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On the effects of liquid-gas interfacial shear on slip flow
through a parallel-plate channel with superhydrophobic grooved walls
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1Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
2Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
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Comparisons between slip lengths predicted by a liquid-gas coupled model and that by an idealized
zero-gas-shear model are presented in this paper. The problem under consideration is
pressure-driven flow of a liquid through a plane channel bounded by two superhydrophobic walls
which are patterned with longitudinal or transverse gas-filled grooves. Effective slip arises from
lubrication on the liquid-gas interface and intrinsic slippage on the solid phase of the wall. In the
mathematical models, the velocities are analytically expressed in terms of eigenfunction series
expansions, where the unknown coefficients are determined by the matching of velocities and shear
stresses on the liquid-gas interface. Results are generated to show the effects due to small but finite
gas viscosity on the effective slip lengths as functions of the channel height, the depth of grooves,
the gas area fraction of the wall, and intrinsic slippage of the solid phase. Conditions under which
even a gas/liquid viscosity ratio as small as 0.01 may have appreciable effects on the slip lengths are
discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3493641�

I. INTRODUCTION

Much knowledge has been garnered in the past decade
on the mechanics of slip flow past a superhydrophobic sur-
face. Velocity slip is an apparent phenomenon, arising from a
composite boundary condition on the microscale. Surface
roughness, microbubbles, hydrophobicity, and a low-density
depletion region are the key qualities that make up a super-
hydrophobic surface. Slip leads to drag reduction and is im-
portant in microchannel flows. The body of work in this
area has been fast growing in recent years. Reviews by Neto
et al.,1 Lauga et al.,2 Zhang et al.,3 and Rothstein4 and the
references therein can be consulted for the state of the art, in
terms of experimental observations, mathematical modeling,
and numerical simulations of slip on superhydrophobic
surfaces.

A superhydrophobic surface is often a surface with fab-
ricated microfeatures, such as ribs, posts, or holes. When the
material is hydrophobic �i.e., with a contact angle larger than
90°� and the liquid pressure is below the capillary pressure,
the liquid is restricted to the top of the microprotrusions, and
the voids in the microfeature are occupied by a gas phase. In
this Cassie state, the liquid flow is lubricated by the under-
lying gas. In addition, intrinsic slippage on a solid surface
may result from a liquid depletion layer if the surface is
coated with a hydrophobic chemical. The combination of
lubrication over gas pockets and intrinsic slippage over solid
phase accounts for the superhydrophobicity of a surface.

Surface slip is measured by the slip length,5 which is
defined as the depth into the envelope of a surface where the
velocity would extrapolate to zero. Slip length is also equal

in magnitude to the slip velocity per unit shear rate of flow
near a boundary surface.

In mathematical modeling of the flow described above, it
is often assumed for simplicity that the liquid-gas interface is
flat and shear-free �e.g., Teo and Khoo�.6 On proposing some
scaling laws, Ybert et al.7 looked into the finite viscous dis-
sipation in the gas phase and the meniscus curvature effects.
Either effect leads to a lower effective slip length than that
predicted by assuming an ideal flat and no-shear interface.
Cheng et al.8 found from their numerical simulations that for
a gas/liquid viscosity ratio not larger than O�0.01�, the result
is not appreciably different from that based on a shear-free
interface.

Despite these studies, the liquid-gas shear effect on the
slip length is yet to be fully understood. This has motivated
the present study. Like many previous studies,6,9–11 the
present problem is to consider flow through a channel
bounded by two plane walls, each of which is micropatterned
with a periodic array of ribs and grooves aligned either par-
allel or normal to the principal flow direction. Our objectives
here are to develop analytical models that can simulate finite
shear on the liquid-gas interface and to examine how the gas
viscosity may affect the slip lengths as a function of various
parameters in the problem.

Davies et al.10 and Maynes et al.11 performed similar
studies on the comparison between predictions by a zero-
interfacial-shear model and a liquid-gas coupled model. With
an intention to achieve a wider scope, our study is different
from theirs in the following aspects. First, in their simula-
tions, they considered only a single value of the gas viscosity
�equal to that of air at standard conditions� and hence did not
examine the results as a function of the gas/liquid viscosity
ratio. We shall show that the prediction under some condi-
tions can be very sensitive to the viscosity ratio. Second,
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intrinsic slippage was ignored in their study, but is consid-
ered as one of the controlling parameters in the present study.
We shall show that even a small amount of intrinsic slippage
can have a nontrivial influence by amplifying the effect of
gas viscosity on the slip length. Third, they normalized the
length quantities with respect to the hydraulic diameter,
while we choose to normalize the length quantities by half
the pattern period. Results in terms of different normalized
parameters can reveal a relationship from a different perspec-
tive. Our results can directly reflect the individual depen-
dence of the slip lengths on the channel height and the
groove depth. Finally, the liquid-gas coupled model of
Maynes et al.11 is analytical �by series expansions� only in
the gas domain, but numerical �by finite elements� in the
liquid domain. Davies et al.10 solved the problem numeri-
cally using a commercial computational fluid dynamics
�CFD� code. According to their own description, their solu-
tion procedure required several hundred thousand iterations
�apparently because of the weak coupling due to small shear
on the interface�, which took them five to ten days to accom-
plish one simulation for longitudinal flow,11 and 10 to 15
days to accomplish one simulation for transverse flow.10 In
sharp contrast, our model is analytical in both liquid and gas
domains. Following Wang12 and Ng and Wang,13 we express
the velocity components by eigenfunction expansions, where
the unknown coefficients are determined by the matching of
velocities and shear stresses on the interface. Our model,
which generates results very quickly on a personal computer
�PC�, is much more efficient than the models by Davies et
al.10 and Maynes et al.11 They deduced the slip length by
taking section-average of the numerically obtained velocity.
In our model, the slip length is obtained directly as part of
the solution.

