOAP is based on hashing, ZOOM
on spaced seed, and Bowtie on BWT (Burrows-Wheeler
transform) indexing. It has been known that in the context of
DNA, BWT is the most space-and-time efficient indexing data
structure for exact pattern matching [12], [13]. For example,
it takes about 30 seconds to find all the exact occurrences of
one million short reads in the human genome. However, BWT
is not designed for approximate pattern matching, and there is
no efficient way to use BWT directly for approximate pattern
matching.

The original BWT allows searching of a pattern in one
direction, namely, from right to left (backward search). How-
ever, for efficient approximate pattern searching, we need a

2009 IEEE International Conference on Bioinformatics and Biomedicine

978-0-7695-3885-3/09 $26.00 © 2009 IEEE

DOI 10.1109/BIBM.2009.42

31

data structure that can support searching in both directions
(forward and backward search) and allow us to switch from
forward to backward search or vice versa in the course of
aligning the pattern. This would enable us to start matching
a pattern from the middle, then extend the search in either
directions and switch directions in the alignment process. A
seemingly trivial solution is to keep two BWTs, one for the
original sequence and the other for the reversal. Then forward
search can be done via a backward search on the reversal of
the pattern based on the latter BWT.

However, this solution cannot allow interleaving the back-
ward and forward search. And it deals with two separate
searching space, demanding a lot more memory (see Section
III for details). We develop a new indexing data structure,
called bi-directional BWT, to solve this problem. Based on
bi-directional BWT, we develop a new short read alignment
tool 2BWT, which is faster than all existing tools.

We evaluated 2BWT on aligning reads up to two mis-
matches using the same three data sets mentioned earlier. For
one million reads, the average times for finding the unique best
alignment and all possible alignments are 63 seconds and 245
seconds, respectively, which are about 3 times and 25 times
faster than Bowtie.

We have extended 2BWT to handle insertions and deletions,
as well as longer reads and more errors. Yet we have to admit
that 2BWT is only a first attempt to exploit the power of
the bi-directional BWT, which is an interesting data structure
on its own and would be useful to other pattern matching
problems. We also note that there is another tool, BWA [14],
just published which is also based on the original BWT.
According to [14], BWA is about 20% faster than Bowtie on
experiments based on real data sets.

II. PROBLEM DEFINITIONS AND INDEXING BASICS

The short read alignment problem is defined as follows. Let
T [1..n] be a reference sequence, which is usually very long
(e.g., the human genome is of length 3 billion). Given a large
number (millions to billions) of short patterns (reads) Pi, we
want to locate all substrings of T that is at most at a Hamming
(or edit) distance of δ from each Pi. Each such substring is
said to be an occurrence of Pi. We assume that characters in T

and each Pi are chosen from the alphabet Σ = {A,C,G, T},
each pattern is of length in the range 35–100, and δ ≤ 2. Note
that Hamming distance counts the number of mismatches (or
modifications), while edit distance also allows insertion and
deletion.

In general, there are four different types of output, required
by different applications. (1) Unique best hit: For each read, we
consider the occurrences with the smallest error. If the occur-
rence is unique (that is, exactly one), report this occurrence.
Otherwise, report null. (2) Arbitrary hit: For each read, we just

want to know whether it has an occurrence in T with distance
at most δ. If so, just report any one of such occurrences. (3) All

valid hits: This refers to the case of reporting all occurrences of
each read. (4) All best hits: Consider any read Pi, define e to be
the smallest possible distance between Pi and an occurrence
of Pi in T . If e ≤ δ, report all occurrences who distance from
the read is e.

Next, we give a brief review of two indexing data structures,
namely, suffix array Burrows-Wheeler Transform (BWT) [15].

A. Suffix array

Given a text T [1..n], we first define the suffix array of T ,
denoted SA[1..n], as follows. SA[i] = j if the suffix T [j..n]
is lexicographically the i-th smallest suffix among all suffixes
of T (and we say that the rank of the suffix T [j..n] is i). In
other words, SA stores the starting positions of all suffixes of
T in lexicographical order.

