
Title Reducing UK-means to k-means

Author(s) Lee, SD; Kao, B; Cheng, R

Citation
The 7th IEEE International Conference on Data Mining (ICDM)
Workshops 2007, Omaha, NE., 28-31 October 2007. In
Proceedings of the 7th ICDM, 2007, p. 483-488

Issued Date 2007

URL http://hdl.handle.net/10722/129555

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37953816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reducing UK-means to K-means

S. D. Lee Ben Kao

Department of Computer Science

The University of Hong Kong

sdlee,kao@cs.hku.hk

Reynold Cheng

Department of Computing

Hong Kong Polytechnic University

csckcheng@comp.polyu.edu.hk

Abstract

This paper proposes an optimisation to the UK-means

algorithm, which generalises the k-means algorithm to han-

dle objects whose locations are uncertain. The location of

each object is described by a probability density function

(pdf). The UK-means algorithm needs to compute expected

distances (EDs) between each object and the cluster repre-

sentatives. The evaluation of ED from first principles is very

costly operation, because the pdf’s are different and arbi-

trary. But UK-means needs to evaluate a lot of EDs. This

is a major performance burden of the algorithm. In this pa-

per, we derive a formula for evaluating EDs efficiently. This

tremendously reduces the execution time of UK-means, as

demonstrated by our preliminary experiments. We also il-

lustrate that this optimised formula effectively reduces the

UK-means problem to the traditional clustering algorithm

addressed by the k-means algorithm.

1. Introduction

Clustering of uncertain data has recently attracted inter-

ests from researchers. This is driven by the need of applying

clustering techniques to data that are uncertain in nature,

and a lack of clustering algorithms that can cope with the

uncertainty. Uncertainty in data arises naturally due to ran-

dom errors in physical measurements, data staling, as well

as defects in the data collection models. For instance, when

track locations with GPS devices, the reported location can

have errors of a few metres. When attempting to cluster the

location of objects tracked using GPS, the errors may affect

the clustering result.

Traditional clustering approaches model objects as hav-

ing accurately known positions. This model does not cope

well with uncertain data. It does not take into account the

uncertainty inherent in the data, andmay lead to undesirable

clustering results because information on the uncertainty is

dropped.[1] Owing to this shortcoming as well as the prac-

tical need to deal with data with uncertainty, there has been

growing interest in developing problem models and algo-

rithms to handle uncertain data.[1, 5, 3, 4]

In this paper, we study the problem of clustering objects

with multi-dimensional uncertainty. We are given a set of

objects, for which we do not know the locations accurately.

Rather than a single point in space, the location of each ob-

ject is represented by a probability density function (pdf)

over the space Rm being studied. Given a set of such ob-

jects, we want to divide them into k clusters, minimising the

total expected distance (ED) from the objects to their clus-

ter centres. We focus on the case where ED is defined using

MSE (mean squared error). [1]

This problem was first proposed in [1], in which the UK-

means algorithm was proposed to solve it. This is a gen-

eralisation of the traditional k-means algorithm to handle

objects with uncertain locations. The major computational

cost of the algorithm is the evaluation of the EDs, which in-

volves numerical integration using a large amount of sam-

ple points for the pdf’s. To improve the efficiency of UK-

means, [5] introduced some pruning techniques to avoid

many ED computations. The pruning techniques make use

of the bounding boxes as well as the triangle inequality to

establish lower- and upper-bounds of the ED. Using these

bounds, some candidate assignments of clusters to objects

are eliminated, and hence the corresponding ED calcula-

tions can be avoided. But these techniques do not reduce

the cost of each ED computation. Further, the pruning ef-

fectiveness is not guaranteed, as it depends on the distribu-

tion of data.

In this paper, we aim at boosting the performance of UK-

means not by pruning, but by deriving a simple formula for

ED computations so that the cost of these computations can

be tremendously reduced. The inspiration comes from the

calculation of the moment of inertia of rigid bodies in the

field of mechanics.[2] Calculating the moment of inertia of

an object based on the definition is costly. However, there

exist theorems to simplify such computations. We use simi-

lar ideas to simplify ED computations. Upon further analy-

sis, we realize that applying this optimisation to UK-means

effectively reduces it to k-means. This means that it is pos-

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.40

483

sible to perform clustering on uncertain data using the tra-

ditional k-means algorithm, producing the same clustering

results as UK-means.

