
Title Design and evaluation of improvement method on the web
information navigation - A stochastic search approach

Author(s) Yen, BPC; Wan, YW

Citation Decision Support Systems, 2010, v. 49 n. 1, p. 14-23

Issued Date 2010

URL http://hdl.handle.net/10722/129449

Rights

NOTICE: this is the author’s version of a work that was accepted
for publication in Decision Support Systems. Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in
Decision Support Systems, 2010, v. 49 n. 1, p. 14-23. DOI:
10.1016/j.dss.2009.12.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37953731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Design and Evaluation of Improvement Method on the Web

Information Navigation – A Stochastic Search Approach

Benjamin P.-C. Yen
School of Business

The University of Hong Kong, Hong Kong

Y.-W. Wan
Graduate Institute of Global Operations Strategy and Logistics Management

National Dong Hwa University, Hualien, Taiwan

Abstract

With the advent of fast growing Internet and World Wide Web (the Web), more and more

companies enhance the business competitiveness by conducting electronic commerce. At the

same time, more and more people gather or process information by surfing on the Web.

However, due to unbalanced Web traffic and poorly organized information, users suffer from

slow communication and disordered information. To improve the situation, information

providers can analyze the traffic and Uniform Resource Locator (URL) counters to adjust the

information layering and organization; nevertheless, heterogeneous navigation patterns and

dynamic fluctuating Web traffic complicate the improvement process. Alternatively,

improvement can be made by giving direct guidance to the surfers in navigating the Web sites. In

this paper, information retrieval on a Web site is modeled as a Markov chain associated with the

corresponding dynamic Web traffic and designated information pages. We consider four models

of information retrieval based on combination of the level of skill or experience of the surfers as

well as the degree of navigation support by the sites. Simulation is conducted to evaluate the

performance of the different types of navigation guidance. In addition, we evaluate the four

models of information retrieval in terms of complexity and applicability. The paper concludes

with a research summary and a direction for future research efforts.

Keywords: Stochastic shortest path, Web, navigation

 2

1. INTRODUCTION

Information plays an indispensable role in the world. The network and information systems have

changed the way people communicate with each other as well as expedited the process to obtain

the information that matches their interests. Everyday hundreds of millions of transactions flow

through the network all over the world. Any information can be transferred from one place to

another only within few seconds. Together with the growth of the needs of information, the web

pages on the Internet grow explosively during the past few years and such increase is expected to

be more acute going forward.

The abundance of the URL's apparently creates a great value for all the visitors by allowing them

to retrieve comprehensive information from the Web. Web page owners, at the same time, benefit

from the advertisement opportunities when visitors surf their web pages. However, any lack of

organization of the voluminous information may encumber the searching performance. Visitors

spend astounding amount of time in navigating through the useless or redundant pages. To tackle

the problem, Web page owners need to invest to update and reorganize the information for their

Web pages on an on-going basis. As a result, there are questions concerning both the visitors and

Web page owners that need to be answered: What do Web page owners need to take into account

in addition to the Web pages (i.e. information content) in the design of Web site? How can be

enhanced on the Web site to improve information retrieval? How to justify the requirement,

necessity, and cost for such improvements? How to balance the cost and benefit of such

improvements? In answering these questions, research has been conducted in three areas: (1)

Web site customization based on the user access information; (2) agents based intelligence search

for information retrieval and discovery; and (3) intelligence browser and the collection of user

information.

Perkowitz and Etzioni [1-2] propose an Artificial Intelligence approach to create the Adaptive

Web Site, which can improve the site organization based on the user access log with the

assumption that each originating computer corresponds to a particular user. Yan et al. [3] propose

the use of access patterns to generate hyperlinks, which are captured in the access log and

analyzed offline in an interval basis, to improve the information access. Wang el al. [4] propose a

personalized filtering model to filter and rank the product information with linear functions on

the user preference. Chen and Kuo [6] propose a personalized information retrieval system based

 3

on the user profile modeled as the Semantic Relevance (SR) and Co-occurrence (CO) of

keywords to capture the real meaning of user query.

The research in the second area focuses on seeking for the information on the Internet. Cheung et

al. [5] propose a model of four-level classification tool of learning the behavior of both

information user and information source. Chang el al. [7] present a Site Traveling Algorithm

(STA) to discover the relevant information, in which the relevance of the retrieved document is

evaluated with the content popularity and richness (CPR). Yang el al. [8] present the

development of intelligent personal Internet agent based on automatic textual analysis of Internet

document and hybrid simulated annealing algorithm. Tu and Hsiang [9] propose an Interactive

Information Retrieval (IIR) agent architecture to handle group knowledge and preference, and to

keep track of the individual user profile. Teng et al. [10] propose a scalable method for parallel

processing in both information crawling/gathering and processing.

The third area of research concerns navigation assistance for user during the browsing process.

Joachims et al. [11] introduce the Web-Watcher, based on a learning approach with user feedback

to improve the quality of interactive navigation advice. Similarly, Liaberman [12] introduces the

intelligent agent, Letiza, which works with conventional web browsers to keep track of the user

browsing behavior and interests. Furthermore, Berghel et al. [13] present a web browser called

the “Cyberbrowser” to customize the information access to the content within the web page,

which include keyword and sentences extraction according to user selection. Lin et al. [14]

describe an approach for capturing user access patterns on the Web by addressing the limitation

of the Web servers which only recognize the proxy servers instead of the individual users.

Richardson [15] does a comparison on the existing tools to gather the access information on the

Internet, such as visitor counter and guest book.

The literature above shows the modeling of the information retrieval mostly is based on database

models and data mining techniques. The analysis centers on the user behavior patterns largely for

the global Web information retrieval. There are few studies for the analysis on site structure for

information retrieval as optimization problems. There are two types of models for problem

formulation – deterministic models and stochastic models.

