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RECENT PROGRESS ON THE DIRICHLET DIVISOR PROBLEM AND
THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION

Kai-Man Tsang1

Abstract

Let ∆(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the

mean square formula for the Riemann zeta-function on the critical line. This article is a survey of

recent developments on the research of these famous error terms in number theory. These include

upper bounds, Ω-results, sign changes, moments and distribution, etc. A few open problems will

also be discussed.

2000 Mathematics Subject Classification. 11N37, 11N56, 11M06.

1. Introduction

Let d(n) denote the divisor function. The summatory function D(x) =
∑

n≤x d(n) occurs in
the study of many important problems in number theory, such as the asymptotic behaviour of
the Riemann zeta-function. When written as

∑
uv≤x 1, D(x) counts the number of lattice points

(u, v) lying in the first quadrant under the hyperbola uv = x. By the so-called hyperbolic method,
Dirichlet proved that, for any x ≥ 1,

D(x) = x log x + (2γ − 1)x + O(
√

x).

Let

∆(x) = D(x)− x log x− (2γ − 1)x

be the error term in the above asymptotic formula for D(x). Dirichlet’s divisor problem consists
of determining the smallest α for which

∆(x) ¿ε xα+ε

holds for any ε > 0. Thus, Dirichlet showed that α ≤ 1/2, and throughout the past one and half
century, there is a continual stream of improvement on this estimate. For instance, Voronoi [38] has
proved by complicated analytic method that α ≤ 1/3. The best estimate to-date is α ≤ 131/416,
due to Huxley [13], [14]. It is widely conjectured that α = 1/4 is admissible, which is then the best
possible (see §3 below).

Apart from getting improved upper bounds for ∆(x), there are, especially in the last three
decades, many papers in the literature which study other interesting properties of ∆(x), including
Ω-results, sign changes, moments, value distribution, etc. In this article, we will survey on the
recent developments of these interesting research on ∆(x).

1Dedicated to Professor Yuan Wang on the occasion of his eightieth birthday
The original publication is available at www.scichina.com and www.springerlink.com

1



2. Mean square of the Riemann zeta-function

Throughout this paper, the symbols cj , c
′
j etc. denote certain effective positive constants; c and

ε denote respectively a generic positive constant and an arbitrarily small positive number, which
may not be the same at each occurrence.

There is, so far, no simple closed expression for ∆(x) is known. At the beginning of the last
century, Voronoi [38] proved the remarkable formula that

∆(x) = − 2
π

√
x
∞∑

n=1

d(n)√
n

(
K1(4π

√
nx) +

π

2
Y1(4π

√
nx)

)
, (2.1)

where K1, Y1 are the Bessel functions, and the series on the right hand side is boundedly convergent
for x lying in each fixed closed interval. Voronoi then showed that ∆(x) ¿ x1/3+ε holds for any
ε > 0. Although (2.1) is an exact formula, in many applications the following truncated formula is
more convenient (see [31] Chapter 12):

∆(x) =
x1/4

π
√

2

∑

n≤N

d(n)
n3/4

cos(4π
√

nx− π

4
) + O(x

1
2
+εN− 1

2 ) for 1 ≤ N ¿ x. (2.2)

For instance, by taking N = x1/3 and using trivial bounds, this formula yields immediately the
bound ∆(x) ¿ x1/3+ε for any ε > 0. This truncated formula forms the basis of many investigations
on ∆(x).

A central problem in the theory of the Riemann zeta-function concerns the mean values

Ik(T ) =
∫ T

0

∣∣∣∣ζ(
1
2

+ it)
∣∣∣∣
2k

dt, k = 1, 2, 3, . . .

of ζ(s) on the critical line. A long-standing conjecture states that for every integers k ≥ 1,

Ik(T ) ∼ TPk(log T ),

where Pk is a polynomial of degree k2. So far asymptotic formula for Ik(T ) have been proved only
for k = 1 and 2. For k = 1, Hardy and Littlewood [8] proved in 1918 that

I1(T ) =
∫ T

0

∣∣∣∣ζ(
1
2

+ it)
∣∣∣∣
2

dt = T log
T

2π
+ (2γ − 1)T + E(T )

with E(T ) = o(T log T ). The error term E(T ) here is of immense interest and various authors have

contributed to its estimation. In particular, the bounds
√

T log T, T 5/12 log2 T and T 346/1067+ε

have been obtained by Ingham [15], Titchmarsh [30] and Balasubramanian [2] respectively, and
the best bound to-date is T 131/416+ε, obtained by Huxley [13], [14]. By the following inequality of
Heath-Brown [10]

