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Abstract 

With the advent of fast growing Internet and World Wide Web (the Web), more and more 

companies enhance the business competitiveness by conducting electronic commerce. At the 

same time, more and more people gather or process information by surfing on the Web.  

However, due to unbalanced Web traffic and poorly organized information, users suffer from 

slow communication and disordered information. To improve the situation, information 

providers can analyze the traffic and Uniform Resource Locator (URL) counters to adjust the 

information layering and organization; nevertheless, heterogeneous navigation patterns and 

dynamic fluctuating Web traffic complicate the improvement process. Alternatively, 

improvement can be made by giving direct guidance to the surfers in navigating the Web sites. In 

this paper, information retrieval on a Web site is modeled as a Markov chain associated with the 

corresponding dynamic Web traffic and designated information pages. We consider four models 

of information retrieval based on combination of the level of skill or experience of the surfers as 

well as the degree of navigation support by the sites. Simulation is conducted to evaluate the 

performance of the different types of navigation guidance. In addition, we evaluate the four 

models of information retrieval in terms of complexity and applicability. The paper concludes 

with a research summary and a direction for future research efforts.  

 

Keywords: Stochastic shortest path, Web, navigation 
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1. INTRODUCTION 

Information plays an indispensable role in the world. The network and information systems have 

changed the way people communicate with each other as well as expedited the process to obtain 

the information that matches their interests. Everyday hundreds of millions of transactions flow 

through the network all over the world. Any information can be transferred from one place to 

another only within few seconds. Together with the growth of the needs of information, the web 

pages on the Internet grow explosively during the past few years and such increase is expected to 

be more acute going forward. 

 

The abundance of the URL's apparently creates a great value for all the visitors by allowing them 

to retrieve comprehensive information from the Web. Web page owners, at the same time, benefit 

from the advertisement opportunities when visitors surf their web pages. However, any lack of 

organization of the voluminous information may encumber the searching performance. Visitors 

spend astounding amount of time in navigating through the useless or redundant pages. To tackle 

the problem, Web page owners need to invest to update and reorganize the information for their 

Web pages on an on-going basis. As a result, there are questions concerning both the visitors and 

Web page owners that need to be answered: What do Web page owners need to take into account 

in addition to the Web pages (i.e. information content) in the design of Web site? How can be 

enhanced on the Web site to improve information retrieval? How to justify the requirement, 

necessity, and cost for such improvements? How to balance the cost and benefit of such 

improvements? In answering these questions, research has been conducted in three areas: (1) 

Web site customization based on the user access information; (2) agents based intelligence search 

for information retrieval and discovery; and (3) intelligence browser and the collection of user 

information.  

 

Perkowitz and Etzioni [1-2] propose an Artificial Intelligence approach to create the Adaptive 

Web Site, which can improve the site organization based on the user access log with the 

assumption that each originating computer corresponds to a particular user. Yan et al. [3] propose 

the use of access patterns to generate hyperlinks, which are captured in the access log and 

analyzed offline in an interval basis, to improve the information access. Wang el al. [4] propose a 

personalized filtering model to filter and rank the product information with linear functions on 

the user preference. Chen and Kuo [6] propose a personalized information retrieval system based 



 

 3

on the user profile modeled as the Semantic Relevance (SR) and Co-occurrence (CO) of 

keywords to capture the real meaning of user query. 

 

The research in the second area focuses on seeking for the information on the Internet. Cheung et 

al. [5] propose a model of four-level classification tool of learning the behavior of both 

information user and information source. Chang el al. [7] present a Site Traveling Algorithm 

(STA) to discover the relevant information, in which the relevance of the retrieved document is 

evaluated with the content popularity and richness (CPR). Yang el al. [8] present the 

development of intelligent personal Internet agent based on automatic textual analysis of Internet 

document and hybrid simulated annealing algorithm. Tu and Hsiang [9] propose an Interactive 

Information Retrieval (IIR) agent architecture to handle group knowledge and preference, and to 

keep track of the individual user profile. Teng et al. [10] propose a scalable method for parallel 

processing in both information crawling/gathering and processing. 

 

The third area of research concerns navigation assistance for user during the browsing process. 

Joachims et al. [11] introduce the Web-Watcher, based on a learning approach with user feedback 

to improve the quality of interactive navigation advice. Similarly, Liaberman [12] introduces the 

intelligent agent, Letiza, which works with conventional web browsers to keep track of the user 

browsing behavior and interests. Furthermore, Berghel et al. [13] present a web browser called 

the “Cyberbrowser” to customize the information access to the content within the web page, 

which include keyword and sentences extraction according to user selection. Lin et al. [14] 

describe an approach for capturing user access patterns on the Web by addressing the limitation 

of the Web servers which only recognize the proxy servers instead of the individual users. 

Richardson [15] does a comparison on the existing tools to gather the access information on the 

Internet, such as visitor counter and guest book. 