For any pattern P , suppose P appears in T . We define the
the SA range of P with respect to T as [s, e] such that s and
e are respectively the rank of the lexicographically-smallest
and largest suffix of T that contains P as a prefix. To find
all occurrences of a pattern P in T , we can first compute
the SA range of P (using O(m log n) time [16]), afterwards
the occurrences of P can be retrieved from the suffix array
directly one by one in constant time.

The suffix array of a text with n characters requires n log n

bits of memory in addition to the text. For example, to store
the suffix array of a human genome, it requires 12G memory.
Instead of using the suffix array, we consider the compressed
indexing data structure Burrows-Wheeler Transform (BWT).

B. Burrows-Wheeler Transform (BWT)

Given a text T [1..n], the BWT data structure, denoted
BWT [1..n], is defined as BWT [i] = T [j − 1] where j =
SA[i] for SA[i] �= 1, otherwise, set BWT [i] = $, where $ is a
special character not in Σ and assumed to be lexicographically
smaller than all other characters. That is, BWT [i] stores the
character immediately before the i-th smallest suffix. Note
that BWT requires only the same amount of memory as for
storing the text. Using BWT and some auxiliary functions, we
can compute efficiently the SA range of a given pattern in a
backward manner efficiently backward search. The idea is as
follows.

For any character x, let Count(x) be the total number
of characters in the text T that are smaller than x. And let
Precede(i, c) be the number of character c that occurs in
BWT [1..i−1]. With these two functions, given the SA range
[s, e] of a pattern P , computing the SA range [s′, e′] for the
pattern cP for any character c can be computed based on the
following lemma [17], [13].

32

Lemma 1: Let P be a pattern and [s, e] be its SA range. Let
c be any character, the SA range of cP can be computed as
[Count(c)+Precede(s, c)+1, Count(c)+Precede(e+1, c)].

We can precompute and store up the values of Count and
Precede using only o(n) bits, while allowing constant time
retrieval of any value. Precisely, for Count, we store the values
using an array of |Σ| entries with a total size of |Σ| log n bits.
For Precede, we use a rank and select data structure [18],
which requires only o(n) bits. Given any P [1..m], the SA
range of P [m..m] is simply [Count(P [m]) + 1, Count(c)],
where c is the character just lexicographically larger than
P [m]. The lemma below summarizes the above discussion.
Note that computing the SA range of a pattern using BWT is
even faster than using an suffix array.

Lemma 2: Using BWT and the auxiliary functions, Count

and Precede, computing the SA range of any pattern P with
length m can be done in O(m) time.

To retrieve the positions of an SA range, we only store part
of the suffix array, called sampled suffix array. Intuitively, we
store one SA value for every α entries for some constant α.
More precisely, we only store the SA[i] value for i = kα for
0 ≤ k ≤ ⌈

n
α

⌉
. That is, we only store the SA[i] value if the

rank of the suffix T [SA[i]..n] is a multiple of α. Retriving
the value for SA[i] where i is not a multiple of α can be
done by searching repeatedly the BWT data structure itself
[17]. For the memory requirement, using human genome as
an example, the BWT array requires about 0.75G, the auxiliary
data structure for Count and Precede requires less than 0.1G,
while the sampled suffix array (for α = 4) occupies 3G. The
total memory consumption is about 4G only.

BWT has been tested empirically, it is indeed extremely
efficient for exact pattern matching in DNA sequences[12].
Matching a pattern of a few hundred characters with the
human genome takes a few microseconds only. However, BWT
is not designed for approximate pattern matching. Existing
BWT-based solutions (e.g. in Bowtie) for short read alignment
mainly use a brute-force approach to handle the errors; the
idea is simply to generate all possible erroneous patterns from
a given read and perform exact match of all these patterns
using BWT. Obviously, the efficiency of BWT deteriorates
very rapidly even if a very small number of errors (say, 2
mismatches) has to be dealt with.

In the next section, we propose a new indexing data struc-
ture, called the bi-directional BWT, which can be exploited
to perform approximate matching for small errors efficiently,
while keeping the amount of memory reasonably small.