II. COUPLED MODELS AND SOLUTIONS

We consider pressure-driven viscous flow of a liquid
through a plane channel bounded by two parallel superhy-
drophobic surfaces that are fabricated with a periodic pattern
of ribs and grooves, running either along or normal to the
axis of the channel �Fig. 1�. In this study, it is assumed that
the liquid does not penetrate the grooves, which are com-
pletely filled with a gas. The liquid-gas interface is idealized
to be a flat surface lying on the top of the ribs and, therefore,
aligns with the liquid-solid interface. The meniscus curvature
effect is not considered in this study. As remarked by
Maynes et al.,11 a flat interface is an idealization representing
only one of many possible curvatures. The actual interface
curvature depends on the local pressure differential between
the liquid and the gas phases, which is assumed to be small
here in order to justify the assumption of a flat interface.
Near the entrance of the channel, the pressure can be so high
that the liquid impregnates the grooves, for which the present
models are not valid.

We further assume that, by virtue of the small length
scales of the problem, the Reynolds number, Re, is very
small and the flow is governed by the noninertial Stokes
equation. As shown by Cheng et al.,8 the slip lengths will not

be materially affected by the Reynolds number as long as it
is not greater than O�100�. Here, we assume that Re�1.

The problems presented below are formulated in terms
of nondimensional quantities; the lengths are normalized by
L, while the velocities are normalized by KL2 /�l, where L is
half the pattern periodicity �or pitch�, K is the axial pressure
gradient applied to the liquid, and �l is the liquid viscosity.
The ratio of gas viscosity to liquid viscosity is denoted by
���g /�l, where �g is the gas viscosity. Unless stated oth-
erwise, we shall from here on use only nondimensional
quantities.

Shown in Fig. 1 is one unit of the periodic structure of
the channel cross section, which is characterized by the fol-
lowing lengths �which are normalized by half the pitch of the
wall pattern�: h=half the channel height, a=half the groove
width, and c=depth of the gas cavity. Only in-phase arrange-
ment of the pattern on the two walls is considered in this
work. The flow is, therefore, symmetrical about the center-
line of the channel. Note that a also represents the area frac-
tion of the wall where the liquid is cushioned by the gas.
Owing to the lubrication resulting from a small ratio of gas
viscosity to liquid viscosity, ��1, the liquid flow experi-
ences wall slip, thereby a reduction in flow resistance. It is
also possible that the solid phase is chemically treated to
exhibit intrinsic slippage. We here allow a finite intrinsic slip
length ��0 along the liquid-solid interface, while the gas-
solid interface is always nonslip. It is the combined effect
due to the gas cushioning over the grooves and the intrinsic
slippage over the ribs that will determine the overall effec-
tive slip of the liquid over the composite wall.

A. Longitudinal flow

Let us first consider a pressure gradient K=−dpl /dz �di-
mensional� that is normal to the x−y plane shown in Fig. 1
and the flow is hence in a direction parallel to the grooves
and ribs. For convenience, we develop solutions for the liq-

x

y’

c

h

1

no slip

channel centerline

cavity filled
with gas

y

a

liquid

rib

partial slip λ

FIG. 1. �Color online� Flow through a plane channel with grooved walls;
longitudinal flow is normal to the x−y plane, while transverse flow is along
the x-axis. The coordinates and length dimensions are normalized with re-
spect to half the period of the wall pattern. The liquid-gas interface is a flat
surface in alignment with the top of the ribs.
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uid and the gas flows in terms of the wall-normal coordinates
y and y�, respectively, which are defined in Fig. 1.

The liquid flow is governed by

�2wl

�x2 +
�2wl

�y2 = − 1, �1�

where wl�x ,y� is the liquid velocity. The solution is com-
posed of the basic Poiseuille flow, a slip flow, and a periodic
flow that is even in both x and y,

wl�x,y� =
h2

2
�1 −

y2

h2� + h�	

+ h

n=1

�

Cn cos��nx�
cosh��ny�
cosh��nh�

, �2�

where �	 is the longitudinal macroscopic slip length, Cn are
unknown coefficients, and �n=n	.