 

The literature above shows the modeling of the information retrieval mostly is based on database 

models and data mining techniques. The analysis centers on the user behavior patterns largely for 

the global Web information retrieval. There are few studies for the analysis on site structure for 

information retrieval as optimization problems. There are two types of models for problem 

formulation – deterministic models and stochastic models.  
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Gibson et al. [16] and Chakrabarti et al. [17] define the Web sites as “authorities” and “hub” in 

isolation and conclude that a respected authority is a page that is referred to by many good hubs 

and a useful hub is a location that points to many valuable authorities. Donato et al. [18] mine 

the inner structure of the Web graph and propose a series of measurements on the Web. They 

find that graph does not exhibit self similarity within its components and their inner structure is 

quite distinct. Chakrabarti et al. [19] develop algorithms that exploit the hyperlink structure of 

the Web for information discovery and categorization, the construction of high quality resource 

lists, and the analysis of on-line hyperlinked communities. Eiron and McCirley [20] investigate 

the construction of data models of the Web that capture the hierarchical nature of the Web and 

some crucial features of the link graph. Yen [21] defines four types of Web page accessibility 

models proposes the guidelines to balance accessibility and popularity. Kleinberg et al. [22] 

describe two algorithms that operate on the Web graph, addressing problems from Web search 

and automatic community discovery.  

 

Sarukkai [23] uses a Markov Chain model based on the user access information for link 

prediction and path analysis. Levene et al. [24] derive Zipf’s rank frequency law from an 

absorbing Markov chain model of surfers’ behaviour assuming that less probable navigation 

trails are, on average, longer than more probable ones. Levene and Loizou [25,26] formulate a 

hypertext database as a graph and propose a probability approach to find the trail to match the 

query. Kumar et al. [27] propose a stochastic model of the web graph to show additional 

properties of the random graph. Levene et al. [28] extend the evolutionary model of the Web 

graph by including a non-preferential component and viewing the stochastic process in terms of 

an urn transfer model. Zin and Levene [29] propose that information on the topology is important 

for useful exploration and can also help to reduce the feeling of disorientation that users may 

experience.  

 

From the review above, it should be noted that there lacks the consideration of dynamic factors 

(such as dependent reverse links and user familiarity with Web navigation) of assessing 

information from the Web in analyzing and evaluating the access models. In this research, we 

propose a graph-based structure with stochastic properties (such as traffic conditions and 

navigation information) and various dynamic policies to guide the users in accessing information. 

The proposed approach captures the essence of the surfing process: A surfer surfs among web 
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pages of a site according to the structure of pages as reflected from the hyperlinks, waiting for 

the loading of new web pages as he triggers hyperlinks. The process is similar to an entity 

jumping from the source to the destination node of a graph, with web pages as nodes, hyperlinks 

as arcs, loading times as distances among nodes, and some stochastic properties and dynamic 

policies as the surfing behavior and some as the navigation guidance provided by web pages. All 

these web structures and routing policies are modeled discrete-time Markov chains, and the 

expected time for a surfer to arrive at his destination is calculated based on both dynamic and 

stochastic shortest paths.  

 

The level of skill or experience of the surfers as well as the degree of guidance supported by the 

sites is two of the major issues for information retrieval on the Web. Four models are considered 

in our research to reflect these two issues: inexperienced surfers on guidance-less sites (ISL), 

where totally inexperienced surfers surfing among web pages that do not provide any navigation 

guidance, leading to surfers randomly moving among pages;  experienced surfers on 

guidance-less sites (ESL), where the web pages do not provide guidance but the surfers are 

experienced, i.e., they only trigger unvisited pages as they search for their required information; 

sites with the Mean-Path Guidance (MPG), where the navigation guidance of a site is in terms of 

static values of the mean loading times of web pages; and sites with the Known-First-Arc 

Guidance (KFA), where the navigation guidance of a site considers the real-time loading time of 

the next page with mean loading times for future pages.    

 

The rest of the paper is organized as the following. Section 2 contains the problem description 

and formulation. Section 3 sets out the discussion on the four searching models of navigation 

guidance. Section 4 demonstrates the simulation result and comparison on complexity and 

applicability for the four proposed models. The paper concludes with a research summary and a 

direction for future research efforts. 

 

 

2. PRELIMINARY - PROBLEM DESCRIPTION 

Consider a situation where data are distributed over a computer network that is composed of 

switches and cables. A switch contains information about (i) the cable capacity; and (ii) the 

estimated time for the packet going from each neighboring switch to the destination (typically in 
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the form of look-up table). Whenever a data-packet arrives at a switch, the switch to visit next 

needs to be determined based on the real time information on the network capacity. A routing 

strategy is used to utilize the real-time information to form dynamically a path of minimized 

costs for data delivery. We, therefore, proposed to improve the path for data delivery by way of 

adding cables (the aggressive approach) and/or deleting cables (the passive approach) in between 

the respective switches to improve the data delivery performance.  By the same token, we 

propose to improve the structure of the Web site by adding or deleting hyperlinks on the Web 

pages, so that the Web surfers can navigate to the destination page most efficiently. In this 

section, we first model the Web navigation as graph traverse problem. We further classify the 

problems based on various Web structure properties. The model is extended based on the 

“explorative transformation”.  

 

2.1 Problem Formulation  

A Web site comprises a number of Web pages and each Web page may have a number of 

hyperlinks connecting to other pages. Each Web page is associated with a loading time, which 

varies in proportion to the page content and the network traffic conditions. Vertices and arcs are 

denoted as follows:  

Vertices: V={v1, v2, …vn}. Each vi (i=1, 2, … n) refers to one page.. 

Arcs: E ={[vi, vj] or eij | There is a hyperlink in page i pointing to page j}. The arc 

connecting vi to vj denotes a hyperlink from page i to page j.  

The hyperlinks are directed, so is the network. Since each Web page has a loading time, the 

corresponding vertex in the network is assigned a weight representing such loading time. 