III. BI-DIRECTIONAL BWT

Recall that the original BWT can support the following
operation efficiently (Lemma 2). To search for the occurrences
of a pattern P [1..m], we start from the last character P [m],

then search backward character by character. This is referred
to as the backward search.

Given a pattern P and its SA range, for any character
c, return the SA range for cP .

Using only backward search, it is not trivial how to perform
approximate matching efficiently. On the other hand, if the
index can also support forward search (i.e., search the pattern
from left to right), as well as switching from backward search
to forward search, or vice versa, then one can start matching
the middle part of a pattern first, and extend to either direction.
As to be shown in Section IV, this would allow tremendous
speed up of approximate matching with small errors.

At first glance, one might consider using two BWTs as a
trivial approach to solve the problem. That is, one BWT built
for the text T , and another BWT built for TR (the reversal
of T). Denote these BWTs as B and B′, respectively. Given
any pattern P , to perform forward search, we can perform
backward search on PR using B′. However, this solution has
two problems. First, the SA range computed using B′ is the
SA range with respect to TR, so to retrieve the occurrence
positions, we also need to store the (sampled) suffix array
with respect to TR. This increases the memory consumption
a lot. More importantly, it is not trivial to integrate the an SA
range based on T and and SA range based on TR, and to use
the two BWTs to interleave forward and backward search.

Below we introduce the bi-directional BWT which can
support the backward search, forward search, and switching
of search direction. We store B and B′, but we are able to
maintain the SA ranges w.r.t. T even when a forward search is
conducted, and represent all occurrences using the SA ranges
based on T only. Thus, at the end we avoid dealing with SA
ranges based on TR and do not need the extra memory for
storing the costly (sampled) suffix array for TR. The memory
requirement for B′ is not much; for the case of human genome,
this requires 0.75 GB. More specifically, our bi-directional
BWT can support the following operations. Given a pattern
P , we refer the SA range of P w.r.t. T and the SA range of
PR w.r.t. TR as the SA range and SA’ range of P , respectively.

Given a pattern P , its SA range and SA’ range, for
any character c, return the SA range and SA’ range
of cP , as well as the SA range and SA’ range of
Pc.

Bi-directional BWT forward search: Given a pattern P , its SA
range and SA’ range, and any character c, we show how to
compute the SA range and the SA’ range of Pc. Computing the
SA’ range can be done by exploiting B′ to conduct backward
searching of (Pc)R w.r.t. TR. The non-trivial issue is how to
compute the SA range of Pc.

Let [s, e] be the SA range of P . It is obvious that the SA
range of Pc is a sub-range in [s, e] as suffixes with prefix

33

Pc are also suffixes with prefix P . Let x be the number of
suffixes in T that start with Pd where d is lexicographically
smaller than c and y be the number of suffixes in T that have
Pc as prefix. Then, the SA range of Pc can be computed as
[s + x, s + x + y − 1]. Also, for any pattern X , the SA range
of X and the SA’ range of XR must have the same size. To
compute x, we can compute, for each d smaller than c, the SA
range of (Pd)R w.r.t. TR using B′ and Lemma 2. Similarly,
y can be obtained by computing the SA range of (Pc)R w.r.t.
TR. Thus, we have the following lemma.

Lemma 3: Given the SA range and SA’ range of a pattern
P , we can compute, for any character c, the SA range and
SA’ range of Pc in O(|Σ|) time.

Bi-directional BWT backward search: Similarly to the forward
search, we have the following lemma.

Lemma 4: Given the SA range and SA’ range of a pattern
P , we can compute, for any character c, the SA range and
SA’ range of cP in O(|Σ|) time.

Note that we keep track the SA range of the pattern no
matter whether we align the pattern from left to right or from
right to left. Thus, to retrieve the positions of the occurrences,
we only need to store the sampled suffix array of T . In
practice, performing a backward search using bi-directional
BWT requires almost the same time as using the original BWT.
For forward search, the time required using bi-directional
BWT is only about 1.1 times that required by the backward
search using the original BWT. The overhead is insignificant.