The rest of the paper is organised as follows. We will

mention a few related works in Section 2. In Section 3, we

formally define the problem. In Section 4, we derive an

efficient formula for ED computations. Preliminary exper-

iments supporting our claim are presented in Section 5. In

Section 6, we discuss about some restrictions of this new

technique and we conclude this paper in Section 7.

2. Related Works

The UK-means algorithm was first proposed in [1] for

solving the problem that we are studying. This is an ex-

tension of the well known k-means algorithm to handle the

uncertain data. Like k-means, UK-means is an iterative al-

gorithm. Initially, the cluster centres are assigned arbitrary

points in the vector space Rm. (These arbitrary points may

be randomly generated, or heuristically determined using

domain knowledge.) Then following two steps are repeated

until the solution converges. In step 1, each object in ques-

tion is assigned to the cluster whose centre is the closest to

that object. In step 2, each cluster centre is recalculated as

the centre of mass of the objects assigned to it.

The major differences between UK-means and k-means

is in step 1. Traditionally, k-means determines the clos-

est cluster to an object based on a distance function d(~x, ~y)
(where ~x, ~y ∈ Rm). UK-means uses instead the expected

distance ED(o, ~y) defined between an uncertain object o and
any point ~y ∈ Rm. ED is defined as an integral involving

d(~x, ~y) and the probability density function, which can be
arbitrary, for the object in question. Evaluating the integral

is computationally costly, as it involves many computations

of d(~x, ~y) (for many sample points ~x for the object). Fur-

ther, UK-means has to evaluate ED for every possible pair

of objects and clusters in each iteration. The cost of ED

computation thus creates a performance bottleneck for the

UK-means algorithm.

Since the computation cost of UK-means is mainly con-

tributed by the great amount of ED calculations, pruning

techniques [5] called MinMax have been proposed to re-

duce the number of ED calculations. These work by us-

ing fast methods to find upper bounds and lower bounds of

the ED between an object and a cluster. The idea is that

if the lower bound of ED(oi,~cp) (i.e. expected distance
between object oi and cluster centre ~cp) is strictly greater

than the upper bound of ED(oi,~cq), then we are sure that
ED(oi,~cp) > ED(oi,~cq). Since step 1 of UK-means se-
lects the closest cluster to oi, cluster p will not be selected.

We can thus prune away cluster p from consideration for

oi. With the help of the bounds, there is no need to evalu-

ate ED(oi,~cp), thus saving the cost of its computation. The

more candidates that can be pruned this way, the more time

savings can be achieved. [5] proposes various ways to find

bounds on ED quickly. These include using the minimum

bounding box of an object, and using the triangle inequality.

In this paper, we are not proposing new pruning techniques

for UK-means. Rather, we speed up step 1 by optimising

the ED computation.

In mechanics, themoment of inertia of a rigid body about

an axis of rotation is an interesting quantity for studying its

rotational motion. This quantity appears in the formulae

for angular moment, relation between torque and angular

acceleration, as well as rotational kinetic energy.[2] In par-

ticular, for a planar objectO, its moment of inertia I~y about

an axis, which passes through point ~y and is perpendicular

to the object, is defined as:

I~y =

∫

~x∈O

‖~x − ~y‖
2
ρ(~x) d~x (1)

where ρ(~x) is the density of the object at the point ~x, and ‖·‖
is the Euclidean norm. Computing the moment of inertia

using this formula is tedious. So, physicists have derived,

among others, the parallel axis theorem, which says that

I~y = I~k
+ M

∥

∥

∥~y − ~k
∥

∥

∥

2

(2)

where ~k is the centre of gravity of O and M is its mass.

So, once I~k
has been pre-computed, we can determine I~y

efficiently for any ~y ∈ R2. (As a further optimisation,

tables containing formulae for I~k
of standard shapes have

been published. One can thus avoid performing integration

completely when computing the moment of inertia about

any axis when considering objects of standard shapes or a

combination of them.) Since Equation (1) resembles Equa-

tion (6) below, similar techniques can be developed for

computing ED efficient.