 4

Gibson et al. [16] and Chakrabarti et al. [17] define the Web sites as “authorities” and “hub” in

isolation and conclude that a respected authority is a page that is referred to by many good hubs

and a useful hub is a location that points to many valuable authorities. Donato et al. [18] mine

the inner structure of the Web graph and propose a series of measurements on the Web. They

find that graph does not exhibit self similarity within its components and their inner structure is

quite distinct. Chakrabarti et al. [19] develop algorithms that exploit the hyperlink structure of

the Web for information discovery and categorization, the construction of high quality resource

lists, and the analysis of on-line hyperlinked communities. Eiron and McCirley [20] investigate

the construction of data models of the Web that capture the hierarchical nature of the Web and

some crucial features of the link graph. Yen [21] defines four types of Web page accessibility

models proposes the guidelines to balance accessibility and popularity. Kleinberg et al. [22]

describe two algorithms that operate on the Web graph, addressing problems from Web search

and automatic community discovery.

Sarukkai [23] uses a Markov Chain model based on the user access information for link

prediction and path analysis. Levene et al. [24] derive Zipf’s rank frequency law from an

absorbing Markov chain model of surfers’ behaviour assuming that less probable navigation

trails are, on average, longer than more probable ones. Levene and Loizou [25,26] formulate a

hypertext database as a graph and propose a probability approach to find the trail to match the

query. Kumar et al. [27] propose a stochastic model of the web graph to show additional

properties of the random graph. Levene et al. [28] extend the evolutionary model of the Web

graph by including a non-preferential component and viewing the stochastic process in terms of

an urn transfer model. Zin and Levene [29] propose that information on the topology is important

for useful exploration and can also help to reduce the feeling of disorientation that users may

experience.

From the review above, it should be noted that there lacks the consideration of dynamic factors

(such as dependent reverse links and user familiarity with Web navigation) of assessing

information from the Web in analyzing and evaluating the access models. In this research, we

propose a graph-based structure with stochastic properties (such as traffic conditions and

navigation information) and various dynamic policies to guide the users in accessing information.

The proposed approach captures the essence of the surfing process: A surfer surfs among web

 5

pages of a site according to the structure of pages as reflected from the hyperlinks, waiting for

the loading of new web pages as he triggers hyperlinks. The process is similar to an entity

jumping from the source to the destination node of a graph, with web pages as nodes, hyperlinks

as arcs, loading times as distances among nodes, and some stochastic properties and dynamic

policies as the surfing behavior and some as the navigation guidance provided by web pages. All

these web structures and routing policies are modeled discrete-time Markov chains, and the

expected time for a surfer to arrive at his destination is calculated based on both dynamic and

stochastic shortest paths.

The level of skill or experience of the surfers as well as the degree of guidance supported by the

sites is two of the major issues for information retrieval on the Web. Four models are considered

in our research to reflect these two issues: inexperienced surfers on guidance-less sites (ISL),

where totally inexperienced surfers surfing among web pages that do not provide any navigation

guidance, leading to surfers randomly moving among pages; experienced surfers on

guidance-less sites (ESL), where the web pages do not provide guidance but the surfers are

experienced, i.e., they only trigger unvisited pages as they search for their required information;

sites with the Mean-Path Guidance (MPG), where the navigation guidance of a site is in terms of

static values of the mean loading times of web pages; and sites with the Known-First-Arc

Guidance (KFA), where the navigation guidance of a site considers the real-time loading time of

the next page with mean loading times for future pages.

The rest of the paper is organized as the following. Section 2 contains the problem description

and formulation. Section 3 sets out the discussion on the four searching models of navigation

guidance. Section 4 demonstrates the simulation result and comparison on complexity and

applicability for the four proposed models. The paper concludes with a research summary and a

direction for future research efforts.

2. PRELIMINARY - PROBLEM DESCRIPTION

Consider a situation where data are distributed over a computer network that is composed of

switches and cables. A switch contains information about (i) the cable capacity; and (ii) the

estimated time for the packet going from each neighboring switch to the destination (typically in

 6

the form of look-up table). Whenever a data-packet arrives at a switch, the switch to visit next

needs to be determined based on the real time information on the network capacity. A routing

strategy is used to utilize the real-time information to form dynamically a path of minimized

costs for data delivery. We, therefore, proposed to improve the path for data delivery by way of

adding cables (the aggressive approach) and/or deleting cables (the passive approach) in between

the respective switches to improve the data delivery performance. By the same token, we

propose to improve the structure of the Web site by adding or deleting hyperlinks on the Web

pages, so that the Web surfers can navigate to the destination page most efficiently. In this

section, we first model the Web navigation as graph traverse problem. We further classify the

problems based on various Web structure properties. The model is extended based on the

“explorative transformation”.

2.1 Problem Formulation

A Web site comprises a number of Web pages and each Web page may have a number of

hyperlinks connecting to other pages. Each Web page is associated with a loading time, which

varies in proportion to the page content and the network traffic conditions. Vertices and arcs are

denoted as follows:

Vertices: V={v1, v2, …vn}. Each vi (i=1, 2, … n) refers to one page..

Arcs: E ={[vi, vj] or eij | There is a hyperlink in page i pointing to page j}. The arc

connecting vi to vj denotes a hyperlink from page i to page j.

The hyperlinks are directed, so is the network. Since each Web page has a loading time, the

corresponding vertex in the network is assigned a weight representing such loading time.

Naturally, the loading time of a Web page is directly determined by the size of the page contents,

such as text, images and sound/video clips, and network conditions. Among these factors, the

page size (xi) is the most dominating one. Hence, it is assigned as the weight of vertex to reflect

the download time:

w: V→ R+

w (vi) = xi

Therefore, the network is denoted as),,(wEVG =
v

, which is a directed graph in which a weight

is associated with each vertex. For example, let A be the start and L the destination page for a

 7

surfer on a site of web structure as shown in Figure 1. There are many ways to reach the

destination L from A. Not only that there are multiple paths from A to L, there are loops in the

seemingly directed graph. All web browsers provide the function to return to the previous page,

i.e., a path from A to L can actually be of the form A-C-A-C-G-L. The length of the path depends

not only on the sequence of nodes, but also on whether the cache function is enabled or not. If it

is enabled, the length of loading time for each reverse link becomes zero; otherwise, each reverse

link bears the same loading time for the previous page.