Naturally, the loading time of a Web page is directly determined by the size of the page contents, 

such as text, images and sound/video clips, and network conditions. Among these factors, the 

page size (xi) is the most dominating one. Hence, it is assigned as the weight of vertex to reflect 

the download time:  

w: V→ R+

w (vi) = xi

 

Therefore, the network is denoted as ),,( wEVG =
v

, which is a directed graph in which a weight 

is associated with each vertex. For example, let A be the start and L the destination page for a 
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surfer on a site of web structure as shown in Figure 1. There are many ways to reach the 

destination L from A. Not only that there are multiple paths from A to L, there are loops in the 

seemingly directed graph. All web browsers provide the function to return to the previous page, 

i.e., a path from A to L can actually be of the form A-C-A-C-G-L. The length of the path depends 

not only on the sequence of nodes, but also on whether the cache function is enabled or not. If it 

is enabled, the length of loading time for each reverse link becomes zero; otherwise, each reverse 

link bears the same loading time for the previous page.  

 

In short, the actual time taken for a surfer to move from A to L depends on the web structure, the 

experience of the surfer, and the type of navigation guidance provided for the surfer. For a given 

web structure, the time is determined by the latter two factors. For the web structure as shown in 

Figure 1, suppose that based on historical record, on average A-C-G-L is the shortest path from A 

to L. If the surfer is inexperienced and the web does not provide any navigation guidance, the 

surfer may take a random walk on the network, with the page-back function as the means to 

move in the opposition direction of the directed arcs. If the surfer is experienced, his search will 

be more careful; pages visited before will not be re-visited unless there is no choice. With 

navigation guidance provided by the web, the surfer may be guided to select A-C-G-L based on 

the long-term average loading times of pages, or different paths according to the traffic jam 

during navigation. In case the surfer needs more than one destination, the problem becomes 

multi-destination, i.e., we need to find the shortest collection of paths that cover all the 

destination nodes. If the hyperlinks on web pages can be changed, no matter as a static web 

design problem that changes once for a long while, or a dynamic problem that hyperlinks are 

highlighted according to traffic condition, then effectively the web structure is changed with the 

change in hyperlinks.  

 
<Insert Figure 1 here> 

 

2.2 Problem Properties 

We elaborate the model for the Web-based information retrieval by two dimensions – structure 

properties and navigation properties. The structure properties concern the static properties of the 

Web site structure, including the server capacity and the cache mechanism. The navigation 

properties refer to the dynamic aspects of information retrieval, including single or multiple root 

pages and destination pages, constraints on the navigation path, etc. Both dimensions have 
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significant impact on problem modeling and problem solving.  

 

Structure properties. The sever performance might be inversely proportional to the number of the 

users making simultaneous page requests. This is valid both for an individual page and for a 

number of pages forming the whole or part of a Web site. One particular characteristic for the 

Web site structure is the “conditional reverse link” – the hyperlink visited enables the 

corresponding reverse link. If we consider the cache function to be enabled, the length of loading 

time for each reverse link becomes zero; otherwise, each reverse link bears the same loading 

time as the previous page. The cache, depending on its size constraint or time limit constraints, 

can store both the address and the content of a Web page. Furthermore, hyperlinks can be 

bi-directional (i.e. the links in both directions are valid in the original graph) and multiple (i.e. 

multiple identical or non-identical links between nodes). 

 

Navigation properties. Navigation can start from a single root page (entry page) or multiple root 

pages (direct page address). Similarly, the destination page can also be a single page or a group 

of the pages. Navigation can be constrained by path length or browsing time. Objectives of 

navigation may include minimizing retrieval time, maximizing information quality 

(completeness and relevancy) and minimizing path length (radical distance form the root and 

number of pages visited). The decision making during navigation process can be of static or 

dynamic. In the static model, all the nodes along the navigation path are determined at once from 

the beginning of the navigation process; however, in the dynamic model, the next node to visit is 

only determined one at a time from the immediate proceeding node. 

 

2.3 Problem Transformation 

In addition to the structure and navigation properties, we adopt the explorative expansion 

approach to address the cache capability of a navigation process. The explorative expansion 

approach for conditional reverse link is based on the graph traversal (either breath first or depth 

first search) on a link by link basis. The process starts with the root node as an initial component. 

For each traverse on the new link, we consider the source node, the destination node, and the link 

between them. A component is defined as a graph. A new expansion component is constructed 

for the destination part and it is the combination of a replica of the original component, the links 

of both direction as the newly explored links, and the destination node if it is not included in the 
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original component. The exploring link will connect the source node in the original component to 

the destination node in the new expansion component.  

 

For example, Figure 2 (a) shows an original Web site graph. To start the expansion process, we 

construct an initial component with only root node (i.e. node A) as shown on the top of Figure 2 

(b). If we explore the link eAB in the next, we construct the new expansion component with node 

A, node B, the link eAB and the link eBA. A link is added between the source node (i.e. node A) in 

original component to the destination node (i.e. node B) in the newly generated expansion 

component. The whole process will complete after all the links are explored. Figure 2(b) is the 

complete expansion of the original Web graph in Figure 2(a). The reverse link in the expansion 

components represents the “back” function. All the distances in the expansion components are 

zero and the length of a link between any two components is the same as that in the original Web 

graph. For the purpose of simplicity, no subscript is added in the expansion components to 

differentiate one node from another.  