3. Definitions

Consider a set of objects O = {o1, . . . , on} in m-

dimensional space Rm with a distance function d : Rm ×
Rm → R giving the distance d(~x, ~y) ≥ 0 between any
points ~x, ~y ∈ Rm. Associated with each object is a pdf

fi : Rm → R, which gives the probability density of oi at

each point ~x ∈ Rm. By the definition of pdf, we have (for

all i = 1, . . . , n)

fi(~x) ≥ 0 ∀~x ∈ Rm

∫

~x∈Rm

fi(~x) d~x = 1 (3)

We define the expected distance between object oi and

any point ~y ∈ Rm as:

ED(oi, ~y) =

∫

~x∈Rm

d(~x, ~y)fi(~x) d~x (4)

484

In this paper, we follow a suggestion in [1] and consider

only the mean squared error (MSE) for ED. This means

that we consider the case where d(~x, ~y) = ‖~x − ~y‖2 = (~x−
~y) · (~x − ~y) (based on the square of Euclidean norm). This
is different from [5], which uses the Euclidean norm, i.e.

d(~x, ~y) = ‖~x − ~y‖.

Now, given an integer constant k, the problem of clus-

tering uncertain data is to find a set of cluster representative

points C = {~c1, . . . ,~ck} and a mapping h : {1, . . . , n} →
{1, . . . , k} so that the objective function—total expected
distance (TED)—is minimised:

TED =

n
∑

i=1

ED(oi,~ch(i)) (5)

4. Computing the Expected Distance

Since we are considering Euclidean distance, we can

rewrite Equation (4) as:

ED(oi, ~y) =

∫

~x∈Rm

‖~x − ~y‖
2
fi(~x) d~x (6)

i.e. ED is actually the secondmoment. Note its resemblance

to Equation (1) for the moment of inertia. This suggests

that we may be able to find a simple formula for ED resem-

bling Equation (2), similar to the parallel axis theorem. The

derivations should be similar, too.

4.1. A simple formula for Expected Dis-
tance

First of all, for each uncertain object oi, define the cen-

troid ~ki as:

~ki =

∫

~x∈Rm

fi(~x) ~x d~x (7)

which is a vector in Rm. Now, we ask: What is the dif-

ference between ED(oi, ~ki) and ED(oi, ~y), for any arbitrary
~y ∈ Rm?

ED(oi, ~y) − ED(oi, ~ki)

=

(∫

~x∈Rm

‖~x − ~y‖
2
fi(~x) d~x

)

−

(∫

~x∈Rm

∥

∥

∥
~x − ~ki

∥

∥

∥

2

fi(~x) d~x

)

=

∫

~x∈Rm

(

‖~x − ~y‖
2
−
∥

∥

∥~x − ~ki

∥

∥

∥

2
)

fi(~x) d~x

(8)

Now, note that

‖~x − ~y‖2

=
∥

∥

∥(~x − ~ki) − (~y − ~ki)
∥

∥

∥

2

=
[

(~x − ~ki) − (~y − ~ki)
]

·
[

(~x − ~ki) − (~y − ~ki)
]

= (~x − ~ki) · (~x − ~ki) + (~y − ~ki) · (~y − ~ki)

−2(~y − ~ki) · (~x − ~ki)

=
∥

∥

∥~x − ~ki

∥

∥

∥

2

+
∥

∥

∥~y − ~ki

∥

∥

∥

2

− 2(~y − ~ki) · (~x − ~ki)

(9)

Equation (9) is actually the cosine rule for triangles, ex-

pressed in vector form (and extended to Rm). Rewriting

it as:

‖~x − ~y‖
2
−
∥

∥

∥~x − ~ki

∥

∥

∥

2

=
∥

∥

∥~y − ~ki

∥

∥

∥

2

− 2(~y −~ki) · (~x−~ki)

and substituting this into Equation (8), we get:

ED(oi, ~y) − ED(oi, ~ki)

=

∫

~x∈Rm

(

∥

∥

∥~y − ~ki

∥

∥

∥

2

− 2(~y − ~ki) · (~x − ~ki)

)

fi(~x) d~x

=
∥

∥

∥~y − ~ki

∥

∥

∥

2
∫

~x∈Rm

fi(~x) d~x

−2

∫

~x∈Rm

((~y − ~ki) · (~x − ~ki))fi(~x) d~x

=
∥

∥

∥~y − ~ki

∥

∥

∥

2

− 2(~y − ~ki) ·

∫

~x∈Rm

fi(~x)(~x − ~ki) d~x

(10)

by virtue of Equation (3). Let us concentrate on the integral:
∫

~x∈Rm

fi(~x)(~x − ~ki) d~x

=

∫

~x∈Rm

fi(~x)~x d~x − ~ki

∫

~x∈Rm

fi(~x) d~x

= ~ki − ~ki

= ~0 (11)

because the first integral equals ~ki by Equation (7) whereas

the second integral is equal to unity because of Equation (3).