In short, the actual time taken for a surfer to move from A to L depends on the web structure, the

experience of the surfer, and the type of navigation guidance provided for the surfer. For a given

web structure, the time is determined by the latter two factors. For the web structure as shown in

Figure 1, suppose that based on historical record, on average A-C-G-L is the shortest path from A

to L. If the surfer is inexperienced and the web does not provide any navigation guidance, the

surfer may take a random walk on the network, with the page-back function as the means to

move in the opposition direction of the directed arcs. If the surfer is experienced, his search will

be more careful; pages visited before will not be re-visited unless there is no choice. With

navigation guidance provided by the web, the surfer may be guided to select A-C-G-L based on

the long-term average loading times of pages, or different paths according to the traffic jam

during navigation. In case the surfer needs more than one destination, the problem becomes

multi-destination, i.e., we need to find the shortest collection of paths that cover all the

destination nodes. If the hyperlinks on web pages can be changed, no matter as a static web

design problem that changes once for a long while, or a dynamic problem that hyperlinks are

highlighted according to traffic condition, then effectively the web structure is changed with the

change in hyperlinks.

<Insert Figure 1 here>

2.2 Problem Properties

We elaborate the model for the Web-based information retrieval by two dimensions – structure

properties and navigation properties. The structure properties concern the static properties of the

Web site structure, including the server capacity and the cache mechanism. The navigation

properties refer to the dynamic aspects of information retrieval, including single or multiple root

pages and destination pages, constraints on the navigation path, etc. Both dimensions have

 8

significant impact on problem modeling and problem solving.

Structure properties. The sever performance might be inversely proportional to the number of the

users making simultaneous page requests. This is valid both for an individual page and for a

number of pages forming the whole or part of a Web site. One particular characteristic for the

Web site structure is the “conditional reverse link” – the hyperlink visited enables the

corresponding reverse link. If we consider the cache function to be enabled, the length of loading

time for each reverse link becomes zero; otherwise, each reverse link bears the same loading

time as the previous page. The cache, depending on its size constraint or time limit constraints,

can store both the address and the content of a Web page. Furthermore, hyperlinks can be

bi-directional (i.e. the links in both directions are valid in the original graph) and multiple (i.e.

multiple identical or non-identical links between nodes).

Navigation properties. Navigation can start from a single root page (entry page) or multiple root

pages (direct page address). Similarly, the destination page can also be a single page or a group

of the pages. Navigation can be constrained by path length or browsing time. Objectives of

navigation may include minimizing retrieval time, maximizing information quality

(completeness and relevancy) and minimizing path length (radical distance form the root and

number of pages visited). The decision making during navigation process can be of static or

dynamic. In the static model, all the nodes along the navigation path are determined at once from

the beginning of the navigation process; however, in the dynamic model, the next node to visit is

only determined one at a time from the immediate proceeding node.

2.3 Problem Transformation

In addition to the structure and navigation properties, we adopt the explorative expansion

approach to address the cache capability of a navigation process. The explorative expansion

approach for conditional reverse link is based on the graph traversal (either breath first or depth

first search) on a link by link basis. The process starts with the root node as an initial component.

For each traverse on the new link, we consider the source node, the destination node, and the link

between them. A component is defined as a graph. A new expansion component is constructed

for the destination part and it is the combination of a replica of the original component, the links

of both direction as the newly explored links, and the destination node if it is not included in the

 9

original component. The exploring link will connect the source node in the original component to

the destination node in the new expansion component.

For example, Figure 2 (a) shows an original Web site graph. To start the expansion process, we

construct an initial component with only root node (i.e. node A) as shown on the top of Figure 2

(b). If we explore the link eAB in the next, we construct the new expansion component with node

A, node B, the link eAB and the link eBA. A link is added between the source node (i.e. node A) in

original component to the destination node (i.e. node B) in the newly generated expansion

component. The whole process will complete after all the links are explored. Figure 2(b) is the

complete expansion of the original Web graph in Figure 2(a). The reverse link in the expansion

components represents the “back” function. All the distances in the expansion components are

zero and the length of a link between any two components is the same as that in the original Web

graph. For the purpose of simplicity, no subscript is added in the expansion components to

differentiate one node from another.

The process can be described as an algorithm as follows.

For simplicity, we assume the original Web graph G0=(V, A).

Step 1. The original component Ge = (Ve, Ae) only consists of the root node, i.e. G=({v0},{})

Step 2. The set of the links to be explored Ax=A.

Step 3. {eij | vi ∈ Ve and eij ∈ Ax}

Step 4. {G′| Qualified components with vi but without eij}

Step 5. Construct the new expansion component G″ = G′ + {ei2j2,ej2i2} + {vj2}

Step 6. If exists already, then G= G + {ei1j2}

Step 7. Otherwise, include new expansion component G = G′ + G″ + {ei1j2}

Step 8. Go to Step 4 if there is any G′

Step 9. Go to Step 3 if there is any eij

Step 10. Ax = Ax - eij

Step 11. Go to Step 3 if Ax ≠ ∅

(Remark: In Step 6, 7, and 8, i1 and j1 are the node subscripts in the original component; i2 and j2

are the node subscripts in the new component)

The number of the expansion components is dependent on the number of the links in the original

 10

graph. Two extreme examples, namely chain structure and star structure, represent the lower

bound (i.e. n×(n+1)/2=(n2+n)/2) and upper bound (i.e. n2×n=n3), respectively, where n is the

number of nodes. In this study, we focus on cases with the assumption of single-destination and

disabled cache.

<Insert Figure 2 here>

3. SEARCHING MODELS

The level of skill or experience of the surfers as well as the degree of navigation support by the

sites may vary. An inexperienced surfer may browse randomly and load repeated pages, while an

experienced one may browse systematically and only load a page again if necessary. An

immature site may not provide any navigation information for surfers, while a well-designed one

may provide navigation information about the site structure and the expected loading time of the

respective pages. A sophisticated site may even provide real-time navigation information

changing simultaneously with the traffic of the Web.

