
Title A distributed technique for dynamic operator placement in
wireless sensor networks

Author(s) Chatzimilioudis, G; Mamoulis, N; Gunopulos, D

Citation

The 11th International conference on Mobile Data Management
(MDM 2010), Kansas City, MO., 23-26 May 2010. In IEEE
International Conference on Mobile Data Management
Proceedings, 2010, p. 167-176

Issued Date 2010

URL http://hdl.handle.net/10722/129558

Rights IEEE International Conference on Mobile Data Management
Proceedings. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37953819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Distributed Technique For Dynamic Operator

Placement In Wireless Sensor Networks

Georgios Chatzimilioudis

Computer Science Department

University of California

Riverside, California 92507

gchatzim@cs.ucr.edu

Nikos Mamoulis

Computer Science Department

Hong Kong University

Pokfulam Road, Hong Kong

nikos@cs.hku.hk

Dimitrios Gunopulos

Dept of Informatics and Telecommunications

University of Athens

15784 Ilisia, Greece

dg@di.uoa.gr

Abstract—We present an optimal distributed algorithm to
adapt the placement of a single operator in high communication
cost networks, such as a wireless sensor network. Our parameter-
free algorithm finds the optimal node to host the operator
with minimum communication cost overhead. Three techniques,
proposed here, make this feature possible: 1) identifying the
special, and most frequent case, where no flooding is needed,
otherwise 2) limitation of the neighborhood to be flooded and 3)
variable speed flooding and eves-dropping. When no flooding
is needed the communication cost overhead for adapting the
operator placement is negligible. In addition, our algorithm
does not require any extra communication cost while the query
is executed. In our experiments we show that for the rest of
cases our algorithm saves 30%-85% of the energy compared to
previously proposed techniques. To our knowledge this is the first
optimal and distributed algorithm to solve the 1-median (Fermat

node) problem.

I. OVERVIEW AND MOTIVATION

Network applications often need to perform in-network

query processing. Sensor networks are being deployed in the

physical or urban environment to benefit scientific research or

security surveillance. An example of a query in a network,

which is monitoring traffic in a busy downtown area, could be

“How many cars took the same route of passing through in-

tersections A, B and C?”. To avoid the cost of communicating

all the data lists from the nodes in regions A, B and C to the

querying node, the query must be executed in-network. Data

lists generated on the source nodes are fed into operators on

intermediate nodes that combine several lists from different

sources. The amount of data is reduced due to the selectivity

of the operators and the data that reaches the querying node

is the final answer.

An operator, that is involved in the in-network processing,

can be placed on a node of the network. It takes in elements

from source nodes, processes them, and sends the output to

either another operator node or to the sink. Shipping elements

over an edge in the graph imposes a cost that is dependent

on the weight of the elements. Therefore, the placement of

an operator can greatly affect the cost of answering a query

since it affects the number of edges the elements have to travel

over and the weight of the elements, since usually the output

weight is not the sum of the input weights.

s1 s2

q

cost=75

h

s1

ws1 = 10

s2

ws2 = 8

qwq = 7

(a) Before

s1 s2

q

cost=70

h

s1

ws1 = 10

s2

ws2 = 8

qwq = 7

(b) After

Fig. 1. Example of optimal operator placement: (a) Data flow during query
execution before the operator placement is optimized, and (b) data flow during
query execution after the operator placement is optimized. The Fermat node
is an external node. The cost represents the cost of our objective function,
not the actual communication cost.

s1 s2

q

cost=61

h

s1

ws1 = 13

s2

ws2 = 6

qwq = 6

(a) Before

s1 s2

q

cost=60

s1

ws1 = 13

s2

ws2 = 6

qwq = 6

h

(b) After

Fig. 2. Example of optimal operator placement: (a) Data flow during query
execution before the operator placement is optimized, and (b) data flow during
query execution after the operator placement is optimized. The Fermat node
is a datanode. The cost represents the cost of our objective function, not the
actual communication cost.

It is typical to have continuous queries that require an an-

swer over a continuous period of epochs. In most applications

the sources and operators are not producing the same weight

of elements in every epoch. Similarly, nodes in the network

might be mobile resulting in different hop-distances between

nodes in every epoch. Therefore, the initial operator placement

might not be good enough for future epochs. It is a large

overhead to re-run the algorithms for finding a good placement

for the operators of the query. Instead, the technique followed

in literature is to update the placement of just the operators

that are affected by the weight change in order to keep the

Eleventh International Conference on Mobile Data Management

978-0-7695-4048-1/10 $26.00 © 2010 IEEE

DOI 10.1109/MDM.2010.16

167

cost of query execution in the next epoch to a minimum. This

operator placement update needs to be done with the least

amount of communication cost overhead possible.

In Figures 1 and 2 let the nodes s1, s2 and q be the sources

and the sink (henceforth called altogether datanodes) that

send/receive data from the binary operator hosted at node

h. Let wi be the weight of the data to be sent from node

ni. We can see that by picking the right node to host the

operator with the right distances from the datanodes, we can

reduce the objective function for the communication cost of

executing the query (difference between Figures 1(a), 2(a) and

1(b), 2(b)). Depending on the data loads and the path lengths,

the optimal node to place the operator can be either an external

node (figure 1), or one of the datanodes, i.e. a source or sink

(figure 2). Our algorithm finds the optimal new placement

for an operator while creating far less communication cost

overhead than previous work. Note that we do not assume

that the communication cost can be computed by summing

the data-load sent over each link. We just use this as an

objective function to estimate the actual communication cost.

In our experiments we use a more accurate model for the

communication cost.

