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Low Complexity Pre-Equalization Algorithms for
Zero-Padded Block Transmission

Wenkun Wen, Minghua Xia, and Yik-Chung Wu

Abstract—The zero-padded block transmission with linear
time-domain pre-equalizer is studied in this paper. A matched
filter is exploited to guarantee the stability of the zero-forcing
(ZF) and minimum mean square error (MMSE) pre-equalization.
Then, in order to compute the pre-equalizers efficiently, an
asymptotic decomposition is developed for the positive-definite
Hermitian banded Toeplitz matrix. Compared to the direct
matrix inverse methods or the Levinson-Durbin algorithm, the
computational complexity of the proposed algorithm is signifi-
cantly decreased and there is no bit error rate degradation when
data block length is large.

Index Terms—Asymptotic equivalence, matched zero-padded
(MZP) block transmission, pre-equalization.

I. INTRODUCTION

BLOCK transmission received a lot of attention in the
past decade as it can remove the inter-block-interference

(IBI) using simple measures and facilitate effective schemes
for inter-symbol-interference (ISI) suppression [1]–[6]. Within
the block transmission, the commonly used methods for IBI
removal are the cyclic-prefix (CP) and zero-padding (ZP)
schemes [7], [8]. Generally, the ZP scheme has higher power
efficiency than the CP scheme, especially, when the channel
has large delay spread such as underwater acoustic channel [9].
Moreover, the spectrum ripple of ZP scheme is much lower
than that of CP scheme, since the correlation caused by the
CP creates ripples into the average power spectral density of
the transmitted signals. These features of ZP scheme make it
attractive in power-limited systems [10], [11].

To combat ISI within each block of ZP block transmis-
sion, post-equalizer is usually exploited at the receiver side
[8]. However, its inherent noise enhancement effect or error
propagation will greatly reduce the output signal-to-noise
ratio (SNR) and thus deteriorate system performance [12,
Section 11. 1]. On the other hand, if channel state information
(CSI) is known at the transmitter, the transmitter can pre-
equalize the transmitting signals by passing it through a
filter that essentially pre-compensates the channel frequency
response.

Compared to post-equalizer, one important feature of pre-
equalizer is its capability to avoid the noise enhancement
or error propagation. Furthermore, pre-equalization shifts the
computational burden from the receiver to the transmitter.
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Therefore, pre-equalizer is more appealing than post-equalizer
in applications where simple receiver is desired.

In general, linear pre-equalizers such as zero forcing (ZF)
and minimum mean square error (MMSE) schemes, are easy
to be implemented due to low computational complexity. How-
ever, their performance is sensitive to the position of channel
zeros [8], [13, Section 3. 3. 6]. There are two popular ways to
deal with this problem. One is to add a modulus operation after
the pre-equalizer such as in Tomlinson-Harashima precoder
[14]–[16]. Another approach is to design a filter before pre-
equalizer to guarantee its stability [17], [18].

In this paper, we take the latter approach. In particular, we
investigate the stability of ZF and MMSE pre-equalizers and
their low-complexity realization. First of all, a matched filter
is designed to deal with the unstable channel inverse prob-
lem. Application of such matched filter before pre-equalizer
results in the matched zero-padded (MZP) transmission. Then,
an asymptotic decomposition on the positive-definite banded
Toeplitz matrix is established, in order to compute the ZF
and MMSE pre-equalizers efficiently. It is shown that the
proposed algorithms incur no BER degradation when the data
block length is large, but with a much lower computational
complexity than the direct matrix inverse method or the
Levinson-Durbin algorithm.

The rest of this paper is organized as follows. The sig-
nal model of block transmission is described in Section II.
A matched filter for stable inverse of non-minimum phase
channel is developed in Section III. Section IV establishes the
asymptotic decomposition on the positive-definite Hermitian
and banded Toeplitz matrix, and two fast pre-equalization
algorithms are proposed. Simulation results are presented in
Section V, and finally conclusions are drawn in Section VI.