For simplicity, we assume that the cache function is disabled and that the surfer has only one

destination in mind. Enabled cache function and multiple destinations are intended for future

extension works. We consider four simulation models based on the combination of the level of

skill or experience of the surfers as well as the degree of navigation support by the sites:

inexperienced surfers on guidance-less sites (ISL), experienced surfers on guidance-less sites

(ESL), sites with the Mean-Path Guidance (MPG), and sites with the Known-First-Arc Guidance

(KFA). The classification of the four models is based on the navigation guidance and repeatable

navigation as shown in the Figure 3. The information retrieval on the Web site in these four

models can be described as discrete Markov Chains as follows [23]. A discrete Markov chain

model can be defined by the tuple (S, T, λ). S corresponds to the state space (set of pages of Web

site), T is a matrix representing transition probabilities from one state to another (i.e. from one

page to another page), and λ is the initial probability distribution of the states in S. The detail is

discussed in the following the subsections. The modeling is mainly based on the work of Glover

et al. [30], Shier and Witzgall [31], Psaraftis and Tsitsiklis [32], Geetha and Nair [33],

Polychronopoulos and Tsitsiklis [34] and Cheung [35].

<Insert Figure 3 here>

 11

3.1 Inexperienced Surfers On Guidance-less Sites (ISL)

Consider a totally inexperienced surfer on a site without any navigation guidance. The surfer

moves randomly, possibly back and forth, among the pages, and picks links in a page arbitrarily.

The movement of such a surfer can be modeled by a random walk on a connected graph, and the

page search process can be modeled as a discrete-time Markov chain [23].

Refer to the site structure in Figure 1. Let Xn = s if the surfer is at page s after the nth move (page

loading). Take X1 = A, because A is the root page. In general, if a surfer starts from page s with

probability ps, the following argument still goes through by taking weighted average of outcomes

from page s with probability P(X1 = s) = ps. Let S = {A, B, …, L} be the state space of {Xn}.

From the description on the above paragraph, {Xn} is a discrete-time Markov chain. The

transition probabilities can be found from the number of links on a page. For example, if the

surfer is on page G of the site shown in Figure 1, he will next visit sites C, K, J, and L with

probability 0.25 (providing that he decides to continue his surfing). It is straightforward to show

that {Xn} is an absorption chain with L as the absorbing state.

For any page s ≠ L¸ let Ns be number of visits to page s before visiting page L and Ts be the

loading time of page s. E[Ns] is found from the first passage time argument from state A to state

L for the chain {Xn} (please see [36], pp 152 and pp. 172) and the expected searching time of L =

 .][][∑
≠Li

ss TENE

3.2 Experienced Surfer On Guidance-less Sites (ESL)

Consider an experienced surfer visits, for the first time, a site that does not provide any

navigation guidance. The surfer randomly picks up unvisited links in a page. As far as possible,

he will not re-visit a page that he has previously visited. However, he still needs to re-visit some

pages when he goes into a dead end during the process of searching for his destination.

Such a search behavior cannot be modeled by the random walk in Section 3.1 above. We can still

formulate it as a discrete-time Markov chain, but the size of the state space will be

 12

astronomically big: for N pages, to keep track of the identification of the pages visited, the state

space is of size O(N×2N). The expected searching time will be the first-passage time from first

entering page A, to any state such that page L is visited for the first time. The size of the chain

precludes any sensible study through this approach on sites of practical size. Fortunately, we can

still easily build up simulation models to estimate the expected searching time for this approach.

In each replication of simulation, the simulation program traces the pages visited by the surfer,

with the probability of visiting an unexplored page changed along the course. The mean time to

reach page L across all simulated replications is an estimate of the mean time for ESL.

3.3 Sites with Mean-Path Guidance (MPG)

From this section onwards we consider sites that provide various types of navigation guidance.

The navigation guidance may be static or dynamic, ranging from long-term mean to real-time

loading time, with all possible combinations of means and exact values lying between the two

extremes. Because of the navigation guidance, the difference in the expected searching time

between the experienced and inexperienced surfers is minimal and hence is ignored.

In this section, we consider navigation map guidance constructed from the mean path (loading)

time. To do so, we define the loading time of the destination page as the length of the directed arc.

For example, the length of arc A→B is E(TB), which is the expected time to load page B. Other

arcs are treated similarly. After the directed arcs are formed using the mean loading time, we get

a directed graph with positive cycle length. Standard algorithms, such as Dijkstra's algorithm (or

its variations) [37] can be used to find the shortest path from A to L.

B

In a site that provides the Mean-Path Guidance, a surfer is given a sequence of pages identified

using the above procedure. The average time taken for the surfer to reach his destination is the

value as identified by the Mean-Path Guidance. While the calculation is simple and

straightforward, without considering the real-time page loading times, the path from the

Mean-Path Guidance may be suboptimal. For example, take the destination page to be page L in

Figure 1 and suppose that the Mean-Path Guidance suggests the path A-C-G-L. However, at any

epoch, due to the instantaneous traffic, the actual loading time for an alternative path A-B-E-L

could be less than that of the suggested path A-C-G-L.

 13

3.4 Sites with Known-First-Arc (KFA)

The Mean-Path Guidance can be readily extended to the Known-First-Arc Guidance, which

considers real-time loading time. At page A, a surfer may choose from three pages, namely,

pages B, C, and D. If the system can estimate the loading time of each of pages B, C, and D, then

in the calculation of the shortest path from A to L, the actual exact loading time can be used in

arc A-B, A-C, and A-D, while the mean loading time are used in the remaining arcs of the paths.

Such a method is called the Known-First-Arc Guidance. This Known-First-Arc Guidance is

considered more advanced than the Mean-Path Guidance, and the difference is even more

noticeable when loading time have large variance.

The Know-First-Arc Guidance can be applied repeatedly. Suppose a surfer moves to page C

based on the Known-First-Arc approach. At C, the loading times of pages A, F, and G become

known quantities at the moment when the surfer leaves page C. A system can repeatedly apply

the Known-First-Arc approach to determine the loading time of the next page to visit, with an

objective to moving to page L in the shortest possible time. The guidance provides by this

method is dynamic. Generally speaking, once the surfer loads the root page and enters his

detention, the system will guide him through the site to the destination by informing him

dynamically which page to load next.

Assume that each time the actual exact loading time are random draws of the corresponding Ts.