ζ2(
1
2

+ it) ¿ (log t)
∫ t+log2 t

t−log2 t

∣∣∣∣ζ(
1
2

+ iu)
∣∣∣∣
2

du + log t

¿ (log t)(I1(t + log2 t)− I1(t− log2 t)) + log t

¿ log4 t + (log t)(E(t + log2 t)− E(t− log2 t)),
2



we see that a bound of the form E(t) ¿ tβ implies

ζ(
1
2

+ it) ¿ tβ/2
√

log t.

An important step forward on the research of E(T ) was made by Atkinson [1] in 1949, who
proved for large T and N ³ T that

E(T ) =
(

2T

π

)1/4 ∑

n≤N

(−1)n d(n)
n3/4

e(T, n) cos(f(T, n))

− 2
∑

n≤N ′

d(n)√
n

(
log

T

2πn

)−1

cos
(

T log
T

2πn
− T +

π

4

)
+ Oε(T ε) (2.3)

where

e(T, n) =
(
1 +

πn

2T

)−1/4
{(

2T

πn

)1/2

arsinh
(πn

2T

)1/2
}−1

,

f(T, n) = 2Tarsinh
(πn

2T

)1/2
+ (π2n2 + 2πnT )1/2 − π

4

and N ′ = T
2π + N

2 −
√

( T
2π + N

2 )2 − ( T
2π )2. However this remarkable formula has been neglected for

nearly thirty years until Heath-Brown [9] used it to prove the mean square formula

∫ T

0
E(t)2 dt = c′2T

3/2 + O(T 5/4 log2 T ).

This brought to light the significance of Atkinson’s formula, which then becomes the starting point
of many of the investigations on E(T ).

By first order approximations, when n = o(T ) we have e(T, n) ≈ 1 and f(T, n) ≈ 2
√

2πnT −π/4.
Thus the first sum for E(T ) on the right hand side of (2.3) is

≈
(

2T

π

)1/4 ∑

n≤N

(−1)n d(n)
n3/4

cos(2
√

2πnT − π

4
).

Apart from the oscillating factor (−1)n, this is the same as the Voronoi formula for 2π∆( T
2π ). Hence

many of the methods used in the study of ∆(x) apply also to E(T ). As we shall see in the following
sections, ∆(x) and E(T ) exhibit similar statistical behaviour.

The above similarity between the Voronoi series and the Atkinson formula led Jutila [21] to
observe deeper connection between ∆(x) and E(T ). Jutila noted that, if

∆∗(x) =
∑

n≤4x

(−1)n

2
d(n)− x log x− (2γ − 1)x

then

∆∗(x) = −∆(x) + 2∆(2x)− 1
2
∆(4x), (2.4)

3



and hence, by (2.2),

∆∗(x) =
x1/4

π
√

2

∑

n≤N

(−1)n d(n)
n3/4

cos(4π
√

nx− π

4
) + O(x

1
2
+εN− 1

2 ) for 1 ≤ N ¿ x. (2.5)

Thus ∆∗(x) instead of ∆(x) is the more appropriate analogue of E(T ).
It is clear from (2.4) that

∆(x) ¿ xα ⇒ ∆∗(x) ¿ xα. (2.6)

In [23], Lau and the author succeeded in inverting the recurrence (2.4), and hence showed the
non-trivial result:

∆∗(x) ¿ xβ ⇒ ∆(x) ¿ xβ. (2.7)

Thus, ∆(x) and ∆∗(x) have the same upper bound order. From the very interesting Main Theorem
proved in [21] and in view of (2.6), Jutila deduced that

∆(x) ¿ xα ⇒ E(T ) ¿ T (1+2α)/5(log T )12/5. (2.8)

In particular, the hypothetical best possible bound ∆(x) ¿ x
1
4
+ε implies E(T ) ¿ T

3
10

+ε. The
argument in the proof of (2.8) indeed shows also

E(T ) ¿ Tα ⇒ ∆∗(x) ¿ x(1+2α)/5(log x)12/5.