 

The process can be described as an algorithm as follows.  

For simplicity, we assume the original Web graph G0=(V, A). 

Step 1. The original component Ge = (Ve, Ae) only consists of the root node, i.e. G=({v0},{}) 

Step 2. The set of the links to be explored Ax=A.  

Step 3. {eij | vi ∈ Ve and eij ∈ Ax} 

Step 4. {G′| Qualified components with vi but without eij} 

Step 5. Construct the new expansion component G″ = G′ + {ei2j2,ej2i2} + {vj2}  

Step 6. If exists already, then G= G + {ei1j2} 

Step 7. Otherwise, include new expansion component G = G′ + G″ + {ei1j2} 

Step 8. Go to Step 4 if there is any G′ 

Step 9. Go to Step 3 if there is any eij 

Step 10. Ax = Ax - eij 

Step 11. Go to Step 3 if Ax ≠ ∅ 

(Remark: In Step 6, 7, and 8, i1 and j1 are the node subscripts in the original component; i2 and j2 

are the node subscripts in the new component)  

 

The number of the expansion components is dependent on the number of the links in the original 
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graph. Two extreme examples, namely chain structure and star structure, represent the lower 

bound (i.e. n×(n+1)/2=(n2+n)/2) and upper bound (i.e. n2×n=n3), respectively, where n is the 

number of nodes. In this study, we focus on cases with the assumption of single-destination and 

disabled cache.  

<Insert Figure 2 here> 
 
 

3. SEARCHING MODELS 

The level of skill or experience of the surfers as well as the degree of navigation support by the 

sites may vary. An inexperienced surfer may browse randomly and load repeated pages, while an 

experienced one may browse systematically and only load a page again if necessary. An 

immature site may not provide any navigation information for surfers, while a well-designed one 

may provide navigation information about the site structure and the expected loading time of the 

respective pages. A sophisticated site may even provide real-time navigation information 

changing simultaneously with the traffic of the Web. 

 

For simplicity, we assume that the cache function is disabled and that the surfer has only one 

destination in mind. Enabled cache function and multiple destinations are intended for future 

extension works. We consider four simulation models based on the combination of the level of 

skill or experience of the surfers as well as the degree of navigation support by the sites: 

inexperienced surfers on guidance-less sites (ISL), experienced surfers on guidance-less sites 

(ESL), sites with the Mean-Path Guidance (MPG), and sites with the Known-First-Arc Guidance 

(KFA). The classification of the four models is based on the navigation guidance and repeatable 

navigation as shown in the Figure 3. The information retrieval on the Web site in these four 

models can be described as discrete Markov Chains as follows [23]. A discrete Markov chain 

model can be defined by the tuple (S, T, λ). S corresponds to the state space (set of pages of Web 

site), T is a matrix representing transition probabilities from one state to another (i.e. from one 

page to another page), and λ is the initial probability distribution of the states in S. The detail is 

discussed in the following the subsections. The modeling is mainly based on the work of Glover 

et al. [30], Shier and Witzgall [31], Psaraftis and Tsitsiklis [32], Geetha and Nair [33], 

Polychronopoulos and Tsitsiklis [34] and Cheung [35].    

 

<Insert Figure 3 here> 
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3.1 Inexperienced Surfers On Guidance-less Sites (ISL) 

Consider a totally inexperienced surfer on a site without any navigation guidance. The surfer 

moves randomly, possibly back and forth, among the pages, and picks links in a page arbitrarily. 

The movement of such a surfer can be modeled by a random walk on a connected graph, and the 

page search process can be modeled as a discrete-time Markov chain [23].         

 

Refer to the site structure in Figure 1. Let Xn = s if the surfer is at page s after the nth move (page 

loading). Take X1 = A, because A is the root page. In general, if a surfer starts from page s with 

probability ps, the following argument still goes through by taking weighted average of outcomes 

from page s with probability P(X1 = s) = ps. Let S = {A, B, …, L} be the state space of {Xn}.  

From the description on the above paragraph, {Xn} is a discrete-time Markov chain. The 

transition probabilities can be found from the number of links on a page. For example, if the 

surfer is on page G of the site shown in Figure 1, he will next visit sites C, K, J, and L with 

probability 0.25 (providing that he decides to continue his surfing). It is straightforward to show 

that {Xn} is an absorption chain with L as the absorbing state.   

 

For any page s ≠ L¸ let Ns be number of visits to page s before visiting page L and Ts be the 

loading time of page s. E[Ns] is found from the first passage time argument from state A to state 

L for the chain {Xn} (please see [36], pp 152 and pp. 172) and the expected searching time of L = 

 .][][∑
≠Li

ss TENE

 

3.2 Experienced Surfer On Guidance-less Sites (ESL) 

Consider an experienced surfer visits, for the first time, a site that does not provide any 

navigation guidance. The surfer randomly picks up unvisited links in a page. As far as possible, 

he will not re-visit a page that he has previously visited. However, he still needs to re-visit some 

pages when he goes into a dead end during the process of searching for his destination. 

 

Such a search behavior cannot be modeled by the random walk in Section 3.1 above. We can still 

formulate it as a discrete-time Markov chain, but the size of the state space will be 
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astronomically big: for N pages, to keep track of the identification of the pages visited, the state 

space is of size O(N×2N). The expected searching time will be the first-passage time from first 

entering page A, to any state such that page L is visited for the first time. The size of the chain 

precludes any sensible study through this approach on sites of practical size. Fortunately, we can 

still easily build up simulation models to estimate the expected searching time for this approach. 