The Known-First-Arc Guidance discussed above is exactly the Dynamic Stochastic Shortest Path

(DSSP) problem considered in Cheung [35] that studies the formulation of a dynamic shortest

path in a network and proposes a routing policy to compute the expected path cost by mimicking

the classical label-correcting approach. The DSSP allows the surfers to retreat from a wrongly

chosen path, when real-time rather than the excepted mean loading time is revealed. However,

the surfer may cycle around pages before he reaches the destination. Refer to Figure 4 below

which shows part of the site structure in Figure 1. For simplicity, we use arcs with two arrows to

represent the two directional flows. Here we assume that the loading time of all pages are i.i.d.

(Independent and Identically-Distributed) random variables, distributing uniformly in {1, 2, 3,

10}, whether or not a page is visited for the first time. Suppose that the surfer wants to go from

page A to L. At the moment when the surfer leaves A, whether the surfer will visit page B or C

 14

next depends on the current loading times of page B and page C at that time. If the loading time

of page B is of one unit and that of page C of 10 units, then it is more desirable to load page B

next, in which case it is possible for the surfer to be directed to page A or page E later on. If,

however, page C is loaded next, then the surfer will be directed to page G later on. Similarly, at

page E, the surfer may be directed next to page B or page L.

The movement of a surfer based on the DSSP can be modeled as a discrete-time Markov chain.

Provided that there are not many links from one page to another, the first-passage analysis of

such a chain is feasible for pages of all reasonable sizes. Consider the same example in Figure 1

going from page A to page L. Define a Markov chain {Xn} with the same state and state space as

in Section 3.1 above. The transition probabilities are found from DSSP. Let S(i) be the set of

successor pages that are possible to visit next when the surfer is at page i. It is straightforward to

find pij = P(Xn+1 = j|Xn = i) and E[Tj|{Xn} moves from i to j] from the joint distribution of {Tj, j ∈

S(i)}. Hence, the time from A to L is given by where N∑
=

ALN

k
kT

1
, AL is the first-passage time (number

of transitions) from page A to page L, and Tk is the time taken in loading the kth page. NAL can be

expressed as the sum of the i→j transitions before reaching page L, and giving the i→j transition,

the expected loading time is given by the set of conditional expected loading time {E[Tj|{Xn}]}.

Consequently, we can compute the expected searching time .
1

⎥
⎦

⎤
⎢
⎣

⎡
∑
=

ALN

k
kTE

<Insert Figure 4 here>

4. EXAMPLE, EVALUATION, AND EXTENSION

In this section, we compare the expected searching time of the four models discussed in Section 3.

While some of these models can be reviewed analytically, we have examined all four by

simulation. We simulate the page searching performance of surfers of different skill levels on

sites of different degrees of guidance support. In our simulation, the loading times are random.

Such an approach is a first-order approximation that captures the variation of the loading time in

relation to the traffic of the Web site. We illustrate the models with a site structure shown in

Figure 1. The nodes are the pages and the arcs are the hyperlinks of a page. We take page A as

the root and page L as the destination, and we will compare the total expected time for a surfer to

 15

get to page L after page A has been loaded. All loading time are assumed to be independent. We

also compare the four models on complexity and applicability. The implementation issue of

Known-First-Arc Guidance approach is also discussed at the end of the section.

To highlight the effect of searching and navigation guidance, we only consider the page loading

times and ignore time taken to read information of a page. It is easy to incorporate the page

reading time in the simulation models. However, this additional factor only blurs our focus – the

percentage differences of times among models are certainly reduced by long page reading times.

The arcs in Figure 1 appear as directed, however, in reality there are possibly loops traced by the

surfer as he searches from page A to page L. The page-return function of any browser ensures the

looping possibility in ISL, ESL, and KFA. On the other hand, no matter for any web structure,

with intrinsic loops or not, MPG simply suggests one straight path without any loop for a surfer.

Taking all these considerations together, it does not change the inferences and insights deduced

from the numerical run even if we take the web structure as shown in Figure 1. Along the same

line, a different set of parameter values for the numerical runs certainly changes the values of

numerical results, but it will not change the general trend of the inferences and insights gained

from simulation.

4.1 Numerical Examples

The underlying processes of all the four methods can be modeled as discrete-time Markov chains.

Generally, the one-step transition probability matrix of MPG is the easiest to deduce, and that of

ESL the most tedious. Consider web structure as shown in Figure 1. By definition, MPG

suggests a single path and its one-step transition probabilities are equal to one for arc along the

suggested path and are zero otherwise. For ISL, if page j being adjacent to page i, P(X1 = j|X0 = i)

= 1/n, where n is the number of pages adjacent to page i. For KFA, conceptually, given the

distribution of the loading times and the web structure, it is possible to deduce the probability

that a path is shorter at a transition, which effectively gives the one-step transition probabilities.

The deduction is simply a matter of notation and is not shown here. Similarly, should we put

down a discrete-time Markov chain of 12*212 states according to the current page and collection

of pages visited or not, we can list the one-step transition probabilities of ESL. Certainly there is

no point to do so. In fact, the simulation programs only follow the random mechanism of each

 16

model to generate the next move of a surfer. It is not necessary to explicitly know the one-step

transition probability matrices.

In our simulation, all page loading times are assumed to be independent and identically

distributed (i.i.d.) random variables distributing uniformly in {1, 2, 3, 10}. With this choice of

loading time distribution, the Mean-Path Guidance will definitely direct a surfer to the path

either A-C-G-L or A-B-E-L, and the Known-First-Arc Guidance may do the same depending on

the instantaneous loading time of pages B and C at the moment when the surfer leaves page A.

Meanwhile, the DSSP gives the same result as the Known-First-Arc Guidance at the moment

when the surfer leaves page A. However, at pages B, E, and any subsequent visits of page A, the

page to visit next is determined by the real-time loading time as discussed in Section 3.4 above.

The underlying processes of the four models are of different sizes and complexities. They require

different number of runs to achieve the same degree of accuracy; e.g., in MPG, the mean time to

reach page L is given by a close-form expression without doing any simulation. However, to

ensure that all simulation results are under the same set of random variates generated, which is a

form of variance reduction by common random numbers, the four models are simulated for the

same number of runs. With nearly 50,000 states in ESL, it takes a large number of runs to ensure

enough precision and confidence on the estimates for the model. Consequently, a million

replications are carried out for the four models. The simulation results are shown in Table 1

below.