Especially in high communication-cost applications mini-

mizing the communication cost is the key issue. High com-

munication cost networks play an important role in real world

applications, as much as they do in research. The communi-

cation cost can be posed by monetary, temporal, resource or

energy demands. As an example of a high communication cost

network we will use a wireless sensor network throughout the

paper. Wireless sensors have very limited energy resources.

The task that has by far the highest demand in energy on a

wireless sensor is the transmission and reception of data. Thus,

the cost to pay for communicating is in form of energy. Min-

imizing the total energy consumed makes the whole network

more energy sufficient, and minimizing the maximum energy

consumption per node increases the network’s lifetime.

Our distributed Fermat node search algorithm (dFNS)

achieves two goals: finding the best node to place an operator

and minimize communication cost doing so. To achieve this it

1) identifies the special case where no flooding is needed, 2)

if flooding is needed, it minimizes the flooding radius, and 3)

uses variable speed flooding and eves-dropping. Our algorithm

is parameter-free, decentralized, optimal and outperforms pre-

viously proposed methods in minimizing communication cost

overhead.

As shown in our experiments, there is a high chance (56%-

85%) that the optimal node to place the operator is a datanode

(source or sink), like in the example of Figure 2. Such a

case can be identified by our algorithm and the operator is

simply placed on the optimal datanode without any further

communication cost to find the optimal operator node.

In any other case, dFNS finds the optimal operator node

(Fermat node) by extending a flood from each of the datan-

odes. We generate a set of possible distance combinations that

the new hosting node can have to produce a smaller hosting

cost. Using these candidate distance combinations dFNS calcu-

lates the minimum possible radius for each flood, guaranteeing

that the nodes that participate are kept to a minimum without

compromising the optimality of the algorithm.

We adapt our proposed algorithm to existing work in

wireless sensor networks. Using an existing framework for

answering multi-predicate snapshot queries, we extend the

framework to deal with continuous queries. The framework

answers continuous queries in epochs and adapts the operator

placement to data load changes. In our experimental evalu-

ation we compare against the only other existing distributed

algorithm for operator placement updates and show that using

our proposed algorithm we can save 30% − 80% of the

communication cost overhead.

In the following section we present previous work in this

area. We formulate our problem definition and preliminary

annotation in section III to be able to describe our algorithm

in detail in section IV. In section V the framework in which

our algorithm is implemented is described and in section VI

we present our thorough experimental evaluation that shows

the efficiency of our algorithm.

II. PREVIOUS WORK AND THE DIFFERENCES

The vast majority of the literature on operator placement in

wireless sensor networks focuses on finding a good operator

placement at query initialization as described in the intro-

duction. Those algorithms are centralized; i.e., the basestation

knows the location of the sensors or has complete knowledge

about the network [1][2][3][4][5].

Ying et al [6] propose a distributed algorithm to do the

same task as above, namely static operator placement. Nodes

exchange information with their neighbors iteratively until

they find the optimal placement for all given operators. Any

node that has found a better cost for routing data or placing

the operator, broadcasts this information to its neighbors. This

algorithm is suited only for initial operator placement for

queries with many operators, since it involves every node

inside the network. Further, using this technique, it is hard

to guarantee convergence, optimality, and low communication

cost overhead.

Instead of sticking to a static plan, dynamic environments

require adaptive query processing. A comprehensive survey on

adaptive query processing is presented by Deshpande et al [7].

They categorize all techniques proposed that focus on using

runtime feedback to modify query processing in a way that

provides better response time, more efficient CPU utilization

or network utilization. Our work would fall under the category

of adaptive join processing with non-pipelined execution.

Next, we cite literature that deals specifically with operator

placement adaptation, picking a new hosting node for one of

the operators. There are two categories here: algorithms that

pick the best neighboring node as the new host and converge to

the optimal operator placement with time, and algorithms that

find the best hosting node immediately. The former method

is also called operator migration and we will call the later

method placement update.

168

An alternative to operator placement update is operator mi-

gration, where the operator is moved gradually from one node

to the next node towards the optimal placement. Algorithms

following this principle are simple and their decision making

is only local. On the other hand, it takes several epochs of

query execution to reach the optimal operator placement. For

the same reason, these methods suffer greatly from oscillating

changes, that might force it to migrate an operator to a different

direction before even reaching the optimal placement. Further,

they are prone to local minima and impose extra cost during

query execution in order to probe for a better operator host on

every neighbor; [8][9][10] are works in this category.

Finding directly the optimal hosting node is the approach

adopted in this paper. This problem is the same as the 1-

median problem or single facility location problem in graphs.

There is extensive literature on centralized algorithms for this

problem [11], but not on distributed algorithms. In a distributed

environment we can not adapt any of the centralized algo-

rithms, since they all require that a central authority knows

the topology of the whole network.

Zoe Abrams and Jie Liu in their paper named “Greedy is

Good” (GIG) [12] propose a decentralized solution for the 1-

median problem in graphs. They try to find the optimal hosting

node of a single operator by flooding a small neighborhood

around each datanode. It follows the intuition that the optimal

hosting node will be somewhere close to all the datanodes.

Their algorithm, GIG, aims to minimize the nodes involved in

the flood by making use of some parameters set by the user.

Surprisingly, they do not aim to minimize the number of mes-

sages exchanged by those nodes and thus the communication

cost overhead is not minimized. Further, their algorithm does

not guarantee to find the optimal operator node as we will see

in the example in Figure 3.

We propose a parameter-free algorithm based on the same

principles as GIG, but show how using the right techniques the

right heuristics we can achieve a 30%-100% energy reduction

compared to GIG. Some extra points that distinguishes our

work from previous work is the following:

• our algorithm is distributed and we only collect a negli-

gible amount of network information.

• we do not assume any location awareness for the nodes.

It follows that we cannot use geographical routing to our

advantage.

• our algorithm does not impose any overhead during the

query execution phase.