In each replication of simulation, the simulation program traces the pages visited by the surfer, 

with the probability of visiting an unexplored page changed along the course. The mean time to 

reach page L across all simulated replications is an estimate of the mean time for ESL.    

 

3.3 Sites with Mean-Path Guidance (MPG) 

From this section onwards we consider sites that provide various types of navigation guidance. 

The navigation guidance may be static or dynamic, ranging from long-term mean to real-time 

loading time, with all possible combinations of means and exact values lying between the two 

extremes. Because of the navigation guidance, the difference in the expected searching time 

between the experienced and inexperienced surfers is minimal and hence is ignored. 

 

In this section, we consider navigation map guidance constructed from the mean path (loading) 

time. To do so, we define the loading time of the destination page as the length of the directed arc. 

For example, the length of arc A→B is E(TB), which is the expected time to load page B. Other 

arcs are treated similarly. After the directed arcs are formed using the mean loading time, we get 

a directed graph with positive cycle length. Standard algorithms, such as Dijkstra's algorithm (or 

its variations) [37] can be used to find the shortest path from A to L.   

B

 

In a site that provides the Mean-Path Guidance, a surfer is given a sequence of pages identified 

using the above procedure. The average time taken for the surfer to reach his destination is the 

value as identified by the Mean-Path Guidance. While the calculation is simple and 

straightforward, without considering the real-time page loading times, the path from the 

Mean-Path Guidance may be suboptimal. For example, take the destination page to be page L in 

Figure 1 and suppose that the Mean-Path Guidance suggests the path A-C-G-L. However, at any 

epoch, due to the instantaneous traffic, the actual loading time for an alternative path A-B-E-L 

could be less than that of the suggested path A-C-G-L. 
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3.4 Sites with Known-First-Arc (KFA) 

The Mean-Path Guidance can be readily extended to the Known-First-Arc Guidance, which 

considers real-time loading time. At page A, a surfer may choose from three pages, namely, 

pages B, C, and D. If the system can estimate the loading time of each of pages B, C, and D, then 

in the calculation of the shortest path from A to L, the actual exact loading time can be used in 

arc A-B, A-C, and A-D, while the mean loading time are used in the remaining arcs of the paths. 

Such a method is called the Known-First-Arc Guidance. This Known-First-Arc Guidance is 

considered more advanced than the Mean-Path Guidance, and the difference is even more 

noticeable when loading time have large variance. 

 

The Know-First-Arc Guidance can be applied repeatedly. Suppose a surfer moves to page C 

based on the Known-First-Arc approach. At C, the loading times of pages A, F, and G become 

known quantities at the moment when the surfer leaves page C. A system can repeatedly apply 

the Known-First-Arc approach to determine the loading time of the next page to visit, with an 

objective to moving to page L in the shortest possible time. The guidance provides by this 

method is dynamic. Generally speaking, once the surfer loads the root page and enters his 

detention, the system will guide him through the site to the destination by informing him 

dynamically which page to load next.    

 

Assume that each time the actual exact loading time are random draws of the corresponding Ts. 

The Known-First-Arc Guidance discussed above is exactly the Dynamic Stochastic Shortest Path 

(DSSP) problem considered in Cheung [35] that studies the formulation of a dynamic shortest 

path in a network and proposes a routing policy to compute the expected path cost by mimicking 

the classical label-correcting approach. The DSSP allows the surfers to retreat from a wrongly 

chosen path, when real-time rather than the excepted mean loading time is revealed. However, 

the surfer may cycle around pages before he reaches the destination. Refer to Figure 4 below 

which shows part of the site structure in Figure 1. For simplicity, we use arcs with two arrows to 

represent the two directional flows. Here we assume that the loading time of all pages are i.i.d. 

(Independent and Identically-Distributed) random variables, distributing uniformly in {1, 2, 3, 

10}, whether or not a page is visited for the first time. Suppose that the surfer wants to go from 

page A to L. At the moment when the surfer leaves A, whether the surfer will visit page B or C 
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next depends on the current loading times of page B and page C at that time. If the loading time 

of page B is of one unit and that of page C of 10 units, then it is more desirable to load page B 

next, in which case it is possible for the surfer to be directed to page A or page E later on. If, 

however, page C is loaded next, then the surfer will be directed to page G later on. Similarly, at 

page E, the surfer may be directed next to page B or page L. 

 

The movement of a surfer based on the DSSP can be modeled as a discrete-time Markov chain. 

Provided that there are not many links from one page to another, the first-passage analysis of 

such a chain is feasible for pages of all reasonable sizes. Consider the same example in Figure 1 

going from page A to page L. Define a Markov chain {Xn} with the same state and state space as 

in Section 3.1 above. The transition probabilities are found from DSSP. Let S(i) be the set of 

successor pages that are possible to visit next when the surfer is at page i. It is straightforward to 

find pij = P(Xn+1 = j|Xn = i) and E[Tj|{Xn} moves from i to j] from the joint distribution of {Tj, j ∈ 

S(i)}. Hence, the time from A to L is given by  where N∑
=

ALN

k
kT

1
, AL is the first-passage time (number 

of transitions) from page A to page L, and Tk is the time taken in loading the kth page. NAL can be 

expressed as the sum of the i→j transitions before reaching page L, and giving the i→j transition, 

the expected loading time is given by the set of conditional expected loading time {E[Tj|{Xn}]}. 