<Insert Table 1 here>

As expected, an inexperienced surfer without navigation guidance takes the longest time to get to

his destination. Our results show a ratio of more than 13 times between this random search and

the guided searches. An experienced surfer without guidance can reduce his searching time by

more than 50% when compared to an inexperienced surfer. The surfer only revisits a previous

page if he has exhausted all the possible options in the current page. However, without the

knowledge of site structure, it is inevitable for a surfer to visit a page repeatedly. Consequently,

the mean searching time of unguided surfers is more than six times of that of guided surfers. The

two guided searches give very similar results, in terms of the mean searching time. The mean

searching time in Mean-Path Guidance is longer than that in DSSP, because Mean-Path

 17

Guidance does not use any real time information.

4.2 Evaluation

All four models work similarly in terms of providing (or not) navigation guidance for the

purpose of information retrieval; however, they differ in terms of applicability and complexity.

Complexity refers to the performance of the model in the various scenarios, such as conditional

reverse links, motivation guidance, decision-making, algorithm complexity, and structure

modification. Applicability concerns the capability of problems types, such as cache option,

multiple root nodes, multiple destination nodes, and concurrency. The following sets out the

comparison of the four models based on these two aspects.

A. Complexity

(1) Conditional reverse links. The original graph needs to be extended by explorative

transformation for the models ISL, ESL and MPG; however, it only adds the reverse links

dynamically to the graph for model KFA.

(2) Navigation guidance. The first two models, ISL and ESL, do not have the guidance, whereas

the other two, MPG and KFA, benefit from the guidance of site structure and loading time for

navigation decision.

(3) Decision-making. Both ISL and MPG models focus on the static decision-making, i.e.

one-pass decision process. Meanwhile, ESL and KFA models concern dynamic information

for decision-making.

(4) Algorithm complexity. For ISL model, the main task is to compute the first passage time; the

complexity for each node is O(N2) and the total complexity is O(N3). Because of the state

space of the Markov chain for ESL model, the total complexity is O(N4×2N). The complexity

of MPG model depends on that for Dijkstra's algorithm, which is O(N2). KFA model cannot

be solved in polynomial time unless it is acyclic. If we take into account the conditional

reverse links, the complexity of all four models are non-polynomial.

(5) Structure modification. The structure modification involves addition or modification of

links/nodes. For non-guidance models, ISL and ESL, are not effected by the changes in

structure formulation; guidance-based models, MPG and KFA, need to update the guidance

information. Meanwhile, static models, ISL and MPG, need to re-compute the solution by

taking into account the new information; but dynamic models, ESL and KFA, only consider

 18

the new information during every dynamic decision process.

B. Applicability

(1) Cache option. The cache option decides the loading time for the conditional reverse links,

which range between 0 (cache enabled) and the loading time of the original node (cache

disabled). The cache option (either enabled or disabled) is applicable for all four models.

There may be time (life span) constraints on the cache content. These time constraints,

however, are only applicable to KFA model.

(2) Multiple root nodes. The navigation may start from different root nodes in different sessions.

All four models are capable of handling multiple root nodes (without any further

modification).

(3) Multiple destination nodes. Unlike the case of multiple root nodes, the multiple destinations

need to be covered in the same session. In ISL model, navigation is independent from the

destination nodes and the calculation is additive as a linear function. Similarly, MPG model

can also take the destination nodes as independent in the graph and calculate the result as a

linear function. On the contrary, the calculation becomes much more complicated for ESL

and KFA models, which might take non-additive calculation as non-linear functions.

(4) Concurrency. The concurrency involves both multiple roots and destinations for different

session (for different users) simultaneously. Since KFA model needs real-time information

for step-by-step decision-making, the multiple sessions might interfere with each other. For

the other models (ISL, ESL, and MPG), the sessions can be independent.

The summary of the comparison is listed in Table 2. We may also include other evaluation

criteria in order to investigate the impact of adding links on accessibility efficiency of an

individual Web page or that of the Web site as a whole. From the comparison result, the suitable

models can be adopted and adapted based on the problem properties.

<Insert Table 2 here>

4.3 Implementation Approach

We have illustrated in Section 4.1 that navigation guidance can significantly reduce the searching

time of the surfers. The guidance can be implemented in (at least) two forms: (1) an explicit

 19

navigation map is provided with the shortest path highlighted for surfers to follow; and (2) sites

structure is dynamically generated to suit the needs of surfers. The implementation of the first

form is straightforward and its detail is deliberated omitted. We will discuss as follows the

implementation issues of the second form.

Refer to Figure 1 for the structure of the site for illustration. Remember that page A is the root

and page L is the destination. The structure indicates the hierarchical arrangement of information:

Page A contains links to pages B, C, and D, in the order of the links arranged in page A; other

pages and links are interpreted in the same fashion. Given the known destination page L provided

by the surfer, the system provides navigation guidance based on the real-time information at the

moment when the surfer finishes a page. Suppose that the guidance directs the surfer to page C,

and, by the same token, next to page G. So that for the surfer, the site structure is as if that in

Figure 5, all the relevant links being arranged in the most convenient top (right) position for the

surfer.

In Section 4.1 above, we use simulation to evaluate the performance of the different guidance

methods. In real-life, it is hard to simulate on real time for each surfer to determine his best

virtual site structure. Fortunately, there are polynomial time algorithms to calculate the shortest

paths. The standard shortest path algorithms for deterministic arc lengths give the shortest path

for the Mean-Path Guidance, as long as we set the arc lengths to their mean values. There is a

family of similar algorithms to determine the shortest paths with real-time information on path

length. In the following, we give the algorithm suggested in Cheung [35].

<Insert Figure 5 here>

Any site structure is an undirected graph as shown in Figure 1. Let (G, N) be such a graph, where

G = {A, …, L} be the set of nodes and N be the set of arcs of the graph. Node L is the destination.

Let

S(i) be the set of successor nodes of node i;

B(j) be the set of predecessor nodes of node j;

Tij be the (random) cost of arc (i, j); (Tij is the loading time of page j in our application);

iV be the expected distance from i to L.

 20

As stated above, all the arc costs are assumed to be independent. Then

LV = 0,

 iV =)],(min[
)(jijiSj

VTE +
∈

 ∀i = A, …, K. (1)

Note that Tij’s are known quantities whenever we compute the expected for node i. }{ iV are

found by solving the equation set simultaneously, which can only be done numerically.