• our algorithm is parameter-free, thus its efficiency is

independent of any user input.

• our algorithm guarantees optimality.

III. DISTRIBUTED FERMAT NODE SEARCH:

PRELIMINARIES

Assume that in the network seen in Figure 1(a) the colored

nodes are 3 customers s1, s2 and q. Each customer i needs

quantity wi from a commodity produced by a service that is

currently hosted in node h. The cost of servicing customer i
is the cost of sending weight wi over the shortest path from

node h to i. Find the node, that minimizes the cost of servicing

the customers, to host the service. This is also known as the

1-median problem and can be extended to an arbitrary number

of customers. Equivalently in wireless sensor networks we

have an operator that collects data from a number of sources

and sends the result of the operation to a sink. In Figures 1

and 2 we are dealing with binary operators (two sources s1

and s2, one sink q). Note that there are no restrictions in the

relation between the quantities wi, thus we can use any kind

of operator.

We assume that sending data of weight w from node i to

the operator host h and sending the same amount of data from

operator host h to node i imposes the same cost. This is why

we generalize and call both, sources and sinks, datanodes.

Now the problem of finding the optimal operator placement

is similar to the Fermat point problem [13], the three factory

problem [14], and to the 1-median problem or single facility

location problem. We call the optimal node to place the

operator Fermat node and formulate our problem as follows:

Fermat node (or 1-median) problem definition

Given a weighted graph G(N,L) and a set of

datanodes D ⊂ N , find the Fermat node f in the

graph that minimizes the cost of shipping data from

the nodes in D to node f .

For the objective function that we use in our algorithm we

assume that the cost of shipping data from node u to node

v is proportional to the data load wu to be shipped and the

weight of the path used. The path weight W (u, v) is equal to

the sum of the weights of all links l ∈ L that make up path

(u, v): W (u, v) =
∑

l∈links(u,v) wl, where wl is the weight

of the link l ∈ L. The cost of shipping data from node u to

node v is defined as

t(u, v) = wu ∗W (u, v)

This simplified version is used only as an objective function in

our algorithm to estimate communication cost. Note that the

computation of the actual energy consumed by the network

when transmitting a message over a path is more complicated.

In the network simulator we used to run our experiments the

communication cost model is much more realistic.

Hosting cost, c, is the cost of sending data from the nodes

in D to the hosting node h. It is equal to

c =
∑

d∈D

t(d, f) (1)

To minimize this cost we need to find the Fermat node and

place the operator there. Finding the Fermat node involves

a number of nodes that need to exchange messages. This

imposes a communication overhead. The problem we solve

in this paper is the following:

Our problem definition Given a weighted graph

G(N,L), with identical link weights, and a set of

weighted datanodes D ⊂ N , solve the Fermat node

problem with minimum overhead.

The communication cost in a wireless sensor network is the

energy consumed for performing communication. The total

169

communication cost is the sum of the energy consumed by

each node in the network. The maximum communication

cost is the maximum energy consumed by a single node. By

minimizing the number of nodes involved and the messages

exchange between them, we keep the total communication

cost and the maximum communication cost per node to a

minimum.

Networks are inherently distributed, thus no node has global

knowledge about the network topology. This rules out the

application of one of many proposed algorithms in literature

(Section II), that solve the Fermat node problem. We propose a

fully distributed algorithm, that does not require the gathering

of network information in order to compute the Fermat node.

In the rest of the paper we will make extensive use of the

following notions, that are formally defined here:

Shortest path length is the length of the shortest path

between two nodes, i.e. u and v, and is denoted as |(u, v)|. We

assume that the graph has bidirectional links, thus |(u, v)| =
|(v, u)|.

Datanodes is the set of nodes D that either transmit data

(source nodes) or receive data (sink node) to/from the node that

hosts the m-ary operator (hosting node). The opposite of the

datanode set is the external nodes set X = (N −D). Leader
node is the node that decides on initiating and terminating the

dFNS algorithm.

Note that we assume error-free readings, otherwise we

would need specialized techniques for probabilistic or model-

base query execution [15]. We also do not assume any cor-

relation between data that could assist us in saving energy

during query execution [16]. The only information we need

is what nodes the data is coming from/going to and the size

in bytes. Our framework operates independently of how an

operator placement update is triggered or oscilating updates,

due to the rapid changes in the network, are avoided.

Distance Combination, α, denotes the k-ary set of shortest

path lengths from all datanodes in D to the hosting node h.

α = [α1, α2, .., αk] = [|(d1, h)|, |(d2, h)|, .., |(dk, h)|]

where di ∈ D and k = |D|. Each distance combination α has

its hosting cost cα. Note, when we have an m-ary operator it

means we have m inputs and one output. It follows that the

number of datanodes is m + 1 and thus m + 1 = k.
Flooding is the task of broadcasting data from one node to

all its neighbors and repeating this for each neighbor. Each

node broadcasts the data only once. By setting a restriction to

the flooding radius, the broadcast message travels only radius

hops away (Hops-To-Live = radius). This limits the nodes in

the network that are flooded.

IV. OUR DISTRIBUTED FERMAT NODE SEARCH

ALGORITHM

We assume that a node h, that hosts an operator with

datanodes D, knows the shortest path distances between any

pair of datanodes in D. Note that the datanodes D of a single

operator are only a very small subset of the nodes in the

network (|D| << |N |). This information can be piggy-backed

from each datanode d ∈ D to node h, since there is direct

unicast communication between them. The task of retrieving

this information for each datanode d can be performed with

efficient algorithms proposed in literature, such as doubling

broadcast distance. Other than the datanodes of an operator,

no other node in the network need to know their distance to

any other node.