Following Maynes et al.,11 we suppose that the gas cav-
ity is closed at the two axial ends of the channel, and the net
cross-sectional flux of the gas phase is zero. A positive pres-
sure gradient dpg /dz=�GK �dimensional� is induced in the
gas to produce backward flow balancing the forward flow
caused by the interfacial stress. As a result, a recirculation
convection cell develops along the entire length of the cavity.
For sufficiently far from the end walls, the gas flow is gov-
erned by

�2wg

�x2 +
�2wg

�y�2 = G , �3�

where wg�x ,y�� is the gas velocity. The solution, which
is even in x and satisfies no-slip at the cavity bottom
wg�x ,−c�=0, can be written as follows:

wg�x,y�� =
Gc2

2
� y�2

c2 +
y�

c
�

+ h

n=1

�

An cos�
nx��e
ny� − e−
n�y�+2c��

+ h

n=1

�

Bn sin��ny��
cosh��nx�
cosh��na�

, �4�

where An and Bn are unknown coefficients, 
n

= �n−1 /2�	 /a, and �n=n	 /c.
Using the zero-flux condition, �−c

0 �0
awgdxdy�=0, the in-

duced pressure gradient G can be related to An and Bn as
below

ac

12h
G = 


n=1

N
An

�
nc�2sin�
na��1 − e−
nc�2

− 

n=1

P
Bn

��nc�2 tanh��na��1 − cos��nc�� , �5�

where the coefficients An and Bn are truncated to N and P
terms, respectively.

By the no-slip condition on the lateral wall of the cavity,
and using orthogonality of the eigenfunctions, we obtain
from �−c

0 wg�a ,y��sin��my��dy�=0,

Bm = −
2G

ch�m
3 �1 − cos��mc�� �m = 1, . . . ,P� . �6�

On substituting this into Eq. �5�, we get

G =
12h

ac�


n=1

N
sin�
na�
�
nc�2 �1 − e−
nc�2An, �7�

where

� = 1 – 24

n=1

P
tanh��na��1 − cos��nc��2

��na���nc�4 . �8�

The matching conditions on the liquid-gas and liquid-solid
interfaces are

wl�y=−h = wg�y�=0 �0  x � a�
� � wl/�y�y=−h �a � x  1� ,

� �9�

� �wl

�y
�

y=−h

= �� �wg

�y�
�

y�=0
�0  x � a� , �10�

where �=�g /�l is the viscosity ratio, and � is the intrinsic
slip length on the liquid-solid surface. Integrating Eq. �9�
with respect to x from 0 to 1 gives

�	 = 

n=1

N
sin�
na�


n
�1 − e−2
nc�An + �

��1 − a + 

n=1

M

tanh��nh�sin��na�Cn� , �11�

where Cn are truncated to M terms. Multiplying Eq. �9� by
cos��mx� and integrating with respect to x from 0 to 1 gives



n=1

N

Imn�1 − e−2
nc�An − �

n=1

M

�nJmn tanh��nh�Cn −
1

2
Cm

= �
sin��ma�

�m
�m = 1, . . . ,M� , �12�

where

Imn = �

n


n
2 − �m

2 sin�
na�cos��ma� if �m � 
n

a

2
if �m = 
n,� �13�

Jmn = �−
sin���m − �n�a�

2��m − �n�
−

sin���m + �n�a�
2��m + �n�

if m � n

1 − a

2
−

sin�2�ma�
4�m

if m = n .�
�14�

We next multiply Eq. �10� by cos�
mx� and integrate it with
respect to x from 0 to a to get
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�
c

2h

sin�
ma�

m

G + �

ma

2
�1 + e−2
mc�Am

+ �

n=1

P � 
m�n


m
2 + �n

2�sin�
ma�Bn

+ 

n=1

M

�nInm tanh��nh�Cn

=
sin�
ma�


m
�m = 1, . . . ,N� . �15�

Equations �6�, �7�, �12�, and �15� form a system of
N+ P+M +1 linear equations that can be solved for the same
number of unknowns: A1,. . .,N, B1,. . .,P, C1,. . .,M, and G. The
longitudinal slip length �	 is then available from Eq. �11�. In
this work, we used the IMSL-DLSARG FORTRAN high-
precision solver to solve the system of equations. The num-
bers of terms required to achieve good accuracy depend on
the viscosity ratio �; the smaller the �, the greater the num-
bers of terms required. We have found that for �=O�0.01�,
we need N=O�400�, P=O�200�, and M =O�200� to achieve
an accuracy of 0.1%. It typically took a few seconds to get a
solution on a PC.

The limiting case of zero-shear on the liquid-gas inter-
face, �=0, is of interest to us. The system of equations de-
duced above will, however, converge slowly as �→0 when
the coupling between liquid and gas diminishes. To solve for
this limit in a more direct and simpler manner, the liquid
flow is found by the method of collocation instead. The co-
efficients C1,¯,M and �	 are to be determined by having the
composite boundary condition

�wl/�y = 0, 0  x � a

wl − � � wl/�y = 0, a � x  1
�y = − h , �16�

to be satisfied at equidistant M +1 discrete points on the line
0x1, y=−h.