However, Cheung suggested the following modified generic Label-correction method. It is an

approximation in alternate to what we give in Section 3.4 above. Let

Q be the set of nodes (typically in the form of queue) whose distance from node L have been

known;

iV̂ be an estimate of ;iV
max

iV = maximum value of).ˆ(min
)(jijiSj

VT +
∈

Step 1. Initialize = ∞, ∀ i ∈ G, i ≠ L; iV̂ .ˆ
LV

Step 2. Initialize Q.

Step 3. Remove a node i from Q and compute = iV̂)].ˆ(min[
)(jijiSj

VTE +
∈

Step 4. For each node j ∈B(i), if < Tmax
jV ji + and if i ∉ Q, then add i to Q. iV̂

Step 5. Repeat steps 3 to 4 until Q = φ.

The ways to initialize Q (in Step 2) and to add i to Q are implementation specific. See Cheung

[35] for an implementation example that reduces computational effort.

5. CONCLUSIONS AND FUTURE DIRECTIONS

With the advent of the Internet technology, the information crawling/gathering on the Web is

highly demanded and important in various applications. For example, users need to surf on the

Web for sourcing in procurement process. However, dynamic traffic and poorly organized Web

pages lead the users to navigate through irrelevant and redundant pages. In this paper, we adopt a

stochastic searching approach to provide users with dynamic guidance for information access on

 21

the Web. We consider four models: inexperienced surfers on guidance-less sites, experienced

surfers on guidance-less sites, sites with the Mean-Path Guidance, and sites with the

Known-First-Arc Guidance (which are generalized as sites with Dynamic Stochastic Shortest

Path Guidance (DSSP)). From the simulation result, we conclude that providing navigation

guidance reduces web page search time, and dynamic guidance improves the access

performance.

The results provide insights to design and administrate web pages. Navigation guidance can take

different forms. They can be explicit information built in as text or images of a page, or implicit

information hidden under menu bars and choice options. In all cases the design of the site, from

its structure to presentation, is important. For small sites or sites that generally entertain limited

number of surfers, the real-time traffic information of the site is not really essential on the access

performance. On the other hand, for trans-continental portals that possibly entertain huge number

of surfers simultaneously, the real-time information can direct and divert surfers according to

needs. The simplest example may be a page directing surfers to different downloading sites

according to the real-time utilization and traffic of sites. The realization of the insights gained

from this study would be an interesting synergy of web page design and information technology.

We can further extend this research in the following directions:

(1) Multiple-destination. The dynamic guidance algorithm needs to be extended to cover a

minimum spanning tree, if the user wants to visit multiple pages in a Web site.

(2) Oscillation avoidance. Since the dynamic guidance takes into account the traffic condition,

we may need to add a "stopping rule" or a learning mechanism to avoid the oscillation in

selecting the remaining path.

(3) Enabled cache. The traverse information can be kept in the cache for "go-back" function. In

this case, we need to add a reverse link with zero length or change its length to zero if it

exists in the original graph.

(4) Dynamic information content. If the pages are generated dynamically, such as ASP (Active

Server Page), we can split/merge the pages and re-organize information links/content.

(5) Personalized information space. The dynamic information content can be further extended

for personalization that each user will surf on the customized Web information space based

on his preference of information and security requirement.

 22

REFERENCES

[1] Perkowitz, M and Etzioni, O. (2000) Adaptive Web Sites. Communication of ACM, Vol. 43,
No. 8, August.

[2] Perkowitz, M and Etzioni, O. (2000) Towards adaptive Web sites: conceptual framework
and case study. Artificial Intelligence. Vol. 118, No.1-2, pp. 245-75

[3] Yan, T.W., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996) From user access
patterns to dynamic hypertext linking. Computer Networks & ISDN Systems, vol.28,
no.7-11, pp.1007-14.

[4] Wang, Z., Siew, C.K., and Yi, X. (2000) A new personalized filtering model in Internet
Commerce, Proceedings of SSGRR (Scuola Superiore G. Reiss Romoli), Rome, Italy.

[5] Cheung, D.W., Kao, B. and Lee, J. (1998) Discovering user access patterns on the World
Wide Web. Knowledge-Based Systems, vol.10, no.7, pp.463-70.

[6] Chen, P.M and Kuo, F.C. (2000) An Information Retrieval System based on User Profile.
The Journal of System and Software, vol. 54, pp3-8.

[7] Chang, C.H., Hun, C.C. and Hou, C.L. (1998) Exploiting hyperlinks for automatic
information discovery on the Web. Proceedings of 10th IEEE International Conference on
Tools with AI, pp.156-63.

[8] Yang, C.C., Yen, J. and Chen, H. (2000) Intelligent Internet Searching Agent Based on
Hybrid Simulated Annealing. Decision Support Systems. Vol.28 pp.269-277

[9] Tu, H.C. and Hsiang, J. (2000) An Architecture and Category Knowledge for Intelligent
Information Retrieval Agents. Decision Support Systems. Vol. 28, pp.255-268

[10] Teng, S.-H., Lu, Q., Eichstaedt, M., Ford, D. and Lehman, T. (1999), Collaborative team
crawling: information gathering/processing over Internet, Hawaii International Conference
on System Sciences: HICSS32.

[11] Joachims, T., Freitag, D. and Mitchell, T. (1997) WebWatcher: A Tour Guide for the World
Wide Web, Proceedings of IJCAI-97, Nagoya, Janpan, pp770-775

[12] Liaberman, H. (1995) Letizia: an agent that assists Web browsing. Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95). vol. 1,
pp.924-929

[13] Berghel, H., Berleant, D., Foy, T., and McGuire, M. (1999) Cyberbrowsing: information
customization on the Web. Journal of the American Society for Information Science, vol.50,
no.6, pp.505-13

[14] Lin, I.-Y., Huang, X.M. and Chen, M.S. (1999) Capturing user access patterns in the Web
for data mining. Proceedings 11th International Conference on Tools with Artificial
Intelligence, pp.345-8.

[15] Richardson, O. (2000) Gathering accurate client information from World Wide Web sites.
Interacting with Computers. Vol.12, no.6, pp.615-22.