IV. THE ALIGNMENT ALGORITHM

In this section, we describe how to make use of the bi-
directional BWT to perform short read alignment up to two
errors. Our algorithm is not heuristic-based, it covers all
possible occurrences of the errors. The main idea is as follows.
Since the number of errors is small, for each (approximate)
occurrence of the pattern, there exists a sufficiently long
substring (at least one third of the read for the case of two
errors) that is exactly matched between the pattern and the
occurrence. Thus, we always start the alignment by first match-
ing with such a substring. Since this substring may be close
to the left end, right end, or in the middle of the pattern, the
original BWT data structure cannot support and take advantage
this searching method. The following subsections give the
details of the alignment algorithm based on the bi-directional
BWT. Note that for exact matching of the pattern, we can
simply apply backward search to locate the occurrences. In
the following, we focus on the cases with errors. We show
how to handle alignment that allows mismatches only and it
can be extended to handle insert/delete.
1-mismatch alignment: Given a pattern P [1..m], we want to
find all substrings on the text which is equal to P [1..i −
1]eP [i + 1..m] where e ∈ Σ\{P [i]} for 1 ≤ i ≤ m. The

mismatch e either appears in the first half or the second half
of the pattern. We divide all occurrences into the following two
cases and search for occurrences of each case one by one. Let
x =

⌈
m
2

⌉
.

Case A. The mismatch occurs on the first x positions on the
pattern (the first half). In this case, the second half of the
pattern must occur exactly in the occurrences. So, we use
backward search to obtain the SA range of P [x + 1..m].
Then, we consider the mismatch occurs at the i-th position for
1 ≤ i ≤ x one by one. For i = x, x−1, . . . , 1, we continue the
backward search to obtain the SA range of P [i + 1..m]. We
compute the SA ranges of eP [i+1..m] for all e ∈ Σ\{P [i]} in
O(|Σ|) time. With each SA range of eP [i+1..m], we continue
the backward search for the pattern P [1..i−1]eP [i+1..m] in
O(i) time and report their SA ranges.

Case B. The mismatch occurs on the last m − x positions
(the second half). We first use the forward search of the bi-
directional BWT to obtain the SA range and SA’ range of
P [1..x]. For each i = x+1, . . . ,m, we continue to obtain the
SA range and SA’ range of P [1..i−1]. Then, we compute the
SA range and SA’ range of P [1..i− 1]e for all e ∈ Σ\{P [i]}.
For each e, we continue the forward search to compute the
SA range of P [1..i − 1]eP [i + 1..m] in O(i) time.

Intuitively, the main advantage of our approach is as follows.
Consider all possible patterns with one mismatch with the
given pattern. In most of these patterns, the search ends up
with no result. We start by finding the SA range of a long (at
least half of the read) substring of the pattern, the resulting
SA range is usually small. With only a few search steps, the
SA range quickly drops to zero if no occurrence of such 1-
mismatch pattern appears in the text. Thus, the whole process
can be sped up.

2-mismatch alignment: Given a pattern P [1..m], we want to
find all substrings on the text which is equal to P [1..i −
1]e1P [i + 1..j − 1]e2P [j + 1..m] where e1 ∈ Σ\{P [i]} and
e2 ∈ Σ\{P [j]} for 1 ≤ i < j ≤ m. There are four cases
depending where e1, e2 occur in the pattern. Basically, we
divide the pattern into three parts (from left to right), each with
length about one-third of the read. Case A: The mismatches
occur in the first two parts. Case B: Both mismatches occur
on the last part. Case C: The mismatches occur on the second
and the third part respectively. Case D: The mismatches occur
on the first and the last part respectively.

Let s1 =
⌊

m
3

⌋
and s2 = m − s1. We show how to find the

SA range of the pattern for each case.