For the ideal case of zero-gas viscosity and a thick chan-
nel ��=0, �=0, and h�1�, the flow amounts to shear flow
over a flat plate with a periodic array of no-shear alternating
with no-slip slots. The macroscopic slip length has been
analytically deduced by Philip14

�	ZS
plate =

2

	
ln�sec�	a

2
�� �� = 0, � = 0, h � 1� .

�17�

B. Transverse flow

We next consider liquid flow that is driven by
K=−dpl /dx �dimensional� and is in a direction normal to the
grooves and ribs. The governing equations of motion are
the continuity equation �u /�x+�v /�y=0 and the Stokes
equation �2�u ,v�=�p, where u and v are the x- and
y-components of velocity.

In the liquid domain, the pressure gradient is �p
= �−1+�pl /�x ,�pl /�y�, where pl is a periodic odd function of
x. The x-velocity is even in both x and y, while the y-velocity

is odd in both x and y. The basic expressions satisfying zero
normal velocity at the walls �vl=0 at y= �h� are

ul�x,y� =
h2

2
�1 −

y2

h2� + h�� + h

n=1

�
cos��nx�

cosh��nh�
En

� ��nh cosh��ny� − tanh��nh��cosh��ny�

+ �ny sinh��ny��� , �18�

vl�x,y� = h

n=1

�
sin��nx�

cosh��nh�
En��nh sinh��ny�

− �ny tanh��nh�cosh��ny�� , �19�

where �� is the transverse macroscopic slip length, En are
unknown coefficients, and �n=n	.

Gas flow in the cavity is recirculatory in the x−y plane.
The x-velocity is even in x, while the y-velocity is odd in x.
The velocity components that satisfy zero normal velocity at
the boundaries �ug=0 at x= �a, and vg=0 at y�=0,−c� are

ug�x,y�� = h

n=1

�
cos�
nx�


n cosh�
nc�
�AnFn��y�� + BnGn��y���

+ h

n=1

�

cos��ny��DnHn�x� , �20�

vg�x,y�� = h

n=1

�
sin�
nx�

cosh�
nc�
�AnFn�y�� + BnGn�y���

− h

n=1

�

sin��ny��
Dn

�n
Hn��x� , �21�

where An, Bn, and Dn are unknown coefficients, 
n

= �n−1 /2�	 /a, and �n=n	 /c. The three functions in these
expressions are

Fn�y�� = sinh�
ny�� − sinh�
nc��y�/c�e−
n�y�+c�, �22�

Gn�y�� = 
ny� sinh�
n�y� + c�� , �23�

Hn�x� = e�n�x−a� + e−�n�x+a� −
�1 + e−2�na�x
a�1 − e−2�na�

��e�n�x−a� − e−�n�x+a�� . �24�

The following boundary or matching conditions are yet to be
satisfied:

ug = 0 �y� = − c� , �25�

vg = 0 �x = a� , �26�

ul�y=−h = ug�y�=0 �0  x � a�
� � ul/�y�y=−h �a � x  1� ,

� �27�
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� �ul

�y
�

y=−h

= �� �ug

�y�
�

y�=0
�0  x � a� . �28�

Let us truncate An and Bn each to N terms, Dn to P terms, and
En to M terms.

Multiplying Eq. �25� by cos�
mx� and integrating with
respect to x from 0 to a gives

a�1 − �1 + �
mc�−1�tanh�
mc��Am − a
mc sech�
mc�Bm

+ 2

n=1

P
2
m�n�1 + e−2�na�2sin�
ma�cos��nc�

a�1 − e−2�na��
m
2 + �n

2�2

�Dn = 0 �m = 1, . . . ,N� . �29�

Multiplying Eq. �26� by sin��my�� and integrating with re-
spect to y� from −c to 0 gives



n=1

N
2
n�m sin�
na�

c�
n
2 + �m

2 �2 �tanh�
nc��e−
nc − cos��mc��An + 
nc

��1 − sech�
nc�cos��mc��Bn�

+
c

2
�4�mae−2�ma − e−4�ma + 1

�ma�1 − e−2�ma� �Dm = 0 �m = 1, . . . ,P� .

�30�

Integrating Eq. �27� with respect to x from 0 to 1 gives

�� = 

n=1

N
sin�
na�


n
��sech�
nc� −

tanh�
nc�

nc

e−
nc�An

+ tanh�
nc�Bn� + 

n=1

P �1 − e−4�na − 4�nae−2�na

�n
2a�1 − e−2�na� �Dn

+ ��1 − a − 2

n=1

M

tanh2��nh�sin��na�En� . �31�

Multiplying Eq. �27� by cos��mx�, followed by integration
with respect to x from 0 to 1, we obtain



n=1

N

Imn��sech�
nc� −
tanh�
nc�


nc
e−
nc�An + tanh�
nc�Bn�

+ 

n=1

P

ĤmnDn + 2�

n=1

M

�nJmn tanh2��nh�En

−
1

2
��mh sech2��mh� − tanh��mh��Em

= �
sin��ma�

�m
�m = 1, . . . ,M� , �32�

where Imn and Jmn are, respectively, given in Eqs. �13� and
�14�, and

Ĥmn =
1

a�1 − e−2�na���n
2 + �m

2 �2

��2�m�n�1 + e−2�na�2sin��ma�

+ ���n
2 − �m

2 ��1 − e−4�na�

− 4�na��n
2 + �m

2 �e−2�na�cos��ma�� . �33�

Finally, multiplying Eq. �28� by cos�
mx�, followed by
integration with respect to x from 0 to a, we get