Hence, in view of (2.7), we have

E(T ) ¿ T
1
4
+ε ⇒ ∆(x) ¿ x

3
10

+ε.

However, one expects that the best α satisfying ∆(x) ¿ xα for all x ≥ 1 should be the same as the
best β for which E(T ) ¿ T β holds for all T ≥ 1.

3. Ω-Results

The first Ω-results for ∆(x) were obtained by Hardy [7] in 1916, who showed that

∆(x) = Ω+

(
(x log x)

1
4 log2 x

)
and ∆(x) = Ω−(x

1
4 ).

Here logj = logj−1(log) for j = 2, 3, . . .. The Ω−-results was later improved by Corrádi and Kátai
[3] to

∆(x) = Ω−
(
x

1
4 exp(c(log2 x)

1
4 (log3 x)−

3
4 )

)
,

for some positive constant c. This is a consequence of a quantitative version of Kronecker’s theorem.
More than sixty years have lapsed before an improved Ω+-result for ∆(x) appeared. Hafner [5]
proved in 1981 that

∆(x) = Ω+

(
(x log x)

1
4 (log2 x)α exp(−c

√
log3 x)

)
,

where α = 1
4(3 + 2 log 2) = 1.0965 . . . and c > 0 is a constant. In fact, this same result was also

obtained independently (but unpublished) by A. Selberg. Their novel idea is as follows. First , let
4



K(u) = (πu)−2 sin2(πu) be the Fejer kernel, and let ∆1(x) = π
√

2
x∆(x2). By using the truncated

Voronoi formula (2.2), we easily show that for 1 ≤ τ ≤ x1/7,
∫ τ

−τ
∆1(x + uτ−1)K(u) du =

∑

n≤(τ/2)2

d(n)
n3/4

(
1− 2

√
n

τ

)
cos(4π

√
nx− π

4
) + O(log τ).

Denote the sum on the right hand side by Sτ (x). Then clearly

sup
x−1≤y≤x+1

∆1(y) ≥ Sτ (x) + O(log τ),

and one obtains Ω+-results for ∆1(x) by exhibiting a large value of Sτ (x). By the Dirichlet theorem

on simultaneous approximation, there exists x ≤ 24(τ/2)2 such that ‖2√nx‖ ≤ 1/24 for each
n ≤ (τ/2)2. Hence,

Sτ (x) ≥ 1
2

∑

n≤(τ/2)2

d(n)
n3/4

(
1− 2

√
n

τ

)
À

√
τ

2
log τ À (log x)

1
4 log log x,

which is the Ω+-result of Hardy.
Hafner (and Selberg) noticed that the values of d(n) distribute rather unevenly, and he took

advantage of this by choosing a (thin) subset M of [1, (τ/2)2], corresponding to those n for which
d(n) is large. Write Sτ (x) = S′ + S′′, where S′ is the subsum consisting of those terms for which
n ∈ M . When Dirichlet’s theorem is applied to S′ as above we get the lower bound

Sτ (x) À
√

τ

2
log τ + O(|S′′|). (3.1)

By estimating S′′ trivially and then optimizing under the constraint that the O-term in (3.1) is
dominated by the main term, Hafner obtained his improved Ω+-result for ∆(x). Later Hafner and
Ivić [6] were able to adapt this idea to E(t) and obtained an Ω+-result for E(t) of the same quality.

Soundararajan [29] has a further idea. He saw that if the phase angle π
4 does not exist inside

the cosine factors in Sτ (x), then instead of a trivial estimation, S′′ can be made non-negative by
summing over a set of values of x lying in some arithmetic progression. In this way, he achieved
the even better Ω-result:

∆(x) = Ω
(
(x log x)

1
4 (log2 x)

3
4
(24/3−1)(log3 x)−

5
8

)
.

Here the exponent of log2 x is 1.1398 . . .. Soundararajan’s argument does not give Ω+ or Ω−-result
because, in the course of removing the phase angle π

4 , the sign of ∆(x) is lost. Moreover, his argu-
ment depends crucially on the non-negativity of the coefficients in the sum Sτ (x), and hence it does
not apply to E(t) where the oscillating factor (−1)n is attached to each of its terms. Soundararajan
pointed out further that, by modelling the sequence {√n}, n square-free, as independent random
variables, the above Ω-result should be the true maximal order of ∆(x) up to (log2 x)o(1).