Now, substituting Equation (11) back into Equation (10),

we get: ED(oi, ~y) − ED(oi, ~ki) =
∥

∥

∥~y − ~ki

∥

∥

∥

2

. Rearranging

the terms, we get an analogue of the parallel axis theorem

(Equation (2)):

Theorem 1 For any uncertain object oi and any point ~y ∈
Rm,

ED(oi, ~y) = ED(oi, ~ki) +
∥

∥

∥~y − ~ki

∥

∥

∥

2

(12)

485

Therefore, once we have pre-computed, ~ki and ED(oi, ~ki),

we can find any ED(oi, ~y) by simply adding
∥

∥

∥
~y − ~ki

∥

∥

∥

2

=

d(~y,~ki) to ED(oi, ~ki), without the need of evaluating the
probability density function fi again. Since d(~x, ~y) is rela-
tively cheap to compute (when compared to evaluating ED

from first principles), this formula allows us to compute ED

efficiently. This result holds for any object oi.

Besides facilitating computation, Equation (12) also tells

us that ED(oi, ~y) attains its minimum value at the centroid

(i.e. when ~y = ~ki), and is not bounded from above. Note

that unlike the parallel-axis theorem (and similar theorems

for the moment of inertia), which is applicable only in 3D

space, Theorem 1 holds for any Euclidean space Rm where

m is an integer.

Now, we can modify the UK-means algorithm to cluster

the objects oi easily. First of all, we calculate once-for-all

the values of ~ki and ED(oi, ~ki) for all i = 1, . . . , n. Then,

we proceed with UK-means, but calculate all ED(oi, ~y) us-
ing Equation (12) instead of Equation (4). In this way, we

can calculate ED(oi, ~y) efficiently, without even the need to
access the pdf fi of each object. In practice, the pdf is usu-

ally represented as a set of sample points with probabilities

stored in file system or database. Using Equation (12) thus

saves the cost of accessing such information.

4.2. Reduction to k-means Clustering

Applying Theorem 1 to the definition (Equation (5)) of

our objective function, we get:

TED =
n
∑

i=1

ED(oi,~ch(i))

=

n
∑

i=1

(

ED(oi, ~ki) +
∥

∥

∥~ch(i) − ~ki

∥

∥

∥

2
)

=

(

n
∑

i=1

ED(oi, ~ki)

)

+

(

n
∑

i=1

∥

∥

∥~ch(i) − ~ki

∥

∥

∥

2
)

Note that the first term above is a constant, because our set

of objects oi and their pdf’s fi are fixed. Therefore, the

solution of the clustering problem would be the same if we

use the following adjusted objective function F instead of

TED:

F = TED−

n
∑

i=1

ED(oi, ~ki) =

n
∑

i=1

∥

∥

∥~ch(i) − ~ki

∥

∥

∥

2

The advantage of using F instead of TED as the objective

function is that we no longer need to consider ED(oi, ~ki)
at all. All we need as input are the locations of the object

centroids ~ki.

What does this mean? If we use F as the objective func-

tion, then we are minimising the total squared distance from

the cluster centres to the object centroids. This is equivalent

to running k-means to cluster n points in Rm whose loca-

tions coincide with the object centroids ~ki. Therefore, we

have reduced the problem of clustering uncertain objects to

the classical problem of clustering point objects (with ac-

curately known locations). We can thus reuse the classical

k-means algorithm, by using the centroids ~ki of the original

objects oi as the input points. All the nice properties of the

k-means algorithm apply, e. g. convergence and all sorts of

optimisations that have been studied in the literature.

So, we have a new method of solving the problem of

clustering uncertain objects. First, we pre-process the data

to compute the centroids ~ki of each object oi. Then, we feed

these ~ki to the classical k-means algorithm and get back

the clustering result. We call this the CK-means algorithm.

From the arguments above, we should expect CK-means to

give identical clustering results (i.e. the assignment func-

tion h and the cluster centres cj) as UK-means when given

the same input objects oi and the same number of clusters

k. Furthermore, if both algorithms are given the same set of

initial cluster centres cj , they will give the same intermedi-

ate results h and cj at the end of each iteration.

5. Experiments

Both the UK-means and CK-means algorithms have

been implemented in C++. The programs are compiled

using GCC 4.1.2 with optimisations turned on. They are

run on a Pentium-4 2.26GHz machine with 512MB of main

memory running Linux kernel 2.6.20.7.