�a
m� tanh�
mc�

mc

e−
mcAm + Bm�
− 2


n=1

M

�nInm tanh2��nh�En

=
sin�
ma�


m
�m = 1, . . . ,N� . �34�

Equations �29�, �30�, �32�, and �34� are a system of 2N+ P
+M linear equations for the unknowns: A1,. . .,N, B1,. . .,N,
D1,. . .,P, and E1,. . .,M. The transverse slip length �� is calcu-
lated by Eq. �31�. Again, the IMSL-DLSARG high-precision
solver was employed to solve the system of equations. The
numbers of terms required to achieve good accuracy are
comparable to those in the longitudinal case. The limiting
case of �=0 is again solved in a simpler manner using the
method of collocation. The coefficients E1,¯,M and �� are
determined by forcing the composite boundary condition to
be satisfied at M +1 discrete points on the wall. For the ideal
case of zero-gas viscosity and a thick channel ��=0, �=0,
and h�1�, the macroscopic slip length has also been analyti-
cally deduced by Philip,14

��ZS
plate =

1

	
ln�sec�	a

2
�� �� = 0, � = 0, h � 1� ,

�35�

which is exactly equal to half �	ZS
plate given in Eq. �17�.

III. RESULTS

The problems are solved with the following inputs:
channel height �h�, the gas area fraction of the wall �a�, the
depth of gas cavity �c�, the viscosity ratio ���, and the in-
trinsic slip length ���. Typical values of viscosity are O�10−3�
and O�10−5� Pa s for liquids and gases, respectively. There-
fore, it is reasonable to assume that �=O�10−2�. We ask the
question: under what conditions will such a small viscosity
ratio lead to nonsmall effects on the slip lengths? We have
checked that our analytical models are capable of producing
results that agree favorably with those known or published in
the literature. Our results are in excellent agreement in the
zero-gas-viscosity limit when compared with the two analyti-
cal expressions given in Eqs. �17� and �35� for flow over a
plate, and with the results by the analytical model of Teo and
Khoo6 for flow through a channel. Our results also agree
reasonably well with those computed numerically by Davies
et al.10 and Maynes et al.11

We show in Fig. 2, for both longitudinal and transverse
flows, the liquid phase velocity profiles on the liquid-gas
interface at y=−h, where a=0.875,0.75,0.5, c=0.8, �=0,
and �=0 �solid�, 0.01 �dashed�, 0.02 �dashed-dotted�. The
channel height is h=2, except in one case, h=10, as specified
in Fig. 2�b�. The symbols are the results adopted from pre-
vious studies: crosses denote the zero-shear model by Teo
and Khoo,6 squares and circles denote, respectively, the zero-
shear model and the liquid-gas coupled model by Maynes
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et al.,11 triangles and inverted triangles denote, respectively,
the zero-shear model and the liquid-gas coupled model �only
the low-Reynolds-number cases are selected here� by Davies
et al.10 The close agreement between our model and that of
Teo and Khoo6 is clearly demonstrated. Both models solve
Stokes flow analytically using Fourier series expansions, and
hence agreement in results is somewhat expected. Our results
also largely accord with the results obtained by Davies
et al.10 and Maynes et al.,11 who solved the Navier–Stokes
equations with CFD codes. The agreement with these CFD
results is mostly within 3%, although in the case a=0.5 of
transverse flow, the peak interfacial velocity obtained by
Davies et al.10 is some 13% lower than that calculated by
both the present model and the model of Teo and Khoo.6

We also note that, as already pointed out by Teo and
Khoo,6 the interfacial velocity of longitudinal flow is nearly
twice in magnitude that of the corresponding transverse flow.
We further note that the interfacial velocity can be materially
decreased by a viscosity ratio as small as 0.01–0.02 when a
is sufficiently large, say a�0.5. Here, the longitudinal flow
is subject to a greater decreasing effect due to gas viscosity
than the transverse flow. Such dependence of the flow on the
viscosity ratio will be further examined when the effective
slip lengths are discussed below.