Each datanode d has its own hosting cost cd. We call

best datanode b the datanode with the minimum hosting cost

cb = min{cd}∀d∈D. Using b as the solution to the Fermat

problem is called datanode solution. There are cases where

it is impossible for an external node to have better hosting

cost than datanode b. Identifying those cases is simple and

imposes no communication cost. All our techniques make use

of hosting cost cb of the best node.

A. Candidate Nodes

Candidate nodes are called the nodes in the network that

have a hosting cost less than the hosting cost cb of the best

datanode. We need to compare all candidate nodes in order

to find the actual Fermat node. Minimizing the number of

candidate nodes is one of the key features of our algorithm.

Note that there can be several nodes with the same minimum

hosting cost, thus there can be several Fermat nodes. We just

need to pick one of them.

To be able to calculate the hosting cost of an external node,

we need to know its distance to the datanodes. Although exter-

nal nodes might serve as relay nodes, they never communicate

directly with any datanode, thus we cannot assume that they

know their distance to each datanode in advance. To find

the distance from an external node to each datanode we can

initiate a flood from each datanode counting hops.

Nodes inside the intersection of all floods know the distance

to all datanodes. This is true since we assume that the flood

reaches a node over the shortest path from the initiator. These

nodes can now calculate their hosting cost and, if it is smaller

than cb, they become candidate Fermat nodes. Candidate nodes

report their hosting cost to the leader node, that decides what

node is the actual Fermat node.

By reducing the number of candidate nodes, and therefore

the messages (reports) sent to the leader node, we can save

on communication cost. dFNS includes the hosting cost cb of

the best datanode in the initial flooding message as a cost

threshold. Nodes, that have a hosting cost higher than this

cost threshold, are not considered candidate nodes. Nodes that

have a better hosting cost designate themselves as Fermat

candidates and update the cost threshold inside the flooding

message before it gets forwarded. We also let candidate nodes

eves-drop messages sent by their neighbors in order to increase

the probability that a message with a lower cost threshold is

received to minimize the number of candidates.

B. Calculating All Candidate Distance Combinations

Before looking for the actual candidate nodes in the network

we calculate all possible distance combinations that would

qualify a node as a candidate node. These candidate distance

170

combinations are calculated at the datanodes without any

communication with neighbors. This is done in order to be

able to restrict the communication cost while searching for

the actual candidate nodes inside the network. Most of the

notation used here is defined in section III.

The datanode computes all candidate distance combinations

A and their respective hosting cost cα, α ∈ A. This is

the basic building block for our algorithm. To efficiently

compute this set we use information about the shortest path

lengths between the datanodes D. The distance combination

that violate the shortest path length between the datanodes

(triangle inequality) and have a greater hosting cost than cb,

the hosting cost of the best datanode b, are discarded. Formally

the restrictions for each distance combination α are:

|(di, dj)| ≤ ai + aj , ∀i, j ∈ D

cα < cb

(2)

The distance combination with the minimum hosting cost

is called ideal distance combination and is denoted as ǫ. De-
pending on the network, a node with the distance combination

ǫ might exist or not. If a candidate node has the ideal hosting

cost cǫ, then no further action is needed to distinguish it as

the Fermat node.

The algorithm we propose to compute the distance combi-

nations is optimized to find the set fast and effectively, pruning

combinations that do not satisfy the constraints in Equation (2)

early. We start from the distance combination that corresponds

to picking the best datanode b as the Fermat node. In this

distance combination the value for |(b, f)| will be 0. The other
distances start from the minimum value possible that satisfies

the constraints. We recursively increment each distance by

1. The pseudocode is shown in Algorithm 1. This algorithm

returns the set of all possible distance combinations that would

result in a smaller hosting cost than cb. It also designates the

ideal distance combination ǫ.

Algorithm 1 . CDCGenerator(distanceList, i)

Require: list of datanodes and their loads, .

distance between every pair of datanodes

1: lcurrent =minimumDistance(distanceList,i)
2: distanceList← lcurrent

3: while (distanceList satisfies constraints AND .

lcurrent <maximumDistance(distanceList,i)) do
4: if distanceList.size == number of datanodes then

5: C ← distanceList
6: update bestCombination
7: else

8: C ← CDCGenerator(distanceList, i + 1)
9: end if

10: lcurrent = lcurrent + 1
11: remove last entry of distanceList
12: distanceList← lcurrent

13: end while

14: return C

s1 s2

q

m

f

for GIG:

cf = 85

cm = 75

for dFNS:

cf = 70

cm = 75
s1

ws1 = 10

s2

ws2 = 8

qwq = 7

Fig. 3. GIG [12] is not an optimal algorithm. An example where GIG misses
the optimal operator placement (f). This happens because the distances from
candidate nodes to the datanodes are overestimated.

The function maximumDistance(distanceList, i) re-

turns the maximum distance that a node can have from

datanode di so that it satisfies the constraints of Equation 2

and does not exceed the maximum distance between di and

dj , where j > i.

C. No Flooding Cases

If we get a distance combination set, that is empty when

running the CDCGenerator() algorithm, it means that there

cannot exist an external datanode with better hosting cost than

the best datanode b. In those special cases, no flooding is

needed to look for external candidate nodes. Node b is the

optimal new operator host and our algorithm terminates by

placing the operator there. Contrary to their characterization

as special, these cases comprise 56%-85% of the cases as

shown by experiments.

D. Flooding Radius

Flooding the whole network from each datanode in D
poses a very big communication cost. Our algorithm efficiently

restricts the flooding radius, guaranteeing at the same time that

the Fermat node will be found. For this it uses the candidate

distance combinations.

The same intuition is used in the GIG algorithm [12], only

they use a suboptimal method to restrict the flooding. In

addition, GIG cannot guarantee optimality since the distance

from an external node to a datanode can be overestimated.