Recently, Lau and the author [23] found a way to adapt Soundararajan’s idea to obtain large
values of E(t). (2.7) shows that any Ω-result for ∆(x) will automatically be an Ω-result for ∆∗(x).
As mentioned in §2 (see (2.5)), ∆∗(x) and E(t) are approximated by similar finite sums. Hence,

5



via this indirect route, Ω-result for ∆(x) is passed onto E(t). Thus it was proved in [23] that

E(T ) = Ω
(
(T log T )

1
4 (log2 T )

3
4
(24/3−1)(log3 T )−

5
8

)
.

4. Sign Changes

The Ω+ and Ω−-results described in the last section imply ∆(x) changes signs infinitely often.
In particular, ∆(x) has infinitely many zeros, since ∆(x) increases (jumps) only at the positive
integers and it decreases continuously like−logx elsewhere. One natural way to study the oscillatory
behaviour of ∆(x) is to consider the gaps between its zeros.

In 1955, Tong [32] proved that:
There exist positive constants c and c′ such that , for any X ≥ 1 and any v ∈ [−cX1/4, cX1/4],

there is x ∈ [X, X+c′
√

X] for which ∆(x) = v. In particular, ∆(x) changes signs in [X, X+c′
√

X]
for all X ≥ 1, that is, the gap between the zeros of ∆(x) is O(

√
x).

Indeed, Heath-Brown and the author [12] showed that the above length of gaps are essentially
best possible:

Let δ be any sufficiently small positive number. Then for X ≥ X0(δ), there are at least

δ
√

X log5 X disjoint subintervals of length δ
√

X log−5 X in [X, 2X] such that |∆(x)| > δx
1
4 when-

ever x lies in any of these subintervals. In particular ∆(x) does not change sign in any of these
subintervals.

As was pointed out in [36], |∆(x)| in the above can be replaced by ∆+(x) and ∆−(x) respectively
(see also [37]). Here for any real-valued function g,

g+ =
1
2
(|g|+ g), g− =

1
2
(|g| − g)

denote the positive and negative parts of g respectively. As we shall see in the next section, this
refinement has implications on the asymptotic formulas for the moments of ∆(x). We also point
out that the results about the gaps between zeros in this section hold verbatim for the error term
E(T ).

5. Moments of ∆(x) and E(T )

The results described in the last two sections show that ∆(x) and E(T ) exhibit considerable
fluctuations. However, these error terms behave rather well on the average, especially over intervals
of length À √

X. In particular, their moments have quite simple asymptotic formulas.
It is already contained in Voronoi’s work [38] that

∫ X

0
∆(x) dx =

X

4
+

X3/4

2
√

2π2

∞∑

n=1

d(n)
n5/4

sin(4π
√

nX − π

4
) + O(1) =

X

4
+ O(X3/4). (5.1)

Cramér [4] later took a step further and proved the mean square formula

∫ X

0
∆(x)2 dx = c2X

3/2 + Oε(X5/4+ε). (5.2)

6



An immediate consequence of this is that ∆(x) = Ω(x1/4). However, it is easy to see, by constructing
a suitable example, that (5.1) and (5.2) together is still not enough to deduce that ∆(x) = Ω+(x1/4)
or ∆(x) = Ω−(x1/4).

As we have already mentioned in §2, the corresponding mean square formular for E(t) appeared
much later. Heath-Brown [9] applied Atkinson’s formula to prove

∫ T

0
E(t)2 dt = c′2T

3/2 + Oε(T 5/4+ε).

It is not difficult to see that the following two statements are equivalent;
(i) ∆(x) ¿ε x1/4+ε,

(ii)
∫ X
0 |∆(x)|A dx ¿A,ε X1+A

4
+ε for all A ≥ 1.

Not much was known about higher power moments of these error terms until Ivić [16] used the
method of large values to prove, for g = ∆ or E, that

∫ X

0
|g(x)|A dx ¿ε X1+A

4
+ε for 1 ≤ A ≤ 35/4. (5.3)

The range of A was later extended to 28/3 by Heath-Brown [11].
By (5.2) and Hölder’s inequality, we find that

∫ X

0
|∆(x)|A dx À X1+A

4 for all A ≥ 2.