Following [1], we generated data sets with n uncertain

objects in two dimensional space. For each uncertain ob-

ject, a point is generated randomly in [0, 100]× [0, 100]. A
bounding box of side length d = 10.0 centred at this point
is then considered. A total of s = 1000 sample points are
randomly generated inside the bounding box, each associ-

ated with a probability value, a uniformly distributed ran-

dom value between 0 and 1. These s probability values are

then normalised to make the sum equal to 1. So, each object

is associated with s sample points representing a pdf. Next,

k random points are generated in [0, 100]× [0, 100]. These
are used as the seeding clustering representatives for both

UK-means and CK-means.

Many sets of data are generated by varyingn and k. Each

set of data generated in this way is then given to the algo-

rithmsUK-means and CK-means to do clustering. The CPU

time taken by each algorithm is measured. The I/O time

taken is roughly the same for both algorithms, and are very

small in value. So, it is not shown in the following pages.

An important observation, which verifies our theoretical

results above, is that for any data set, both algorithms fin-

ishes in the same number of iterations. In addition, all in-

termediate results (assignment of clusters to objects as well

486

as the cluster centres computed) are identical between both

algorithms. This confirms the validity of Theorem 1 and the

correctness of our implementation.

5.1. Effect of number of objects

The first set of experiments is performed with a data sets

with varying number of objects (n) and a fixed number of

clusters k = 20. The results are shown in Figure 1. The

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200

0 200 400 600 800 1000
0

5

10

15

20

iterations

centroid

CKmeans
UKmeans

n = number of objects

n
u
m

b
er

o
f
it
er

a
ti
o
n
s

C
P

U
ti
m

e
(s

ec
o
n
d
s)

Figure 1. Effects of n

curves for UK-means and CK-means show the CPU-time

taken by the two algorithms. Note that these are plotted

in logarithmic scale, and the values should be read using

the scale on the left edge of the figure. The time for CK-

means already includes the time taken for pre-computing

the centroids. However, for reference, we have also plotted

the time taken for pre-computing the centroids separately

in the figure. In addition, we also plotted the number of

iterations taken. But this curve is plotted using linear scale,

and its values should be read off from the right edge of the

figure.

The results show that CK-means is 57–375 times faster

than UK-means. The higher the value of n, the bigger the

speed up is. The speedup would be even bigger, had we as-

sumed that the centroids were computed offline and hence

deducted the time spent on the computation of the cen-

troids from the time taken by CK-means. The cost savings

of using CK-means is obvious, because ED computations

are entirely eliminated. CK-means actually spends most of

its time on the pre-computation of the centroids, which in-

volves evaluating the integral in Equation (7) using the sam-

ple points of each object . Once the centroids are computed,

CK-means takes little extra time to perform the clustering.

Note that the amount of time spent on centroid computa-

tions is relatively small, when compared to the time taken

by UK-means. It is 1.7% for n = 50. This percentages de-
crease as n increases, because the centroids are computed

only once, and then reused in all iterations. As n increases,

this percentage decreases and reaches as low as 0.24% at

n = 1000 in our experiments. As the number of iterations
in general increases with n, the cost of centroid computa-

tions per object per iteration decreases with n.

5.2. Effect of number of clusters

In the next set of experiments, we fixed the number of

objects n = 1000 and varied k, the number of clusters to

find. The results are shown in Figure 2. CK-means is 19.9–

0 10 20 30 40

0.5

1

2

5

10

20

50

100

200

500

0

10

20

30

iterations

centroid

CKmeans
UKmeans

k = number of clusters

n
u
m

b
er

o
f
it
er

a
ti
o
n
s

C
P

U
ti
m

e
(s

ec
o
n
d
s)

Figure 2. Effects of k

796 times faster than UK-means. The time taken for cen-

troid computations is roughly 0.45s for all these cases. This

is because the number of objects is fixed. So, the number of

centroid calculations does not vary. The general trend ob-

served is that as k increases, the number of iterations needed

also increases, and the savings of CK-means increases, be-

cause per-iteration cost of centroid computations decreases.

5.3. Effect of number of dimensions

We have repeated the above experiments using 5 dimen-

sions instead of 2. Again, we first fixed k and varied n

from 50 to 1000. Then, we fixed n and varied k from

2 to 40. The results are similar to the experiments per-

formed in 2D space: CK-means consistently outperforms

UK-means significantly, saving 96.6%–99.8%of CPU time.

This means CK-means is 29.8–605 times faster than UK-

means. The time taken for centroid computations in CK-

means is always around 0.5ms per object. The number of

dimensions has little effect on the percentage improvement

of CK-means over UK-means.