This can be seen in Figure 3. According to GIG flooding is

extended until all floods intersect, in this case node m. Then

m broadcasts a message to every node inside the flooding

union, which would be every node in this example, counting

hops from m. This way the distance |(x, d)| from a node x to a

datanode d is calculated as |(x, d)| = |(x,m)|+|(m, d)|, which
is clearly an overestimation. In our example the distance be-

tween node f and q is incorrectly estimated as |(f, q)| = 5 by

GIG (following the solid edges) and correctly as |(f, q)| = 4
by dFNS (following the dashed edges). As a result the GIG

algorithm would chose node m as the new operator node,

although the actual Fermat node and optimal new operator

node is f . The hosting costs estimated by GIG and our

algorithm can also be seen in Figure 3.

There is a maximum radius that each datanode has to flood

in order to be able to reach every candidate distance combi-

171

nation. The maximum radius is set to guarantee completeness,

i.e. if there is an external node with hosting cost better that cb

of the best datanode it will be found. For the maximum radius

of datanode di we use the maximum value of αi∀α ∈ A.

E. Flooding Speed

Increasing the likelihood that the floods will intersect at the

Fermat node first, increases the likelihood that more nodes

inside the flood intersection will receive a lower cost threshold.

This in turn leads to fewer nodes reporting to the lead node

as Fermat candidates, thus saving on communication cost. We

define a primary speed for each flood in order for them to

reach the ideal distance combination ǫ at the same time point.

After the floods reach the ideal distance combination ǫ they
will keep expanding until they reach the maximum radius. We

define a secondary speed for the foods that will make their

intersection grow faster toward the distance combinations with

the lower hosting costs.

The flooding speed is implemented by delaying the relay

(broadcast) of the flooding message at every node. More

specifically, a timeout is defined at flood initialization, that

each node should obey before re-broadcasting the flooding

message. This timeout is defined by multiplying the estimated

time it takes for the message to travel over one hop by a

delay factor. Based on the ideal distance combination ǫ, we
compute the primary delay factor pf of the flood for each

datanode di ∈ D as follows:

pf(i) = max{ei}∀i/ǫi − 1

When the delay factor is 0 then the flooding message gets

forwarded immediately.

To calculate the secondary delay factor sf we reverse the

order of the pf . The datanode di with the maximum pf will

have a secondary delay factor equal to the minimum pf . The
datanode dj with the minimum pf will have a secondary delay

factor equal to the maximum pf and so on. The intuition about

this is that the cheapest distance combinations will be the

ones with minimum values satisfying the triangle inequality

between the datanodes.

F. The dFNS algorithm

Here we describe the dFNS algorithm as general steps

taken inside the network. Assume each operator node has

some pre-specified criteria that decide whether an operator

placement update is needed or not. These criteria could involve

monitoring the change in the data loads of the datanodes,

the change in the location of the datanodes, the remaining

energy on the operator node, and estimations on whether an

operator placement update would be worth the cost overhead

for a cheaper query execution in the next epoch. What happens

after this decision is taken is described next and shown in

pseudocode in Algorithm 2.

Assume there is an operator placed on node h, that

sends/receives data from datanodes D. Thus, it knows the

data loads for every node in D. When the criteria of node h
to update the operator are met, node h becomes the leader

node and initiates the dFNS algorithm (Algorithm 2). It

calculates all candidate distance combinations using Algorithm

1. If the candidate distance combination set is empty, the

leader informs all datanodes that the new operator placement

has changed to b. Otherwise, if there are candidate distance

combinations for external nodes, the leader computes the

time-point to initiate flooding for synchronization. Without

synchronization variable speed flooding would not have the

desired effect. The leader sends a message to all datanodes

in D containing the time point to initiate the flooding and the

candidate distance combinations.

Using the candidate distance combination set, datanode di

can calculate the hosting cost cb of the best datanode. It

also can compute the minimum and maximum radius, and the

primary and secondary speed of its flood, described in Section

IV-E and IV-D respectively. di prepares a flooding message

that contains the cost threshold set to cb, the timeout needed

to realize the primary speed, the timeout needed to realize

the secondary speed, the minimum radius, and the maximum

radius of the food. di initiates its flooding at the given time-

point broadcasting its flooding message. All the candidate

nodes send their report to the leader. After all reports are

received, the leader calculates the best candidate node, informs

the datanodes about the new operator host and passes on any

information regarding the operator to the new host node.

Algorithm 2 . The general dFNS steps

Steps taken by leader node:

1: A = CDCGenerator(⊘, 0)
2: if A = ⊘ then

3: Place operator on b
4: else

5: Set timepoint t for initiating flood

6: m← t, A
7: send message m to D
8: end if

9: timeout until all candidate nodes have reported

10: choose best candidate as new operator host

11: inform datanodes about new operator host

12: send operator information to new operator host

Steps taken by each datanode di ∈ D:

1: compute minimum and maximum radius

2: compute primary and secondary speed

3: initiate flood at timepoint t

When an external node n receives a flooding message from

datanode di for the first time it stores it and performs a series

of checks. If n is not beyond the minimum radius then it just

forwards the message. Any consecutive receptions of the same

message are ignored. Otherwise, if n has received a message

from all the datanodes in D it can calculate its hosting cost

cn. If cn is smaller than the cost threshold contained in any

of the flooding messages, node n updates the cost threshold

inside every flooding message that was not yet forwarded and

172

stores cn. Also, n sets a timeout to report to the leader node

as a candidate node. A final check that node n performs when

receiving a message from datanode di is whether it is not on

the maximum radius so it can forward the message it received.