Case A. We first obtain the SA range of P [s2 + 1..m] using
backward search. For each j = s2, s2 − 1, . . . , 2, we assume
that e2 occurs at position j. We continue the backward search
to obtain the SA range of P [j+1..m], then we compute the SA

34

range for e2P [j +1..m] for e2 ∈ Σ\{P [j]}. The mismatch e1

occurs in P [1..j−1], this sub-problem is in fact, a 1-mismatch
alignment problem. Thus, we apply the procedure for finding
1-mismatch alignment for P [1..j − 1] to obtain the SA range
of P [1..i − 1]e1P [i + 1..j − 1]e2P [j + 1..m].

Case B. We first obtain the SA range and SA’ range of P [1..s2]
using forward search. For each i = s2 + 1, . . . ,m − 1, we
assume that e1 occurs at position i. We continue the forward
search to obtain the SA range and the SA’ range of P [1..i−1].
For each possible e1, we obtain the SA range of P [1..i−1]e1

and the SA’ range. For each j = i + 1, . . . ,m, we assume
that e2 occurs at position j. We continue the forward search
to obtain the SA range of P [1..i− 1]e1P [i+1..j − 1] and the
SA’ range. Consider all possible cases of e2 ∈ Σ\{P [j]} and
continue the forward search, we can compute the SA range
for P [1..i − 1]e1P [i + 1..j − 1]e2P [j + 1..m].

Case C. We first obtain the SA range of P [1..s1] and the SA’
range using forward search. For each i = s1 + 1, . . . , s2, we
assume that the mismatch e1 occurs in position i. We continue
the forward search to obtain the SA range of P [1..i−1]e1P [i+
1..s2] and the SA’ range for all e1 ∈ Σ\{P [i]}. The second
mismatch should be on P [s2 + 1..m]. Similarly, continue the
forward search, we can compute the SA range of P [1..i −
1]e1P [i+1..j−1]e2P [j+1..m] for all possible e2 with j−1 ≥
s2.

Case D. This case shows the full power of bi-directional BWT
as we have to start our search in the middle of the pattern.
We first obtain the the SA range of P [s1 +1..s2] and then the
SA’ range using forward search. For each i = s1, . . . , 1, we
apply backward search to compute the SA range of P [1..i −
1]e1P [i..s2]. Then, for each j = s2 + 1, . . . , m (e2 occurs in
one of the possible j-th positions), we apply forward search
to compute the SA range of P [1..i−1]e1P [i..j−1]e2P [j..m]
for all possible e2.

The above methodology can be generalized to handle three
or more mismatches as well as insert/delete.

V. EXPERIMENTAL RESULTS

We have implemented our short read alignment solution,
called 2BWT, based on the bi-directional BWT. We compared
the performance of 2BWT with SOAP (v1.11, released on
July 2008), Bowtie (the memory intensive version v0.9.7.1, re-
leased on November 2008), Maq (v0.7.1, released on Septem-
ber 2008), and ZOOM (v.1.2.4, released on June 2008) using
real short read data sets and the human reference genome
obtained from NCBI. Note that in all our experiments, we
align both strands of the genome.
Testing environment and data. All experiments are run on a
single computer equipped with Intel(R) Xeon(R) CPU E5420
@ 2.50GHz / 6144 KB Cache / 24 GB RAM. The reference

sequence is obtained from NCBI, Human genome [NCBI;
Build 36.3]. We construct three short read datasets obtained
from NCBI: SRR001113, SRR001114, and SRR001258.1 For
each source, we randomly select one million reads to form
a testing dataset. These sources contain a small percentage
of reads that are comprised entirely of the same nucleotide
(in particular, “A”). We exclude them from the three datasets.
Furthermore, we trim each read to 35bp so as to be compatible
with the testings reported in the literature, which use length-35
reads (Bowtie [11]) or length-36 reads (ZOOM [10])).
Alignment speed: We compare the speed of Maq, SOAP,
Bowtie, ZOOM and 2BWT according to four types of output:
(1) unique best hit; (2) arbitrary hit; (3) all valid hits; and
(4) all best hits. We focus on alignment with at most two
mismatches. Table I shows the results on the four types of
output. All the timing figures include both the computation
and disk IO time. For aligning one million reads, 2BWT on
average takes 59 seconds to 245 seconds, depending on the
output required. In all cases, 2BWT is the fastest, followed by
Bowtie. For unique best hit and arbitrary hit, 2BWT is about
3 times faster than Bowtie. For all valid hits and all best hits,
2BWT is about 25 times faster than Bowtie.
Memory consumption. Among all tools, ZOOM uses the least
amount of memory (only 0.9G) while SOAP requires the
largest amount of memory (14.3G). Bowtie and 2BWT use
11.2G and 13.2G memory respectively. Note that Bowtie has
a lightweight version using less memory (about 2.7G) which
is slower than the memory intensive version. 2BWT also has a
lightweight version which uses 6.7G memory (nowadays the
memory capacity of an ordinary personal computer is 8G)
This lightweight version is about 10% to 20% slower than the
memory intensive version.