Hence apart from the ε power of X, the upper bound (5.3) is best possible.
The author [34] obtained in 1990 the asymptotic formula

∫ X

0
∆(x)k dx = ckX

1+ k
4 + O(X1+ k

4
−δk) (5.4)

for k = 3, 4, with δ3 = 1/14, δ4 = 1/23. The asymptotic formula for k = 3 is particularly
interesting. It shows that the values of ∆(x) have a substantial bias towards the positive side. If
∆(x) has a distribution function, it must be asymmetric.

By Hölder’s inequality, we further deduce from (5.2) and (5.4) that

X3/2 ¿
∫ X

0
∆(x)2 dx ≤

(∫ X

0
|∆(x)| dx

)2/3 (∫ X

0
∆(x)4 dx

)1/3

¿
(∫ X

0
|∆(x)| dx

)2/3

X2/3,

and hence
∫ X

0
|∆(x)| dx À X5/4.

This together with (5.1) shows that

∫ X

0
∆±(x) dx À X5/4.

In particular, we have ∆(x) = Ω±(x1/4). Same results hold for E(t).
7



These investigations sparked off a series of study on the higher-power moments of ∆(x) and
E(T ). Among other things, Heath-Brown proved in [11] that for any integer k ≤ 9, the limit

ck = lim
X→∞

X−1− k
4

∫ X

0
∆(x)k dx

exists. In fact, such limit exists for any k < K where K satisfies
∫ X

0
|∆(x)|K dx ¿ X1+K

4
+ε.

Same holds with E(T ) in place of ∆(x).
It should be pointed out that the above result of Heath-Brown does not give the asymptotic

formula for the k-th moment with an explicit error term, and also the above limit is not necessarily
non-zero. In fact, from (5.1) we have c1 = 0.

Initiated by the work of the author in [34] and Heath-Brown’s paper [11], there followed a series
of investigation on explicit asymptotic formula of the type (5.4) for larger values of k. At the
present moment, our available techniques only allow us to handle k up to 9 (see Zhai [39] and Ivić
and Sargos [20]).

There are also considerable interests on the size of the error term Fk(X) in the asymptotic
formula for the higher power moments:

∫ X

0
∆(x)k dx = ckX

1+ k
4 + Fk(X).

Ivić (see [18], Theorem 3.8) observed that

F2(X) ¿ V (X) ⇒ ∆(x) ¿ (V (x) log x)1/3.

Thus, from the Ω+-result of ∆(x), Ivić and Ouellet [19] deduced that

F2(X) = Ω(X
3
4 (log X)−

1
4 (log2 X)

3
4
(3+log 4) exp(−c

√
log3 X)).

In view of this, they conjectured that for every k ≥ 2,

Fk(X) ¿ε X
1
4
(k+1)+ε for all ε > 0.

This is a very strong conjecture, whose truth would imply the main conjecture ∆(x) ¿ x1/4+ε.
But, at least for odd k, this conjecture is false. To see this, we apply our theorem in §4 that for
some interval J = [X, X + U ] with U = δ

√
X log−5 X, we have ∆(x) ≤ −cX1/4 for all x ∈ J .

Then ∫

J
∆(x)k dx ≤ (−cX1/4)kU,

and hence
Fk(X + U)− Fk(X) ≤ −cUX

k
4 .

Thus, Fk(X) = Ω(X
k
4
+ 1

2 log−5 X).
The above argument does not work for even k. But for k = 2, Lau and the author [22] showed

that
∫ Z

0
F2(X) dX = −(8π2)−1Z2 log2 Z + cZ2 log Z + O(Z2), (5.5)

8



and whence

F2(X) = Ω−(X log2 X). (5.6)

Clearly (5.5) can be reformulated as
∫ Z

0
(F2(X) + (4π2)−1X log2 X − cX log X) dX ¿ Z2.

In [35], the following stronger result was proved:
For any r ≥ 1, the estimate

∫ Z

0
|F2(X) + (4π2)−1X log2 X − cX log X|r dX ¿ (cr)4rZr+1

holds. Consequently, if G(X) is any increasing function satisfying 2 ≤ G(X) ≤ log4 X, we have

|F2(X) + (4π2)−1X log2 X − cX log X| ≤ XG(X)

for all but O(Ze−cG(Z)1/4
) values of X in [2, Z].

In general, we conjecture that asymptotic formula of the form (5.4) exists, and the best possible

O-term there is O(X1+ k
4
− 1

2
+ε). Same is conjectured for E(t).