A. Longitudinal slip length

Figure 3 shows the longitudinal effective slip length �	

as a function of h and a, where �=0.01 and �=0. Part �a� of
the figure is for a deep gas cavity c=2 and part �b� is for a
shallower gas cavity c=0.2. One can infer from previous
results by Wang12 that a groove can be considered to be deep
�i.e., its bottom is not felt by the flow outside the groove�
when its depth is equal to or greater than its width. For
comparison, the corresponding results for ideal zero-gas vis-
cosity, �=0, are shown by the dashes in the figure. These
dashes approach on their right ends the analytical limits
given by Eq. �17�. One can clearly see that the slip length �	

is virtually not affected by the channel height as long as the
height h�0.5. In fact, the use of a very thin channel �say
h�0.5� may not be practically desirable as the pressure re-
quired to drive the flow can be so large that the capillary

+
+

+ +++++ +
+
+

+

+
+

+

+

x
-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

ui

(b) Transverse flow

a = 0.5

0.75

0.5

h( = 10)

a = 0.875

+

+

+
+ + +

+

+

+

+

+

+

+

+

x
-1 -0.5 0 0.5 1 1.5

0

1

2

3

wi

(a) Longitudinal flow

a = 0.875

0.75

0.5

FIG. 2. �Color online� Streamwise velocity profiles of the liquid phase on the liquid-gas interface for �a� longitudinal flow, �b� transverse flow, where
a=0.875,0.75,0.5, c=0.8, �=0, and �=0 �solid�, 0.01 �dashed�, 0.02 �dashed-dotted�. The channel height is h=2, except in one case, h=10, as specified in
�b�. The symbols are the results adopted from previous studies: Teo and Khoo �Ref. 6� �crosses�, Maynes et al. �Ref. 11� �squares and circles�, and Davies
et al. �Ref. 10� �triangles and inverted triangles�.

h
0.5 1 1.5 2

0

0.5

1

1.5

δ||

a = 0.9

0.7

0.5

0.3

(a) = 2.0c

h
0.5 1 1.5 2

0

0.5

1

1.5

a = 0.9

0.7

0.5

0.3

δ||

(b) = 0.2c

FIG. 3. �Color online� Longitudinal slip length �	 as a function of the chan-
nel height h and gas area fraction of the wall a, where �=0, �=0.01, and �a�
c=2, �b� c=0.2. The dashes are for ideal gas �=0.

102002-6 Ng, Chu, and Wang Phys. Fluids 22, 102002 �2010�

Downloaded 11 May 2011 to 147.8.21.201. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



pressure will be exceeded and thereby the superhydrophobic
state will be lost. We shall focus on h�0.5 in this study.

The gas shear effect on the slip length is indeed very
small for sufficiently large h and c, even when a is close to
unity; see Fig. 3�a�. However, the gas viscous effect becomes
non-negligible when the grooves are shallow. Figure 3�b�
shows that a small but finite value of �=0.01 may predict a
slip length some 20% lower than that by the idealized zero-
shear model when a=0.9 and h�0.5. The percentage differ-
ence increases as h decreases, but decreases as a decreases.
For a small gas area fraction a�0.5, the gas shear will have
practically negligible effect unless c�1. These observations
are basically consistent with those reported by Davies et al.10

and Maynes et al.,11 although their results were presented in
terms of different normalized quantities.

Figure 4 shows similar plots, but for �=0.1. Remark-
ably, even such a small value of intrinsic slippage will
greatly magnify the gas viscous effect on the slip length,
especially for a�0.5. Even for a deep groove, the idealized
no-shear model will significantly overpredict the slip length
�by 10% for a=0.9� under the influence of the intrinsic slip-
page. The difference is much larger �by 50% for a=0.9� for
a shallow groove of c=0.2.

The dependence of the slip length on the viscosity ratio
is shown in Fig. 5. Part �a� of the figure is for a deep groove
and a thick channel �c=2, h=5�, while part �b� is for a shal-

low groove and a thinner channel �c=0.2, h=0.5�. In the case
of a deep groove, the zero-shear model is a very good ap-
proximation as long as �O�10−2�, for which the gas shear
is too small to have appreciable effect on the slip length for
any a�1. In the case of a shallow groove, the zero-gas-shear
model is a good approximation only for much smaller �,
especially for large a. For a=0.9, there is already a 20%
overprediction by the idealized zero-shear model when � is
only as small as 0.01.

The point that the slip length is sensitive to the viscosity
ratio when the grooves are shallow is further illustrated in
Fig. 6, where a=0.9, h=0.5, and �=0. For c=0.2, the slip
length is some 20%–36% lower than the idealized value
when the viscosity ratio � varies mildly from 0.01 to 0.02.

B. Transverse slip length

Plots like Figs. 3–5, but for the transverse effective slip
length ��, are shown in Figs. 7–9. On comparing Figs. 3 and
7, one finds that, unlike �	, �� decreases with decreasing h.
Also, the overprediction by the no-shear model diminishes as
h decreases. Except for these behaviors with small h, the
observations made above regarding the longitudinal slip
length apply also to the transverse slip length. A viscosity
ratio, as small as �=0.01, will have non-negligible effect
when the grooves are shallow �c�0.5� and the gas area frac-
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tion of the wall is large �a�0.5�. The decreasing effect of
nonzero-gas shear on the effective slip length can be dra-
matically magnified by the intrinsic liquid slippage on the
ribs. Figure 9�b� shows that, in the presence of intrinsic slip-
page, the macroscopic slip length is very sensitively affected
by even a small value of gas viscosity. Under these condi-
tions, the no-shear model will fall short in accurately predict-
ing the slip length. The liquid-gas coupling needs to be taken
into account in the modeling.