For natational convenience throughout the paper, the op-
erators [.]∗, [.]𝑇 , [.]𝐻 , and [.]−1 denote the complex con-
jugate, transpose, Hermitian transpose, and inverse, respec-
tively. The operator ∣∣.∣∣2 refers to the ℒ2 norm of a vector,
and ∣∣.∣∣

𝐹
stands for the Frobenius norm of a matrix. The

operator ∣∣X∣∣
𝑊

stands for the weak norm of X defined

as ∣∣X∣∣𝑊 =
√

1
𝑁

∑𝑁
𝑖=1

∑𝑁
𝑗=1 ∣𝑥𝑖𝑗 ∣2, in which X is a

𝑁 × 𝑁 complex matrix and 𝑥𝑖𝑗 is its (𝑖, 𝑗)th entry. The
operator ∣∣X∣∣

𝑆
stands for the strong norm of X defined

as ∣∣X∣∣
𝑆

= max𝒛: 𝒛𝐻𝒛=1[𝒛
𝐻𝑿𝐻𝑿𝒛]1/2 [19, p. 170]. The

matrix I
𝑀

stands for the 𝑀 ×𝑀 identity matrix and 0
𝑀×𝑁

denotes the 𝑀 ×𝑁 zero matrix.

II. SIGNAL MODEL

Let d(𝑖) = [𝑑(𝑖𝐾), 𝑑(𝑖𝐾 + 1), ⋅ ⋅ ⋅ , 𝑑(𝑖𝐾 + 𝐾 − 1)]𝑇

be the 𝑖th data block with length 𝐾 . All elements 𝑑(𝑘),
𝑘 = 𝑖𝐾, ⋅ ⋅ ⋅ , 𝑖𝐾 + 𝐾 − 1, are independent and identically
distributed (i.i.d.). The data block d(𝑖) is first multiplied
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by a full-rank pre-equalization matrix W ∈ ℂ𝐾×𝐾 and
a coding matrix T ∈ ℂ𝑁×𝐾 with 𝑁 ≥ 𝐾 . Then, the
signal TWd(𝑖) is transmitted through a multi-path channel
h = [ℎ0, ℎ1, ⋅ ⋅ ⋅ , ℎ𝐿−1]

𝑇 with 2𝐿−1 < 𝐾 . The 𝑖th received
block can be written as [7]

r(𝑖) = RH0TWd(𝑖) +RH1TWd(𝑖− 1) + 𝜼(𝑖)

= R(H0 +H1𝑧
−𝐾)TWd(𝑖) + 𝜼(𝑖) (1)

in which R ∈ ℂ𝐾×𝑁 is the receive decoding matrix, 𝑧−𝐾

means a block-wise time delay, and 𝜼(𝑖) ∈ ℂ𝐾×1 denotes
the zero-mean additive white Gaussian noise (AWGN). The
convolution matrices H0 and H1 can be expressed respectively
as

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ℎ0 0 0 ⋅ ⋅ ⋅ 0
... ℎ0 0 ⋅ ⋅ ⋅ 0

ℎ𝐿−1 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ...
...

. . . ⋅ ⋅ ⋅ ... 0
0 ⋅ ⋅ ⋅ ℎ𝐿−1 ⋅ ⋅ ⋅ ℎ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

, (2)

and

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋅ ⋅ ⋅ ℎ𝐿−1 ⋅ ⋅ ⋅ ℎ1
...

. . . 0 ⋅ ⋅ ⋅ ...