Every candidate node that has not reported yet to the

leader performs eves-dropping on its neighbors. When such a

candidate node receives a message containing a lower cost

threshold than its hosting cost, it cancels the timeout for

reporting to the leader node and withdraws its designation

as a candidate node. This way the number of candidate node

reports sent to the leader node are minimized. The pseudocode

is omitted due to lack of space.

G. Optimality of dFNS

Our algorithm always finds the node in the network that

minimizes the hosting cost as defined in objective function 1.

The dFNS algorithm is optimal

Proof:First, all possible distance combinations A, that have

a better hosting cost than the best datanode, are found using

Algorithm 1. This is true since the algorithm is exhaustive. The

radius for the flood of datanode di is set to the maximum value

of αi∀α ∈ A. This guarantees that all possible nodes with

distance combinations equal to the ones in the candidate set

A will be inside the intersection of all floods. This allows them

to calculate their hosting cost and become candidate nodes.

V. INITIAL OPERATOR PLACEMENT

Our distributed Fermat Node Search algorithm (dFNS) can

be used in any framework that optimizes continuous queries,

to always keep the operator placement optimal. In addition,

frameworks that are made to optimize snapshot queries can

be adapted for answering continuous queries by using dFNS.

The query execution is divided in epochs. As soon as the

query execution terminates, an operator node checks whether

its operator meets the placement update criteria. Details of

these criteria are orthogonal to this work. If those are met,

dFNS is triggered and the operator placement is optimized

before the next epoch. Note, that dFNS has no overhead

whatsoever during query execution. The overhead is most of

the time negligible even when an operator placement update

takes place. We have a communication cost overhead only in

the less frequent cases, where a flood is needed to find the

new optimal operator host.

Most of the previously proposed algorithms for initial op-

erator placement (Section II) are centralized, assuming global

knowledge of the network. When answering snapshot queries,

the initial placement should be as optimized as possible, which

cannot be achieved without collecting network information.

For continuous queries, however, the quality of the initial

operator placement is less of an issue, as the query executes

for several epochs. A rough initial placement is calculated with

the information that is locally present or is collected locally

without significant overhead, avoiding the collection of global

network knowledge. After the query execution in the first

epoch is over, we can check the criteria for each operator and,

if they are met, run dFNS to optimize the operator placement

for consecutive epochs.

We use the algorithm proposed in Chatzimilioudis et al

[5] for finding an initial operator placement. We exploit the

mandatory query dissemination to collect some information

about the network with minimum overhead. Every node, that

receives the query dissemination and has data needed for an-

swering the query, sends to the querying node its position and

a summary of its data. Techniques for building a summary of

small size and high information have been previously proposed

in the literature [17][18][19][20]. Using this information the

query node can roughly estimate the hop-distance between the

datanodes and the selectivity of each operator.

VI. EXPERIMENTAL EVALUATION

The experiments were run on an Intel Core2 Duo CPU at

2.5GHz with a 4GB RAM. We implemented the algorithms in

Java and used J-Sim [21] as our network simulator. We used

the energy model of J-Sim to account for the energy spent by

the network when transmitting data.

Comparison is done against the algorithm proposed by Zoe

Abrams and Jie Liu in [12], noted as GIG. The authors’

implementation was not available, so we reimplemented GIG

with clarifications from the authors. This algorithm needs two

parameters from the user in order to run: the radius α of the

initial flood and a function G() defining how the radius is

increased for each consecutive flood. Its performance heavily

depends on these parameters. For our experimental setup we

use the optimal values α = 1 and G(rnew) = rprevious + 1,
which are the same as in the original paper. Those choices

are optimal since most of the resulting networks have the

datanodes in close proximity and only a small flooding radius

of 1 or 2 hops is needed. We also implemented the variable

speed flooding function that is only suggested as a future

optimization in [12]. This function sets the flooding speed of

datanode i to be inversely proportional to the data load of

datanode i.
For the experiments we create a network with 512 nodes

randomly scattered in a physical space of size 1000x1000.

We randomly place the datanodes in a square region of size

200x200 at the center of the space. This is done so that the

flooding process can reach a large number of nodes without

hitting the edge of the network, and we get more accurate

results regarding the efficiency of the algorithms. This is the

same network setup as in [12].

We run experiments for m-ary operators with m = 2, 3, 4,
thus we have k = 3, 4, 5 datanodes respectively, showing the

efficiency of the compared algorithms. For each value of k we

run 80 simulations. The amount of the communication cost

overhead is immediately dependent on how far the datanodes

are from each other, since the further apart the bigger the

floods will have to be. Therefore, our experiments are grouped

by metric h. We sum the distances from the datanodes to the

Fermat node returned by the algorithm in the equation:

h =
∑

∀di∈D

|(di, f)|

173

Fig. 4. Number of nodes involved in the flooding process (minimum,
average and maximum value) using the same load for each datanode.
When lines are missing it means there were no simulation runs possible
for the combination of k and h values.

Fig. 5. Number of nodes involved in the flooding process (minimum,
average and maximum value) using the variable load for each datanode.
When lines are missing it means there were no simulation runs possible
for the combination of k and h values.

Fig. 6. Number of candidate nodes that report to the leader node. The less
candidates the less communication needed. Beneath the x-axis the group [0,4]
is divided into more detailed groups to show the distribution for dFNS.

Reproducing Experiments Of GIG

For the first set of experiments we copied the operator

migration experiments conducted in [12]. The authors used

the same data load w for all the datanodes and used three

metrics: number of nodes involved in the flooding process

(Figure 4), number of candidate nodes (Figure 6) and quality

of the first candidate (Figure 7). All figures denoted as “same

load runs” belong to the first set of experiments. We got

approximately the same results for the GIG algorithm as in

[12]. Our proposed algorithm (dFNS) outperforms GIG in this

first set of experiments.