In the opposite direction, Tong [33] has improved the mean square formula (5.2) to
∫ X

0
∆(x)2 dx = c2X

3/2 + O(X log5 X) (5.7)

Thus, in view of (5.6) the error term here is just larger than its true order of magnitude by a small
power of log X. It was therefore quite an interesting development when Preissmann [28] was able
to further reduce F2(X) to O(X log4 X). In fact, Preissmann treated in detail the corresponding
problem for the circle problem, that is, the error term P (x) :=

∑
n≤x r(n) − πx, where r(n)

denotes the number of representations of n as the sum of two integer squares. But since P (x) has
representation similar to the Voronoi formula for ∆(x) and the Atkinson formula for E(T ), his
method applies to ∆(x) and E(T ) as well.

To obtain upper bound for F2(X) of such precision, the truncated Voronoi formula (2.2) is not
sufficient and we need the following refined Voronoi formula proved by Meurman [27]:

For x large and N À x,

∆(x) =
x1/4

π
√

2

∑

n≤N

d(n)
n3/4

cos(4π
√

nx− π

4
) + RN (x), (5.8)

where RN (x) ¿ x−1/4 if ‖x‖ À x5/2N−1/2 and RN (x) ¿ xε otherwise. The merit of this formula
is that the remainder term RN (x) is ¿ x−1/4 for most of the time, and this is just enough for our
purpose.

Take N = X7 in (5.8). On squaring the sum on the right hand side and then integrating term
by term, the diagonal terms together yield the main term in (5.7). A little calculation shows that

F2(X) ¿ X

∣∣∣∣∣∣∣

∑

m,n≤X7

m6=n

d(m)m− 3
4 d(n)n−

3
4√

n−√m
e4πi(

√
n−√m)X

∣∣∣∣∣∣∣
. (5.9)

9



To bound the double sum on the right hand side, Preissmann applied Hilbert’s inequality in the
following form: Let {an}, {bn} be two sequences of complex numbers. Suppose λn is a strictly
increasing sequence of positive real numbers. Then

∑

m6=n

anbm

λn − λm
¿

(∑
n

|an|2δ−1
n

) 1
2
(∑

n

|bn|2δ−1
n

) 1
2

(5.10)

where δn = minm6=n |λn − λm|. In our case, an = bn = d(n)n−
3
4 e4πi

√
nX and λn =

√
n, and the

best lower bound for δn is À 1/
√

n. Thus, Preissmann deduced that

F2(X) ¿ X(
∑

n

d(n)2n−1).

The last sum, by the well-known estimate:
∑

n≤y d(n)2 ¿ y log3 y, is easily seen to be ¿ log4 X

and this leads to the result of Preissmann. Recently in [24], the bound for F2(X) is further reduced
to

F2(X) ¿ X log3 X log log X. (5.11)

This and (5.6) together shows that we are now within only one power of log X from the true order.

Lau and the author had earlier obtained the improved bound F2(X) ¿ X log7/2 X(log log X)5/2

by a different idea. The anonymous referee of our paper, however, saw a better way of applying
Hilbert’s inequality and hence resulted in the above better bound. His interesting idea is contained
in the following.

Lemma Suppose an are complex numbers for N < n ≤ 2N . Let K ≤ N be a positive integer.
Then

∑

N<m6=n≤2N

aman√
m−√n

¿ S1 + S2 + S3

S1 = N3/2K−1
∑

h≥N/K

h−2
∑

N<n≤2N−h

|anan+h|,

S2 = N1/2
∑

h≤N/K

h−1
∑

N<n≤2N−h

|anan+h|

and

S3 = KN−1/2
∑

N<n≤2N

|an|2.

To prove this lemma we divide (N, 2N ] into K disjoint intervals

I =
(

k − 1
K

N,
k

K
N

]
, K < k ≤ 2K.
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We write g(n) for the lower end-point of the interval I for which n ∈ I, so that g(n) < n ≤
g(n) + N/K. We claim that

∑

N<m6=n≤2N

aman√
m−√n

=
∑

N<m,n≤2N
g(m) 6=g(n)

aman√
g(m)−

√
g(n)

+ O(S1) + O(S2). (5.12)

We first consider terms with m ≥ n + N/K, so that g(m) 6= g(n). Then 0 < n − g(n) ≤ N/K,

whence 0 <
√

n−
√

g(n) ¿ √
N/K, and similarly for m. We also have

√
m−√n À (m−n)/

√
N .