We further illustrate how the intrinsic slip length may
affect the effective slip length in Fig. 10, where a=0.9,
c=2, and h=5. It is clearly seen that, with even a modest
amount of intrinsic slippage, the slip length is sensitively
decreased by the gas viscosity. For example, for �=0.1, a
viscosity ratio as small as 0.005–0.02 will lower the slip
length by some 9%–26% compared with that by the idealized

model. Let us explain this in terms of the so-called local slip
length over the gas phase �g. Such a local slip length can be
defined as the ratio of the averaged slip velocity to the aver-
aged velocity gradient over the liquid-gas interface,

�g =
�0

aul�y=−hdx

�0
a�ul/�y�y=−hdx

=
�� + 
n=1

M sin��na���nh sech2��nh� − tanh��nh��En/��na�
1 + 2
n=1

M tanh2��nh�sin��na�En/a
. �36�

Following previous researchers,15,16 we may write, as a first
approximation,

1

�eff
�

1 − a

�
+

a

�g
for � � 0. �37�

For ideal gas �=0, �g is infinite, so the second term above
vanishes. Even for real gas with sufficiently small viscosity
��0, �g is finite but can be so large that the second term
above is still subdominant. Under these conditions, the effec-
tive slip length remains largely unaffected by the gas viscos-
ity. One has, however, yet to determine the rate by which the

gas slip length �g is affected by the viscosity ratio � under
the influence of intrinsic slippage.

One may regard the reciprocal of the gas slip length �g
−1

as the surface friction over the liquid-gas interface.7,15 Figure
10�b� shows how �g

−1 varies with � for several small values
of �. Indeed, the gas friction coefficient increases at a sharp
rate with the viscosity ratio. Even for a viscosity ratio as
small as 0.01, it is very easy for the two terms in Eq. �37� to
be comparable with each other. The intrinsic slip is to reduce
the friction over the solid phase, but is to increase the friction
over the gas phase. In other words, for a sufficiently large
gas area fraction of the wall, it is probable that the flow
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encounters comparable friction over the two phases, despite
a practically very small gas viscosity and a small degree of
intrinsic slippage over the solid phase.

C. Phenomenological relations

Some researchers show favor to the development of
simple and handy relationships based on the modeling pre-
dictions. These relationships do not necessarily have a physi-
cal basis, and in practice, are either heuristically derived or
based on data-fitting. Maynes et al.11 and Ybert et al.7 put
forward such phenomenological relationships to describe the
effect of viscous dissipation in the gas phase on the slip
length. The formula presented by Maynes et al.11 is simply
the no-shear model formula �17� modified by a factor that is
a function of the cavity and channel dimensions. In terms of
the present notation, their formula reads as follows:

�	
�pred� = �	ZS

plate�1 − exp�−
25/3c2/3h1/3

a
�� . �38�

This formula has been shown by Maynes et al.11 to correlate
very well with their simulation results for the following
ranges of cavity dimensions: 0�a�0.969, 0.1�1 /2h�1,
and 0�c /4h�0.7. Their formula, however, does not incor-
porate the gas/liquid viscosity ratio and the intrinsic slippage
as controlling parameters.

For shear flow over a flat surface patterned with no-shear
and no-slip regions, Ybert et al.7 proposed an interpolation
formula for an effective slip length accounting for the finite
dissipation in the gas phase: �eff

−1 =�g
−1+�ZS

−1, where �g is a
local slip length �which is large, but not infinite� on the
liquid-gas interface. As discussed earlier, the reciprocal �g

−1

represents surface friction of the interface. Assuming Darcy–
Brinkman flow in the gas phase, Ybert et al.7 further derived
an expression for �g in terms of the gas layer thickness,
viscosity ratio, and solid fraction. Their expression, however,
contains a parameter that depends on the microstructure
housing the gas phase and cannot be determined theoretically
in general.

Shown in Fig. 11�a� is a comparison between our mod-
eling results �	

�mod� and the predictions �	
�pred� using the

relationship �38� proposed by Maynes et al.11 The symbols
in this plot denote groups of inputs of �=0,0.05,0.1
and �=0.01,0.02. Each group contains data points for
a=0.9,0.5, h=0.5,5, c=0.2,2, which are within the above-
mentioned ranges of dimensions explored by Maynes et al.11

The groups with a=0.5 are those data points lying near the
lower left corner of the graph. As expected, formula �38�
predicts well only for those with zero intrinsic slippage, as
this is the original setting in which it was proposed.
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With modest intrinsic slippage �=0.05,0.1, the formula pre-
dictions can be far off the modeling values, especially for
a=0.9.