[16] Gibson, D., Kleinberg, J. and Raghavan, P. (1998) Structural Analysis of the World Wide
Web. WWW Consortium Web Characterization Workshop, November.

[17] Chakrabarti, S., Dom, B., Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.,
Kleinberg, J.M. and Gibson, D. (1999) Hypersearching the Web, Scientific American, June.

[18] Donato, Debora, Leonardi, Stefano, Millozzi, Stefano, and Tsaparas, Panayiotis (2005)
Mining the Inner Structure of the Web Graph, 8th International Workshop on the Web and
Databases (WebDB), June 16-17, 2005, Baltimore, Maryland.

[19] Chakrabarti, S., Dom, B., Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A., Gibson,
D. and Kleinberg, J.M. (1999) Mining the Web's Link Structure. IEEE Computer, 32(8):
60-67

 23

[20] Eiron, Nadav, and McCurley, Kevin S. (2004) Links in Hierarchical Information Networks,
Lecture Notes in Computer Science, Vol. 3243, pp. 143-155, Springer.

[21] Yen, B.P.-C (2006). The Design and Evaluation of Accessibility on Web Navigation, Decision
Support Systems, Vol 42/4, pp 2219-2235.

[22] Kleinberg, J., Kumar, S.R., Raghavan, P., Rajagopalan, S. and Tomkins, A. (1999) The Web
as a graph: Measurements, models and methods. International Conference on
Combinatorics and Computing.

[23] Sarukkai, R.R. (2000). Link Prediction and Path Analysis using Markov Chains. Computer
Network, vol. 33 pp377-386.

[24] Levene, M., Borges, J. and Loizou, G. (2001) Zipf's law for web surfers. Knowledge and
Information Systems an International Journal, 3, 120-129.

[25] Levene, M. and Loizou G. (1999) A probabilistic approach to navigation in Hypertext.
Information Sciences, 114, 165-186.

[26] Levene, M. and Loizou G. (1999) Navigation in Hypertext is easy only sometimes. SIAM
Journal on Computing, 29, 728-760.

[27] Kumar, R., Rajagopalan, S., Sivakumar, D., Tomkins A. and Upfal, E. (2000) Stochastic
models for the web graph. Proceedings of the IEEE Symposium on Foundations of
Computer Science.

[28] Levene, M., Fenner, T., Loizou, G. and Wheeldon, R. (2002) A stochastic model for the
evolution of the web. Condensed Matter Archive, cond-mat/0110016 v2.

[29] Zin, N. and Levene, M. (1999) Constructing web views from automated navigation sessions.
In ACM Digital Library WOWS, Berkeley, Ca., August, pp. 54-58.

[30] Glover, F., Klingman, D. and Phillips, N. (1985) A New Polynomially Bounded Shortest
Path Algorithm, Operations Research, 33, 65-73.

[31] Shier, D. and Witzfall, C. (1981) Properties of Labeling Methods for Determining Shortest
Path Trees, Journal of Research of the National Bureau of Standards, 86, 317-330.

[32] Psaraftis, H.N. and Tsitsiklis, J.N. (1993) Dynamic Shortest Path in Acyclic Networks with
Markovian Arc Costs, Operations Research, 41, 91-101.

[33] Geetha, S. and Nair, K.P.K. (1993) On Stochastic Spanning Tree Problem, Networks, 23
675-679.

[34] Polychronopoulos. G. H. and Tsitsiklis, J.N. (1996) Stochastic Shortest Path Problems with
Recourse, Networks, 27, 133-143.

[35] Cheung, R. K. (1998) Iterative Methods for Dynamic Stochastic Shortest Path Problems,
Naval Research Logistics, 45, 769-789.

[36] Wolff, R. W. (1989) Stochastic Modeling and the Theory of Queues, Prentice-Hall, New
Jersey.

[37] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993) Network Flows - Theory, Algorithms,
and Applications, Prentice-Hall International, New Jersey.

 24

Table 1. Simulation Results

 Models Mean Searching Times*1

Inexperienced surfer on guidance-less Sites (ISL) 161.50
Experienced surfer on guidance-less Sites (ESL) 73.47
Mean-Path Guidance (MPG) 12.01
Known-First-Arc or DSSP guidance (KFA) 11.95

*1 The loading time of page A for the first time is excluded.

Table 2. Summary of comparison for searching models

 ISL ESL MPG KFA
Complexity

Conditional reverse links Extend graph Extend graph Extend graph Add links
Navigation guidance No guidance No guidance Guidance Guidance

Decision-making Static Dynamic Static Dynamic
Algorithm complexity *1 Polynomial Non-polynomial Polynomial Non-polynomial

Structure modification Re-compute No changes Update/ Re-compute Update
Applicability

Cache option *2 Not applicable Not applicable Not applicable Applicable
Multiple roots Applicable Applicable Applicable Applicable

Multiple destinations Linear Non-Linear Linear Non-linear
Concurrency Independent Independent Independent Dependent

*1 If taking into account conditional reverse links, the complexity becomes
 non-polynomial for all four models.
*2 In the case of time-constraint cache option

 25

Figure 1 Example – a Web site and its graph structure

Web page

Hyperlink

I

Graph structure

A

J

G F

C

L K

B D

E H

A Web site

 26

Figure 2 Example of explorative expansion

(a) Original graph

A

D

B C

E

(b) Expansion graph

C

D E

B

A

A

A

B

A

C

B

D

A

E

B

A

D E

B

A

C

D E

B

A

C

E

B

A

D

C B

A

CB

A

C

E

B

A

C

E

B

A

C

D E

B

A

Expansion components

Explorative links

C

E

A

 27

Experienced surfers
on guidance-less sites

Sites with the
mean-path guidance

Sites with the
known-first-arc guidance

Navigation
Guidance

Repeatable
Navigation

No Yes

No

Yes

Figure 3 Classification of the four models

Inexperienced surfers
on guidance-less sites

ESL MPG

KFA ISL

 28

Figure 4 Cycling in DSSP Guidance

I

A

J

G F

C

LK

BD

EH

A

Figure 5 The Virtual Site Structure Experienced by a Surfer

I

J

CD

GF

K L

E

B

H

	
	REFERENCES