Consequently, we can compute the expected searching time  .
1

⎥
⎦

⎤
⎢
⎣

⎡
∑
=

ALN

k
kTE

 
<Insert Figure 4 here> 

 

 

4. EXAMPLE, EVALUATION, AND EXTENSION 

In this section, we compare the expected searching time of the four models discussed in Section 3. 

While some of these models can be reviewed analytically, we have examined all four by 

simulation. We simulate the page searching performance of surfers of different skill levels on 

sites of different degrees of guidance support. In our simulation, the loading times are random. 

Such an approach is a first-order approximation that captures the variation of the loading time in 

relation to the traffic of the Web site. We illustrate the models with a site structure shown in 

Figure 1. The nodes are the pages and the arcs are the hyperlinks of a page. We take page A as 

the root and page L as the destination, and we will compare the total expected time for a surfer to 



 

 15

get to page L after page A has been loaded. All loading time are assumed to be independent. We 

also compare the four models on complexity and applicability. The implementation issue of 

Known-First-Arc Guidance approach is also discussed at the end of the section. 

 

To highlight the effect of searching and navigation guidance, we only consider the page loading 

times and ignore time taken to read information of a page. It is easy to incorporate the page 

reading time in the simulation models. However, this additional factor only blurs our focus – the 

percentage differences of times among models are certainly reduced by long page reading times. 

 

The arcs in Figure 1 appear as directed, however, in reality there are possibly loops traced by the 

surfer as he searches from page A to page L. The page-return function of any browser ensures the 

looping possibility in ISL, ESL, and KFA. On the other hand, no matter for any web structure, 

with intrinsic loops or not, MPG simply suggests one straight path without any loop for a surfer. 

Taking all these considerations together, it does not change the inferences and insights deduced 

from the numerical run even if we take the web structure as shown in Figure 1. Along the same 

line, a different set of parameter values for the numerical runs certainly changes the values of 

numerical results, but it will not change the general trend of the inferences and insights gained 

from simulation.    

 

4.1 Numerical Examples 

The underlying processes of all the four methods can be modeled as discrete-time Markov chains. 

Generally, the one-step transition probability matrix of MPG is the easiest to deduce, and that of 

ESL the most tedious. Consider web structure as shown in Figure 1. By definition, MPG 

suggests a single path and its one-step transition probabilities are equal to one for arc along the 

suggested path and are zero otherwise. For ISL, if page j being adjacent to page i, P(X1 = j|X0 = i) 

= 1/n, where n is the number of pages adjacent to page i. For KFA, conceptually, given the 

distribution of the loading times and the web structure, it is possible to deduce the probability 

that a path is shorter at a transition, which effectively gives the one-step transition probabilities. 

The deduction is simply a matter of notation and is not shown here. Similarly, should we put 

down a discrete-time Markov chain of 12*212 states according to the current page and collection 

of pages visited or not, we can list the one-step transition probabilities of ESL. Certainly there is 

no point to do so. In fact, the simulation programs only follow the random mechanism of each 
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model to generate the next move of a surfer. It is not necessary to explicitly know the one-step 

transition probability matrices.     

 

In our simulation, all page loading times are assumed to be independent and identically 

distributed (i.i.d.) random variables distributing uniformly in {1, 2, 3, 10}. With this choice of 

loading time distribution, the Mean-Path Guidance will definitely direct a surfer to the path 

either A-C-G-L or A-B-E-L, and the Known-First-Arc Guidance may do the same depending on 

the instantaneous loading time of pages B and C at the moment when the surfer leaves page A. 

Meanwhile, the DSSP gives the same result as the Known-First-Arc Guidance at the moment 

when the surfer leaves page A. However, at pages B, E, and any subsequent visits of page A, the 

page to visit next is determined by the real-time loading time as discussed in Section 3.4 above.     

 

The underlying processes of the four models are of different sizes and complexities. They require 

different number of runs to achieve the same degree of accuracy; e.g., in MPG, the mean time to 

reach page L is given by a close-form expression without doing any simulation. However, to 

ensure that all simulation results are under the same set of random variates generated, which is a 

form of variance reduction by common random numbers, the four models are simulated for the 

same number of runs. With nearly 50,000 states in ESL, it takes a large number of runs to ensure 

enough precision and confidence on the estimates for the model. Consequently, a million 

replications are carried out for the four models. The simulation results are shown in Table 1 

below.    

 

<Insert Table 1 here> 
 

As expected, an inexperienced surfer without navigation guidance takes the longest time to get to 

his destination. Our results show a ratio of more than 13 times between this random search and 

the guided searches. An experienced surfer without guidance can reduce his searching time by 

more than 50% when compared to an inexperienced surfer. The surfer only revisits a previous 

page if he has exhausted all the possible options in the current page. However, without the 

knowledge of site structure, it is inevitable for a surfer to visit a page repeatedly. Consequently, 

the mean searching time of unguided surfers is more than six times of that of guided surfers. The 

two guided searches give very similar results, in terms of the mean searching time. The mean 

searching time in Mean-Path Guidance is longer than that in DSSP, because Mean-Path 



 

 17

Guidance does not use any real time information. 

 

4.2 Evaluation 

All four models work similarly in terms of providing (or not) navigation guidance for the 

purpose of information retrieval; however, they differ in terms of applicability and complexity. 