Moreover if m− n ≥ 2N/K then

g(m)− g(n) ≥ m−N/K − n ≥ (m− n)/2.

On the other hand, if N/K ≤ m− n < 2N/K we have

g(m)− g(n) ≥ N/K > (m− n)/2,

since g(m) 6= g(n), as remarked above. In either case we conclude that
√

g(m)−
√

g(n) À (g(m)− g(n))/
√

N ≥ (m− n)/
√

N.

It follows that
1√

m−√n
=

1√
g(m)−

√
g(n)

+ O
( N3/2

K(m− n)2
)

when m ≥ n + N/K. Thus these O-terms contribute O(S1) to (5.12).

Secondly we consider terms in which n < m < n+N/K. Here we have
√

m−√n À (m−n)/
√

N .

Moreover if g(m) > g(n) we have g(m) − g(n) ≥ N/K, whence
√

g(m) −
√

g(n) À √
N/K À

(m − n)/
√

N . It follows that the terms under consideration contribute O(S2) to (5.12), which
establishes the claim.

We now group terms n from a particular interval I, all of which have the same lower end-point
g(n). Thus, letting I1, · · · , IJ be the sequence of intervals I we set

A(j) =
∑

n∈Ij

an

and we write gj for the lower end-point of Ij . Thus

∑
N<m,n≤2N
g(m) 6=g(n)

aman√
g(m)−

√
g(n)

=
∑

j 6=k

A(j)A(k)√
gj −√gk

.

Moreover for j > k we have √gj −√gk À (gj − gk)/
√

N À √
N/K. We can now apply Hilbert’s

inequality as in (5.10) with an = bn to give a bound

¿ KN−1/2
∑

j≤J

|A(j)|2.

When we expand |A(j)|2 we get terms anan+h with n, n + h ∈ Ij . Thus |h| ≤ N/K. When h 6= 0

we have KN−1/2 ≤ N1/2|h|−1, so that the overall contribution is O(S2). Finally, terms with h = 0
produce a contribution O(S3), which completes the proof of the Lemma.

11



We proceed now to prove the bound in (5.11) by proving that the double sum on the right hand
side of (5.9) is ¿ log3 X log log X, that is,

∣∣∣∣∣∣∣

∑

m,n≤X7

m6=n

d(m)m− 3
4 d(n)n−

3
4√

n−√m
e4πi(

√
n−√m)X

∣∣∣∣∣∣∣
¿ log3 X log log X. (5.13)

Let Nj = 2j/2 and decompose the above sum into O((log X)2) subsums

Si,j =
∑

Ni<m≤√2Ni
Nj<n≤√2Nj

aman√
m−√n

,

where an = d(n) n−3/4e4πi
√

nX and it is understood that m 6= n if i = j. When i ≥ j + 2 we have
√

m − √n À √
Ni, and a trivial bound yields Si,j ¿ N

−1/4
i−j (log X)2. Thus the total contribution

from all such sums Si,j is O((log X)3). Sums with j ≥ i + 2 may be handled similarly. We also
have

Si,i+1 + Si+1,i = −Si,i − Si+1,i+1 +
∑

Ni<m6=n≤2Ni

aman√
m−√n

.

The sum on the right may be bounded by our Lemma, as can Si,i and Si+1,i+1. We take K =
[Ni/(1 + log Ni)] and find that

∑

N<n≤2N−h

|anan+h| ¿
∑

N<n≤2N−h

d(n) d(n + h)n−3/2 ¿ N−1/2(log X)2
∑

d|h
d−1,

whence S1 ¿ (log X)2, S2 ¿ (log X)2 log log X and S3 ¿ (log X)2. It follows that

Si,i ¿ (log X)2 log log X and Si,i+1 + Si+1,i ¿ (log X)2 log log X.

Thus on summing over i ¿ log X we obtain (5.13).
Closer scrutiny of the proof reveals that the main saving comes from bounding sums of the form∑
n≤N d(n) d(n + h) rather than

∑
n≤N d2(n).