We remark that SOAP, ZOOM, Bowtie, and 2BWT report
the same set of occurrences up to a few differences on the
boundary cases. On the other hand, Maq only guarantees at
most two mismatches in the first 28bp of the read, thus reports
more occurrences.

VI. CONCLUSIONS

In this paper we have shown how to extend the BWT index
to support interleaving forward and backward search. The new
data structure allows us to implement a simple and the fastest
software for aligning short reads. Like other tools, in addition
to mismatches, we also consider insert/delete and allow longer
reads (e.g. 100bp) with three or more mismatches. Roughly
speaking, the running time of 2BWT doubles when errors
are modeled as insert/delete instead of mismatches. Also, the
speed of 2BWT does not deteriorate at all when aligning

1Both SRR001113 and SRR001114 are from the project of 1000 Genome
Whole Genome Shotgun Fragment, while SRR001258 is from the project
1000 Genomes Project Pilot 2.

35

SRR001113 SRR001114 SRR001258 Average
Unique best hit Parameters Occurrences Time(s) Occurrences Time(s) Occurrences Time(s) Time(s)
SOAP -s 12 -r 0 543,491 4,505 510,188 4,315 367,238 4,452 4,424
ZOOM -mm 2 -mk 1 544,638 1,908 513,404 1,836 368,759 1,632 1,792
Bowtie -t -f -v 2 -best -m 1 543,678 175 512,243 202 369,015 207 195
2BWT -m 2 -h 0 563,551 53 531,796 61 381,561 74 63

Note: Maq does not support unique best hit.
Arbitrary hit parameters
Maq -n 2 -C 1 756,954 7,607 744,316 6,894 605,091 6,023 6,842
SOAP -s 12 -r 1 654,639 4,555 614,987 4,315 440,878 4,456 4,442
ZOOM -mm 2 -mk 1 655,997 1,908 618,572 1,836 442,592 1,632 1,792
Bowtie -t -f -v 2 -best 655,998 153 618,572 179 442,592 193 175
2BWT -m 2 -h 1 655,999 49 618,574 55 442,592 71 59

All valid hits parameters
Maq -n 2 -C 1 6,730,321,743 10,763 5,685,547,975 9,279 5,667,065,017 7,951 9,331
ZOOM -mm 2 -mk 474784 1,229,392,005 10,094 923,181,419 9,061 606,920,304 6,842 8,666
Bowtie -t -f -v 2 -a -nostrata 1,229,392,265 9,795 923,181,676 9,297 606,920,476 6,153 8,415
2BWT -m 2 -h 2 1,229,392,200 284 923,181,598 247 606,920,401 204 245

Note: SOAP does not support all valid hits.
All best hits parameters
SOAP -s 12 -r 2 58,440,851 4595 40,499,409 4388 30,696,832 4504 4496
Bowtie -t -f -v 2 -a 64,513,685 1,159 44,516,608 920 33,248,152 697 925
2BWT -m 2 -h 3 64,513,709 63 44,516,628 73 33,248,152 84 73

Note: Maq and ZOOM do not support all best hits.