Complexity refers to the performance of the model in the various scenarios, such as conditional 

reverse links, motivation guidance, decision-making, algorithm complexity, and structure 

modification. Applicability concerns the capability of problems types, such as cache option, 

multiple root nodes, multiple destination nodes, and concurrency. The following sets out the 

comparison of the four models based on these two aspects.  

 

A. Complexity 

(1) Conditional reverse links. The original graph needs to be extended by explorative 

transformation for the models ISL, ESL and MPG; however, it only adds the reverse links 

dynamically to the graph for model KFA.  

(2) Navigation guidance. The first two models, ISL and ESL, do not have the guidance, whereas 

the other two, MPG and KFA, benefit from the guidance of site structure and loading time for 

navigation decision. 

(3) Decision-making. Both ISL and MPG models focus on the static decision-making, i.e. 

one-pass decision process. Meanwhile, ESL and KFA models concern dynamic information 

for decision-making.      

(4) Algorithm complexity. For ISL model, the main task is to compute the first passage time; the 

complexity for each node is O(N2) and the total complexity is O(N3). Because of the state 

space of the Markov chain for ESL model, the total complexity is O(N4×2N). The complexity 

of MPG model depends on that for Dijkstra's algorithm, which is O(N2). KFA model cannot 

be solved in polynomial time unless it is acyclic. If we take into account the conditional 

reverse links, the complexity of all four models are non-polynomial.       

(5) Structure modification. The structure modification involves addition or modification of 

links/nodes. For non-guidance models, ISL and ESL, are not effected by the changes in 

structure formulation; guidance-based models, MPG and KFA, need to update the guidance 

information. Meanwhile, static models, ISL and MPG, need to re-compute the solution by 

taking into account the new information; but dynamic models, ESL and KFA, only consider 
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the new information during every dynamic decision process.  

  

B. Applicability 

(1) Cache option. The cache option decides the loading time for the conditional reverse links, 

which range between 0 (cache enabled) and the loading time of the original node (cache 

disabled). The cache option (either enabled or disabled) is applicable for all four models. 

There may be time (life span) constraints on the cache content. These time constraints, 

however, are only applicable to KFA model.      

(2) Multiple root nodes. The navigation may start from different root nodes in different sessions. 

All four models are capable of handling multiple root nodes (without any further 

modification).  

(3) Multiple destination nodes. Unlike the case of multiple root nodes, the multiple destinations 

need to be covered in the same session. In ISL model, navigation is independent from the 

destination nodes and the calculation is additive as a linear function. Similarly, MPG model 

can also take the destination nodes as independent in the graph and calculate the result as a 

linear function. On the contrary, the calculation becomes much more complicated for ESL 

and KFA models, which might take non-additive calculation as non-linear functions.    

(4) Concurrency. The concurrency involves both multiple roots and destinations for different 

session (for different users) simultaneously. Since KFA model needs real-time information 

for step-by-step decision-making, the multiple sessions might interfere with each other. For 

the other models (ISL, ESL, and MPG), the sessions can be independent.   

 

The summary of the comparison is listed in Table 2. We may also include other evaluation 

criteria in order to investigate the impact of adding links on accessibility efficiency of an 

individual Web page or that of the Web site as a whole. From the comparison result, the suitable 

models can be adopted and adapted based on the problem properties. 

 

<Insert Table 2 here> 
 

4.3 Implementation Approach 

We have illustrated in Section 4.1 that navigation guidance can significantly reduce the searching 

time of the surfers. The guidance can be implemented in (at least) two forms: (1) an explicit 
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navigation map is provided with the shortest path highlighted for surfers to follow; and (2) sites 

structure is dynamically generated to suit the needs of surfers. The implementation of the first 

form is straightforward and its detail is deliberated omitted. We will discuss as follows the 

implementation issues of the second form. 

 

Refer to Figure 1 for the structure of the site for illustration. Remember that page A is the root 

and page L is the destination. The structure indicates the hierarchical arrangement of information:  

Page A contains links to pages B, C, and D, in the order of the links arranged in page A; other 

pages and links are interpreted in the same fashion. Given the known destination page L provided 

by the surfer, the system provides navigation guidance based on the real-time information at the 

moment when the surfer finishes a page. Suppose that the guidance directs the surfer to page C, 

and, by the same token, next to page G. So that for the surfer, the site structure is as if that in 

Figure 5, all the relevant links being arranged in the most convenient top (right) position for the 

surfer.   

 

In Section 4.1 above, we use simulation to evaluate the performance of the different guidance 

methods. In real-life, it is hard to simulate on real time for each surfer to determine his best 

virtual site structure. Fortunately, there are polynomial time algorithms to calculate the shortest 

paths. The standard shortest path algorithms for deterministic arc lengths give the shortest path 

for the Mean-Path Guidance, as long as we set the arc lengths to their mean values. There is a 

family of similar algorithms to determine the shortest paths with real-time information on path 

length. In the following, we give the algorithm suggested in Cheung [35]. 

 

<Insert Figure 5 here> 
 

Any site structure is an undirected graph as shown in Figure 1. Let (G, N) be such a graph, where 

G = {A, …, L} be the set of nodes and N be the set of arcs of the graph. Node L is the destination.  