In Figure 4 the minimum, average and maximum number of

nodes involved in the flooding process is shown when running

each algorithm for k = 3, 4, 5 datanodes. The simulation

runs are grouped by h, how far apart the datanodes are. For

each value of h the leftmost three lines belong to dFNS,

whereas the rightmost three lines belong to GIG. Some lines

are missing, since not all combinations of k and h are possible.

For example, when we have k = 5 distinct datanodes it is

impossible to find an operator node whose sum of distances

to the datanodes is less than 4, h < 4. We can have h = k−1
only if the Fermat node returned by the algorithm is one of

Fig. 7. Quality of the first candidate node encountered while flooding (or
the best of the first set). Quality is expressed by dividing the hosting cost of
the actual Fermat node to the first candidate. The closer the ratio is to 1 the
better the variable speed flooding function of the algorithm used.

the datanodes itself and every other datanode is only 1 hop

away from the Fermat datanode.

One would expect that GIG always involves less nodes in

its flooding than dFNS, since it stops flooding as soon as the

floods intersect for the first time. As Figure 4 shows, though,

dFNS has a far smaller mean value of the number of nodes

involved in flooding than GIG. All this can be attributed to the

fact that dFNS identifies the special cases where a datanode is

the Fermat node, and avoids flooding. Those are the frequent

cases where the number of nodes involved is zero.

For the second metric, we plot the number of candidate

nodes produced by each algorithm in a histogram in Figure 6.

The less candidate nodes, the fewer candidate node message

have to be sent to the leader node to decide on the best

candidate. We can see that dFNS has never more than 4
candidates. This happens because our algorithm looks for

candidates only in the intersection of its extended floods,

whereas GIG looks for candidates inside the whole union of

its floods. Below the x-axis the group of [0-4] candidate is

broken down just to show the distribution for our algorithm.

In Figure 7 we can see the quality of the first candidate.

The quality is expressed by the ratio λ equal to the hosting

cost of the actual Fermat node over the hosting cost of the first

candidate node found. If λ = 1 it means the first candidate

174

Fig. 8. Total energy consumed (minimum, average and maximum
value). When lines are missing it means there were no simulation runs
possible for the combination of k and h values.

Fig. 9. The maximum energy consumed by a single node (minimum,
average and maximum value). When lines are missing it means there
were no simulation runs possible for the combination of k and h values.

node is the actual Fermat node. The first time all floods

intersect, there are one or more candidate nodes inside the

intersection, which will all report to the leader. The one with

the best hosting cost is called the first candidate node. This

is how the first candidate is defined for both algorithms. The

quality of the first candidate depends solely on the variable

speed flooding function used. We can see that our variable

speed flooding function has always a better first candidate.

The simulations described so far were conducted solely for

the purpose of matching the experiments in [12], in order

to compare our algorithm head on against GIG. The second

set of experiments is a fairer comparison between the two

algorithms, since in real world applications the datanodes

usually have different data loads.

We run all of the above experiments again with variable

data loads. We varied the loads of the datanodes slightly with

a Gaussian distribution around weight w used in the previous

experiments. A greater variation in the loads would leave us

with only a few runs where no datanode is a Fermat node,

which is the only case where we can study these heuristics.

The results regarding the first metric can be seen in Figure 5.

We excluded the results for the other two metrics because the

result were identical to the “same load” simulations seen in

Figures 6 and 7.

Apart from better efficiency, dFNS also finishes faster since

it does not use incremental flooding, where the network is

flooded repeatedly until an intersection is found. dFNS floods

once to a predefined restricted neighborhood.

Actual Communication Cost Overhead

We also conducted our own experiments using as metrics

the total energy and the maximum energy per node consumed

for finding the new Fermat node. After all, this is what we

are trying to minimize with our algorithm. These are more

important metrics compared to the above and the ones that

actually define the performance of the algorithms.

Figures 8 and 9 show that dFNS clearly has a smaller energy

overhead for determining the optimal hosting node. GIG’s

TABLE I
PERCENTAGE OF SIMULATION RUNS WHERE A DATANODE IS THE OPTIMAL

NODE TO PLACE THE OPERATOR AND THUS NO FLOODING IS NEEDED

k = 3 k = 4 k = 5

same load 85% 84% 83%

variable load 68% 66% 56%

limited cost flooding results in reflooding the neighborhood

incrementally, thus yields a very big total energy cost. In

addition it refloods the whole flooding union to look for

candidate nodes. In our algorithm very often we do not need

to flood in the first place. This keeps the mean value of total

energy low. In the case where flooding is needed, our algorithm

might use slightly larger flood radii, but it floods only once,

and no further communication between nodes is needed to find

any candidate nodes.

To simulate the energy in the previous experiments, we used

the following parameters for our sensors: power consumption

for transmission 0.660 Watts and power transmission for

reception 0.395 Watts. The data rate of the radio is set to

19.2 kbps and the load of each transmission is 1Kb.

These differences are affected by the fact that dFNS takes

advantage of the cases where a datanode is a Fermat node in

order to save energy by avoiding flooding. We can see in Table

I that the majority of cases have a datanode that is the actual

Fermat node and thus we do not need to look any further for

the optimal operator placement.

How Good Is dFNS In Finding External Fermat Nodes

It is clear that our algorithm successfully identifies the

special cases where flooding can be avoided. Here we evaluate

our algorithm for the other case by collecting information only

from the simulation runs where the Fermat node is an external

node and flooding is needed (floody runs). Figures 10 and 11

show that dFNS still outperforms GIG, although the savings

are less significant compared to the cases where no flooding is

needed. Figure 10 shows the minimum, mean and maximum

175

Fig. 10. Total energy consumed (minimum, average and maximum
value) only for simulation runs that needed to use flooding in order to
find the Fermat node. When lines are missing it means there were no
simulation runs possible for the combination of k and h values.