487

5.4. Effect of number of samples

Finally, we studied the effects of the number of samples

by varying s from 1000 to 5000 and keeping n = 1000,
k = 20. We used 2-dimensional data in this set of experi-
ments. The results are plotted in Figure 3. From the graph,

1000 2000 3000 4000 5000

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

0

10

20

30

iterations

centroid

CKmeans
UKmeans

s = number of samples per object

n
u
m

b
er

o
f
it
er

a
ti
o
n
s

C
P

U
ti
m

e
(s

ec
o
n
d
s)

Figure 3. Effects of s

we can see that as s increases, both UK-means and CK-

means take more time to finish. This is because a larger

s means a higher cost of evaluating the integral in Equa-

tion (4). Since UK-means performs many ED calculations,

a larger s causes it to take more time. As for CK-means,

we note that the only step that is affected by s is the com-

putation of the centroids according to Equation (7). The

more the number of samples per object, the higher the cost

of centroid computations are. This can be confirmed from

the curve for centroid calculations in this graph. CK-means

consistently and significantly outperforms UK-means. It is

306–527 times faster than UK-means.

6. Discussions

Theorem 1 allows us to evaluate ED in an efficient man-

ner. Further it also holds for vector spaces of any finite num-

ber of dimensions. The only restrictions are that

1. we use the mean squared error (MSE) for the definition

of ED; and

2. the distance function is based on Euclidean norm.

While these restrictions are strong, we argue that in most

cases in practice, these restrictions are satisfied. First of

all, the MSE is widely used in other algorithms, too, be-

cause it is easier to compute than mean distance, and gives

results similar to using mean distance. As for the distance

being based on Euclidean norm, we note that this is the de-

sirable norm to use when considering spatial problems, be-

cause the Euclidean norm ‖ · ‖2 is rotation-invariant. Many

other norms, such as Manhattan norm ‖ · ‖1 or maximum

norm ‖ · ‖∞, are not rotation-invariant. Norms that change
upon rotation may be useful in some problem settings, but

for spatial data, we argue that Euclidean norm is the most

desirable and widely used norm.

7. Conclusion

This paper studies the clustering of uncertain data inm-

dimensional Euclidean space. We have derived a simple

formula for computing expected distances efficiently. This

formula has been applied to the UK-means algorithms and

empirically shown to reduce its computation time by over

95%. This corresponds to a speed up of at least 20 times.

The problem of clustering a set of n objects with only a

probabilistic knowledge of their locations inm-dimensional

Euclidean space has been successfully reduced to the clus-

tering of a set of n points. These n points are the centroid,

or mean position, of those n objects.

In the future, we would investigate on relaxing the re-

strictions discussed in Section 6. It would be interesting if

we can extend these results to non-Euclidean norms, as well

as using mean distance for the definition of ED.

References

[1] M. Chau, R. Cheng, B. Kao, and J. Ng. Uncertain data min-

ing: An example in clustering location data. In Proceedings

of the 10th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD 2006), volume 3918 of Lecture

Notes in Computer Science, pages 199–204, Singapore, 9–12

Apr. 2006. Springer.
[2] R. D. Gregory. Classical Mechanics: An undergraduate text.

Cambridge University Press, 2006. ISBN: 0521826780.
[3] H.-P. Kriegel and M. Pfeifle. Density-based clustering of un-

certain data. In Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, pages 672–677, Chicago, Illinois, USA, 21–24 Aug.

2005. ACM.
[4] H.-P. Kriegel and M. Pfeifle. Hierarchical density-based clus-

tering of uncertain data. In Proceedings of the 5th IEEE In-

ternational Conference on Data Mining (ICDM 2005), pages

689–692, Houston, Texas, USA, 27–30 Nov. 2005. IEEE

Computer Society.
[5] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and

K. Y. Yip. Efficient clustering of uncertain data. In Proceed-

ings of the 6th IEEE International Conference on Data Min-

ing (ICDM 2006), pages 436–445, Hong Kong, China, 18–22

Dec. 2006. IEEE Computer Society.
[6] D. Pfoser and C. S. Jensen. Capturing the uncertainty of

moving-object representations. In Proceedings of the 6th

International Symposium Advances in Spatial Databases,

(SSD’99), volume 1651 of Lecture Notes in Computer Sci-

ence, pages 111–132, Hong Kong, China, 20–23 July 1999.

Springer.

488