Let 

S(i) be the set of successor nodes of node i; 

B(j) be the set of predecessor nodes of node j; 

Tij  be the (random) cost of arc (i, j);  (Tij is the loading time of page j in our application); 

iV  be the expected distance from i to L. 
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As stated above, all the arc costs are assumed to be independent. Then 

  

LV  = 0, 

 iV  = )],(min[
)( jijiSj

VTE +
∈

 ∀i = A, …, K. (1) 

 

Note that Tij’s are known quantities whenever we compute the expected for node i. }{ iV  are 

found by solving the equation set simultaneously, which can only be done numerically.  

However, Cheung suggested the following modified generic Label-correction method. It is an 

approximation in alternate to what we give in Section 3.4 above. Let    

 

Q be the set of nodes (typically in the form of queue) whose distance from node L have been 

known; 

iV̂  be an estimate of ;iV  
max

iV  = maximum value of  ).ˆ(min
)( jijiSj

VT +
∈

Step 1. Initialize  = ∞, ∀ i ∈ G, i ≠ L;   iV̂ .ˆ
LV

Step 2. Initialize Q. 

Step 3. Remove a node i from Q and compute  =  iV̂ )].ˆ(min[
)( jijiSj

VTE +
∈

Step 4. For each node j ∈B(i), if < Tmax
jV ji +  and if i ∉ Q, then add i to Q. iV̂

Step 5. Repeat steps 3 to 4 until Q = φ. 

 

The ways to initialize Q (in Step 2) and to add i to Q are implementation specific. See Cheung 

[35] for an implementation example that reduces computational effort. 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

With the advent of the Internet technology, the information crawling/gathering on the Web is 

highly demanded and important in various applications. For example, users need to surf on the 

Web for sourcing in procurement process. However, dynamic traffic and poorly organized Web 

pages lead the users to navigate through irrelevant and redundant pages. In this paper, we adopt a 

stochastic searching approach to provide users with dynamic guidance for information access on 
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the Web. We consider four models: inexperienced surfers on guidance-less sites, experienced 

surfers on guidance-less sites, sites with the Mean-Path Guidance, and sites with the 

Known-First-Arc Guidance (which are generalized as sites with Dynamic Stochastic Shortest 

Path Guidance (DSSP)). From the simulation result, we conclude that providing navigation 

guidance reduces web page search time, and dynamic guidance improves the access 

performance.  

 

The results provide insights to design and administrate web pages. Navigation guidance can take 

different forms. They can be explicit information built in as text or images of a page, or implicit 

information hidden under menu bars and choice options. In all cases the design of the site, from 

its structure to presentation, is important. For small sites or sites that generally entertain limited 

number of surfers, the real-time traffic information of the site is not really essential on the access 

performance. On the other hand, for trans-continental portals that possibly entertain huge number 

of surfers simultaneously, the real-time information can direct and divert surfers according to 

needs. The simplest example may be a page directing surfers to different downloading sites 

according to the real-time utilization and traffic of sites. The realization of the insights gained 

from this study would be an interesting synergy of web page design and information technology. 

 

We can further extend this research in the following directions: 

(1) Multiple-destination. The dynamic guidance algorithm needs to be extended to cover a 

minimum spanning tree, if the user wants to visit multiple pages in a Web site.  

(2) Oscillation avoidance. Since the dynamic guidance takes into account the traffic condition, 

we may need to add a "stopping rule" or a learning mechanism to avoid the oscillation in 

selecting the remaining path. 

(3) Enabled cache. The traverse information can be kept in the cache for "go-back" function. In 

this case, we need to add a reverse link with zero length or change its length to zero if it 

exists in the original graph.  

(4) Dynamic information content. If the pages are generated dynamically, such as ASP (Active 

Server Page), we can split/merge the pages and re-organize information links/content.  

(5) Personalized information space. The dynamic information content can be further extended 

for personalization that each user will surf on the customized Web information space based 

on his preference of information and security requirement.  
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Table 1. Simulation Results 

 Models Mean Searching Times*1

Inexperienced surfer on guidance-less Sites (ISL) 161.50 
Experienced surfer on guidance-less Sites (ESL) 73.47 
Mean-Path Guidance (MPG) 12.01 
Known-First-Arc or DSSP guidance (KFA) 11.95 

 
 
 
 
 

*1 The loading time of page A for the first time is excluded. 
 
 
 
 
 

Table 2. Summary of comparison for searching models 

 ISL ESL MPG KFA 
Complexity  

Conditional reverse links Extend graph Extend graph Extend graph Add links 
Navigation guidance No guidance No guidance Guidance Guidance 

Decision-making Static Dynamic Static Dynamic 
Algorithm complexity *1 Polynomial Non-polynomial Polynomial Non-polynomial

Structure modification Re-compute No changes Update/ Re-compute Update 
Applicability  

Cache option *2 Not applicable Not applicable Not applicable Applicable 
Multiple roots Applicable Applicable Applicable Applicable 

Multiple destinations Linear Non-Linear Linear Non-linear 
Concurrency Independent Independent Independent Dependent 

*1 If taking into account conditional reverse links, the complexity becomes  
  non-polynomial for all four models.  
*2 In the case of time-constraint cache option  
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Figure 1 Example – a Web site and its graph structure 

Web page 

Hyperlink 

I

Graph structure   

A

J

G F 

C

L K

B D

E H

A Web site 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 26

 
 

Figure 2 Example of explorative expansion  
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Figure 4 Cycling in DSSP Guidance 
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Figure 5 The Virtual Site Structure Experienced by a Surfer  
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