Fig. 11. The maximum energy consumed by a single node (min, avg
and max value) only for simulation runs that needed to use flooding in
order to find the Fermat node. When lines are missing it means there
were no simulation runs possible for the combination of k and h values.

values of the total energy consumed for finding the external

Fermat node. Similarly, Figure 11 shows the minimum, mean

and maximum values of the maximum energy per node.

VII. SUMMARIZING OUR CONTRIBUTION

We present an optimal distributed algorithm to update the

placement of a single operator achieving minimum cost for

executing continuous queries. Our algorithm imposes minimal

communication cost overhead for finding the optimal node to

host the operator. Previous work in WSN has only proposed

approximate/heuristic algorithms. Besides the advantage of

optimality, our experiments show that the cost overhead of our

algorithm is reduced by 50%− 100% compared to previously

proposed techniques. Our distributed Fermat Node Search

algorithm (dFNS) can be used in any framework that optimizes

continuous queries and has specific criteria for triggering op-

erator placement updates. dFNS can be seamlessly integrated

to keep the operator placement optimal.

Acknoledgments: This work was supported by the SemsorGrid4Env

and the MODAP European Commission projects, the NSF IIS-0534781 grant,

NSF Award 0627191 and HKU 714907E from Hong Kong RGC

REFERENCES

[1] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in PODS ’05: Proceedings of the

twenty-fourth symposium on Principles of database systems. New York,
NY, USA: ACM, 2005, pp. 250–258.

[2] N. Jain, R. Biswas, N. Nandiraju, and D. Agrawal, “Energy aware
routing for spatio-temporal queries in sensor networks,” Wireless Com-

munications and Networking Conference, 2005 IEEE, vol. 3, pp. 1860–
1866 Vol. 3, March 2005.

[3] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
control of extreme-scale stream processing systems,” in ICDCS ’06:

Proceedings of the 26th IEEE International Conference on Distributed

Computing Systems. Washington, DC, USA: IEEE Computer Society,
2006, p. 71.

[4] A. Pathak and V. K. Prasanna, “Energy-efficient task mapping for data-
driven sensor network macroprogramming,” in DCOSS ’08: Proceedings

of the 4th IEEE international conference on Distributed Computing in

Sensor Systems. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 516–
524.

[5] G. Chatzimilioudis, H. Hakkoymaz, N. Mamoulis, and D. Gunopulos,
“Operator placement for snapshot multi-predicate queries in wireless
sensor networks,” in MDM 2009: Proceedings of the 10th International

Conference on Mobile Data Management, May 2009. [Online].
Available: http://www.cs.ucr.edu/ gchatzim/snapMPQ.pdf

[6] L. Ying, Z. Liu, D. F. Towsley, and C. H. Xia, “Distributed operator
placement and data caching in large-scale sensor networks,” in INFO-

COM. IEEE, 2008, pp. 977–985.
[7] A. Deshpande, Z. G. Ives, and V. Raman, “Adaptive query processing,”

Foundations and Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.
[8] K. Oikonomou, I. Stavrakakis, and A. Xydias, “Scalable service migra-

tion in general topologies,” A World of Wireless, Mobile and Multimedia

Networks, International Symposium on, vol. 0, pp. 1–6, 2008.
[9] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator place-

ment for in-network query processing,” Telecommunication Systems,
vol. 26, no. 2-4, pp. 389–409, 2004.

[10] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. I. Seltzer, “Network-aware operator placement for stream-processing
systems,” in ICDE, 2006, p. 49.

[11] R. L. F. Pitu B. Mirchandani, Discrete Location Theory. New York,
NY, USA: Wiley, July 1990.

[12] Z. Abrams and J. Liu, “Greedy is good: On service tree placement
for in-network stream processing,” Distributed Computing Systems,

International Conference on, vol. 0, p. 72, 2006.
[13] E. Weiszfeld, “Sur le point pour lequel la somme des distances de n

points donnes est minimum,” in Tohoku Mathematics Journal, vol. 43,
1937, p. 355386.

[14] I. Greenberg and R. A. Robertello, “The three factory problem,” in
Mathematical Association of America, 1965.

[15] A. Deshpande, C. Guestrin, and S. Madden, “Model-based querying
in sensor networks,” in Encyclopedia of Database Systems, L. Liu and
M. T. Özsu, Eds. Springer US, 2009, pp. 1764–1768.

[16] A. Deshpande, “Prdb: Managing large-scale correlated probabilistic
databases (abstract),” in SUM, ser. Lecture Notes in Computer Science,
L. Godo and A. Pugliese, Eds., vol. 5785. Springer, 2009, p. 1.

[17] C. Estan and J. Naughton, “End-biased samples for join cardinality
estimation,” Data Engineering, 2006. ICDE ’06. Proceedings of the 22nd

International Conference on, pp. 20–20, April 2006.
[18] R. J. Lipton, J. F. Naughton, and D. A. Schneider, “Practical selectivity

estimation through adaptive sampling,” 1990, pp. 1–11.
[19] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, “Spatio-temporal

aggregation using sketches,” in ICDE. IEEE Computer Society, 2004,
pp. 214–226.

[20] B. H. Bloom, “Space/time tradeoffs in hash coding with allowable
errors,” Comm. of the ACM, vol. 13, no. 7, p. 422, July 1970.

[21] J. Kacer, “Discrete event simulations with j-sim,” in IRE ’02:

Proceedings of the second workshop on Intermediate Representation

Engineering for virtual machines, 2002, Maynooth, County Kildare,
Ireland, 2002, pp. 13–18. [Online]. Available: http://j-sim.cs.uiuc.edu/

176