The same method works for E(t) as well, except that we need to use the refined Atkinson formula
as given by Meurman in [27]. However, it is interesting to note that, Lee and the author [26] have
proved very recently that if

H(T ) =
∫ T

0
E(t)2 dt− c′2T

3/2

denotes the error term in the mean square formula for E(t), then
∫ Z

0
H(T ) dT =

−3
π2

Z2 log2 Z log log Z + O(Z2 log2 Z).

In particular H(T ) = Ω−(T log2 T log log T ). This is different from (5.5), and is the first result in
the literature that exhibits a fundamental difference between ∆(x) and E(t). A related result that
reveals the discrepancy between ∆(x) and E(t) is the mean square

∫ T

0

(
E(t)− 2π∆∗(

t

2π
)
)2

dt = T
4
3 P (log T ) + Oε(T

7
6
+ε)
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proved by Ivić [17]. Here P is a certain cubic polynomial.

6. Distributions

It is well-known that asymptotic estimates for higher power moments can give information on the
value distribution. It was therefore of great interest when Heath-Brown [11] proved the existence
of distribution function for x−1/4∆(x) (and also for t−1/4E(t)) without using its higher power
moments. More precisely, he proved the following ([11], Theorem 1)

There exists a function f(α) such that for any interval I, we have

X−1meas{x ∈ [1, X] : x−1/4∆(x) ∈ I} →
∫

I
f(α) dα

as X →∞. The function f(α) and its derivatives satisfy the growth condition

dk

dαk
f(α) ¿A,k (1 + |α|)−A for k = 0, 1, 2, . . . and any A > 0.

Moreover, f(α) extends to an entire function on C.
The main idea of his proof is based on the fact that x−1/4∆(x) can be closely approximated in

the mean by a very short initial section of its Voronoi series. The whole Voronoi series is too long
for high power moments to be handled satisfactorily, but a very short initial section can be. In
general, his method applies to any function F (x) that can be approximated by an oscillating series
in the following sense:

lim
N→∞

lim sup
X→∞

1
X

∫ X

0
min{1, |F (x)−

∑

n≤N

an(γnx)|} dx = 0,

where a1(x), a2(x), . . . etc. are continuous real-valued functions of period 1 and γ1, γ2, . . . are non-
zero constants.

From our earlier result (5.4) that

c3 = lim
X→∞

X−7/4

∫ X

0
∆(x)3 dx > 0,

we know the above distribution function f(α) for x−1/4∆(x) is biased towards the positive. The
same phenomenon holds for t−1/4E(t).

7. Some Open Problems

An intuitive explanation for the phenomenon that the distribution function of x−1/4∆(x) skews
towards the positive side is that, while ∆(x) decreases steadily like − log x, it jumps at each positive
integer with a magnitude which can be as large as xc/ log log x. Therefore, an aggregation of large
jumps over a short interval may result in exceptionally large value of ∆(x). This is also consistent
with the much larger Ω+-result we have obtained so far for ∆(x). However this explanation does
not seem to apply to E(t).

At the present moment, we have asymptotic formula for the k-th moments of ∆(x) and E(t) for
k up to 9, and as shown by Zhai [39], the odd moments ( namely for k = 3, 5, 7, 9) all have positive
leading terms. Zhai further pointed out that the existence of all the moments is equivalent to the
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main conjecture ∆(x) ¿ x1/4+ε. Thus , it might be very difficult to obtain asymptotic formulas
for all the high power moments in the near future.
Problem 1 Is it true that all the odd moments of ∆(x) are positive? One may also try to
investigate this under the hypothetical bound ∆(x) ¿ x1/4+ε.

It may be of interest to note that the positivity of the k-th moments for k = 3, 5, 7, 9 cannot
imply the same for higher k (see [25] for a discussion on this).

So far we have a number of statistical results for ∆(x) and E(t), all of which show that these
error terms have “normal” sizes around x1/4 and t1/4 respectively. It is therefore of interest to look
for exceptional values. These functions do have zeros, and since they change rather slowly, they
will remain small in size over short intervals around the zeros. An interesting question that worths
investigation is the following.
Problem 2 Do there exist intervals I = [X, X + Xβ] with β > 1/4 such that

∫

I
|∆(x)| dx ¿ Xβ+ 1

4
−δ

for some small positive δ?
In conclusion, these classical error terms in number theory not only provide many interesting

questions for further investigations, it is also a good testing field for novel ideas and techniques
researchers have developed in connection with other problems in number theory.
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