TABLE I
THE TIME RQUIRED FOR FINDING (1) THE UNIQUE BEST HIT, (2) AN ARBITRARY HIT, (3) ALL VALID HITS, AND (4) ALL BEST HITS OF ONE MILLION

READS (MEASURED IN SECONDS). THE EXPERIMENT IS BASED ON 3 DATASETS EACH CONTAINING ONE MILLION LENGTH-35 READS; THE REFERENCE

SEQUENCE IS THE HUMAN GENOME; A HIT CONTAINS AT MOST TWO MISMATCHES.

longer reads with more errors. We have tested reads with 75
bp (both simulated data and real data NCBI SRR013647), the
average time to find all valid hits with up to 3 mismatches is
about 110 seconds for one million of reads. The time increases
to 479 seconds when up to 4 mismatches are allowed.

In conclusion, 2BWT is the first alignment software that
exploits the power of the bi-directional BWT index, We believe
the latter would be useful to building more sophisticated short
read alignment software, as well as other pattern matching
tools.

ACKNOWLEDGEMENT

The project is partially supported by Hong Kong RGC Grant
HKU7140/064.

REFERENCES

[1] D. Bentley, “Whole-genome re-sequencing,” Curr. Opin. Genet. Dev.,
vol. 16, pp. 545–552, 2006.

[2] L. Hillier, G. Marth, A. R. Quinlan, and D. D. et al., “Whole-genome
sequencing and variant discovery in C. elegans,” Nature Methods, vol. 5,
pp. 183–188, 2008.

[3] D. R. Bentley, S. Balasubramanian, and H. P. S. et al., “Accurate
whole human genome sequencing using reversible terminator chemistry,”
Nature, vol. 456, no. 7218, pp. 53–59, 2008.

[4] J. Wang, W. Wang, and R. L. et al., “The diploid genome sequence of
an Asian individual,” Nature, vol. 456, no. 7218, pp. 60–65, 2008.

[5] D. Johnson, A. Mortazavi, R. Myers, and B. Wold, “Genome-wide
mapping of in vivo protein-DNA interactions,” Science, vol. 316, no.
5830, pp. 1497–1502, 2007.

[6] T. Jarvie and T. Harkins, “Transcriptome sequencing with the Genome
Sequencer FLX system,” Nature Methods, vol. 5, 2008.

[7] G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao, T. Zeng,
G. Euskirchen, B. Bernier, R. Varhol, A. Delaney, N. Thiessen, O. Grif-
fith, A. He, M. Marra, M. Snyder, and S. Jones, “Genome-wide profiles
of STAT1 DNA association using chromatin immunoprecipitation and
massively parallel sequencing,” Nature Methods, vol. 4, pp. 651–657,
2007.

[8] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads
and calling variants using mapping quality scores,” Genome Research,
vol. 18, pp. 1851–1858, 2008.

[9] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide
alignment program,” Bioinformatics, vol. 24, no. 5, pp. 713–714, 2008.

[10] H. Lin, Z. Zhang, M. Zhang, B. Ma, and M. Li, “ZOOM! Zillions of
oligos mapped,” Bioinformatics, vol. 24, no. 21, pp. 2431–2437, 2008.

[11] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome,” Genome Biology, vol. 10, no. R25, 2009.

[12] R. A. Lippert, “Space-efficient whole genome comparisons with
Burrows-Wheeler transforms,” Journal of Computational Biology,
vol. 12, no. 4, pp. 407–415, 2005.

[13] T. Lam, W. Sung, S. Tam, C. Wong, and S. Yiu, “Compressed indexing
and local alignment of DNA,” Bioinformatics, vol. 24, no. 6, pp. 791–
797, 2008.

[14] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler transform,” Bioinformatics, 2009.

[15] M. Burrow and D. Wheeler, “A block-sorting lossless data compression
algorithm,” Digital Equipment Corporation, California, Tech. Rep. 124,
1994.

[16] D. Gusfield, Algorithms on strings, trees, and sequences. Cambridge
University Press, 1997.

[17] M.-Y. Kao, Ed., Encyclopedia of Algorithms. Springer, 2008.
[18] V. Mäkinen and G. Navarro, “Rank and select revisited and extended,”

Theoretical Computer Science, vol. 387, no. 3, pp. 332–347, 2007.

36