A simple way to improve the performance of the formula
is to replace the no-shear slip length used in the formula. In
Eq. �38�, �	ZS

plate is Philip’s14 expression for slip flow over a flat
plate and is applicable to �=0, �=0, and h�1. Let us re-
place it by �	ZS

channel, which is the slip length for flow through
a finite channel, where �=0, ��0, and h�O�1�. This is the
value that we have computed using the method of point
collocation as described earlier. The modified formula is,
therefore,

�	
�pred�� = �	ZS

channel�1 − exp�−
25/3c2/3h1/3

a
�� . �39�

Figure 11�b� shows how the predictions using this modified
formula are compared with the modeling values. Obviously,
the overall agreement is much better than that shown in Fig.
11�a�. The correlation is particularly good for the groups
with a=0.5. For the groups with a=0.9, the correlation is
also reasonably good, except for a few cases of fairly large
deviations. On identifying the cases which are predicted
well, we may infer from this comparison that relationship
�39� can be applied with good confidence �within 20%� as
long as a0.9, �=O�0.01�, c�1, h=O�1�, �O�0.1�. It

would be desirable if the formula could be further developed
incorporating the viscosity ratio and intrinsic slip length as
two additional controlling parameters. Such an effort is,
however, not pursued here.

We remark that, since there can be so many degrees of
freedom in choosing curve-fitted parameters, a data-fitting
formula with a wide scope of applicability is hard to come by
in general. We further caution that any such deduced phe-
nomenological formulas can only be used with great care;
they generate estimates that can only be trusted for an accu-
racy within a factor of 2 or so. They are also good at, within
the regimes of applicability, revealing the qualitative depen-
dence of the slip lengths on the controlling parameters. They
are of use if one is merely interested to do a rough calcula-
tion. If the intention is to get accurate predictions, the full
models should always be used.

Nevertheless, for the sake of quick reference, let us sum-
marize in Table I the key values that can be gathered from
the present study. Based on our modeling results, we may
compile some approximate figures representing the effect of
a gas viscosity �relative to that of liquid� of 0.01 on the
effective slip lengths when compared with those based on an
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ideal inviscid gas under the conditions that have been inves-
tigated. The upper and lower limits of the values in the table
are for a=0.9 and a=0.5, respectively. It is expected that if a
exceeds 0.9 and gets closer to unity, the values can be several
times higher than the upper limits given here. Also, these
values need to be adjusted �approximately linearly� if the gas
viscosity � varies mildly about 0.01 �i.e., a multiplying fac-
tor of 2 if �=0.02, and so on� After all, the values presented
in Table I are only intended for a quick but approximate
estimation of the effect of gas viscosity on the effective slip
lengths for Stokes flow through a channel with superhydro-
phobic grooved walls.

One can see from Table I that the gas viscosity is to have
different degrees of influence on the longitudinal and trans-
verse slip lengths. A ratio of these two slip lengths is impor-
tant to flow through a microchannel containing superhydro-
phobic surface with inclined grooves.6,12 Anisotropy arises
from the fact that �� is always smaller than �	 and flow can
be induced both in a direction along and normal to the ap-
plied pressure gradient. We show in Fig. 12 how the cavity
depth and the intrinsic slip length may affect the effective
slip length ratio. For a deep cavity, the gas viscous dissipa-
tion is to decrease �� more than �	, and hence the ratio �� /�	

is smaller than the one for gas with zero viscosity. The op-
posite is true for a shallow cavity, for which �� is less de-
creased than �	 by the gas viscous effect.

IV. CONCLUDING REMARKS

We have developed a computationally efficient liquid-
gas coupled model to simulate Stokes flow of a liquid
through a microchannel whose walls are micropatterned with
longitudinal or transverse grooves filled with a gas. We have
found that under the combination of the following conditions
even a small gas/liquid viscosity ratio may lead to appre-
ciable effects on the macroscopic slip lengths. First, a suffi-
ciently large gas area fraction of the wall �a�0.5�. Second,
sufficiently shallow grooves �c�0.5�. Third, with intrinsic
slippage of the solid phase ���0�. We have also found that,
under the second or the third condition, the slip lengths can
be sensitively affected by a viscosity ratio as small as
O�0.01�. This has been explained by looking into the surface
friction of the liquid-gas interface, which may increase
quickly with the viscosity ratio.

Based on the modeling results, we have presented values
in Table I that can be used for quick but approximate esti-
mates of the slip lengths as functions of the cavity dimen-
sions and other parameters. The results presented in this pa-
per will help one to estimate the validity of assuming zero-
gas viscosity on the mathematical modeling of slip flow over
a micropatterned surface.

Meniscus curvature or liquid penetration into grooves,
which are ignored in this study, will further affect the slip
lengths. In addition, when the pattern is in an out-of-phase
arrangement on the two walls, the results can be qualitatively
changed, depending on the pattern being longitudinal or
transverse, for flow through a thin channel. It is worthwhile
if a more comprehensive model taking into account all these
effects can be developed.
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Percentage decrease in the effective slip lengths Longitudinal ��	ZS−�	� /�	ZS Transverse ���ZS−��� /��ZS

Intrinsic slip length �=0 �=0.1 �=0 �=0.1

Shallow cavity c�0.2 �%� 20–10 30–10 10–5 30–10

Deep cavity c�2 �%� 3–1 10–3 4–2 15–6
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