0 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ℎ𝐿−1

...
. . . ⋅ ⋅ ⋅ ... 0

0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

. (3)

Equation (1) implies that the received signal for the current
block is interfered by the previous block, which is known as
inter-block interference (IBI). It is crucial to eliminate the IBI
so as to simplify data detection. The ZP block transmission
achieves this purpose [7], [8]. For the ZP scheme, the length
of transmit block is set as 𝑁 = 𝐾 + 𝐿 − 1 and the block

coding matrix is T𝑍𝑃 =
[
I𝐾 0𝑇

(𝐿−1)×𝐾

]𝑇
. At the receiver,

the decoding matrix is set as R
𝑍𝑃

= T𝐻
𝑍𝑃

. Thus, we have

R
𝑍𝑃

H1T𝑍𝑃
= 0, (4)

and
R

𝑍𝑃
H0T𝑍𝑃

= H, (5)

in which H is the 𝐾 ×𝐾 principal submatrix of H0, and H
is a lower-triangular and banded Toeplitz matrix.

Let T = T
𝑍𝑃

and R = R
𝑍𝑃

in (1) and making use of (4)
and (5), it yields

r(𝑖) = HWd(𝑖) + 𝜼(𝑖). (6)

It is assumed that full CSI is known at the transmitter, which
can be obtained via the principle of channel reciprocity in
time-division duplex system or feedback in frequency-division
duplex system. In general, the pre-equalization matrix can be
designed according to ZF or MMSE criteria and they are given
by [18],

W
ZP−ZF

= 𝛼H−1, (7)

and

W
ZP−MMSE

= 𝛼H𝐻

[
HH𝐻 +

1

𝜌
I

]−1

, (8)

respectively, in which 𝛼 is a constant used to normalize the
transmit power (e.g., 𝛼 = 1/∣∣H−1∣∣

𝐹
for ZF pre-equalizer)

and 𝜌 denotes the SNR at the receiver side.

III. STABLE INVERSE FOR NON-MINIMUM PHASE

CHANNELS

In view of (7) and (8), it is obvious that ZF and MMSE
pre-equalizers involve the matrix inverse operation. In the
following, we illustrate the relationship between the zeros of
a channel and the stability of the matrix inverse operation.

Let ℎ(𝑧) =
∑𝐿−1

𝑘=0 ℎ𝑘𝑧
−𝑘 denote the channel h in 𝑧 domain

and 𝑧0, 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝐿−2 be the 𝐿 − 1 zeros of ℎ(𝑧). Its inverse
system 𝑎(𝑧) = 1/ℎ(𝑧) is given by

𝑎(𝑧) =
∞∑
𝑘=0

𝑎𝑘𝑧
−𝑘, (9)

where

𝑎𝑘 =

𝐿−2∑
𝑖=0

𝑏𝑖𝑧
𝑘
𝑖 , (10)

and 𝑏𝑖 is the residue at the pole 𝑧𝑖 of 𝑎(𝑧). Because 𝑎(𝑧) is
the deconvolution polynomial of ℎ(𝑧) and the length of data
block is 𝐾 , the deconvolution matrix H−1 can be constructed
from the first 𝐾 coefficients of 𝑎(𝑧). That is, H−1 is given
by

H−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑎0 0 0 ⋅ ⋅ ⋅ 0
𝑎1 𝑎0 0 ⋅ ⋅ ⋅ 0
...

. . .
. . . ⋅ ⋅ ⋅ ...

...
. . .

. . .
. . . 0

𝑎𝐾−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎1 𝑎0

⎤
⎥⎥⎥⎥⎥⎥⎦
𝐾×𝐾

. (11)

If there exists a ∣𝑧𝑖∣ > 1, then 𝑎𝑘 grows exponentially with
𝑘 as can be seen in (10). That is, if any zero of ℎ(𝑧) is outside
the unit circle, it leads to a poor matrix inverse. Thus, the ZF
pre-equalizer in (7) works well only if ℎ(𝑧) is of minimum
phase. But this condition cannot always be satisfied in practical
wireless channels. The same situation occurs for MMSE pre-
equalizer in (8) when SNR is high.

In order to achieve a stable matrix inverse, a matched
filter can be exploited at the transmitter to form the so-
called matched zero-padded (MZP) block transmission. The
following Theorem 1 introduces how to construct the matched
filter in order to guarantee the stability of the pre-equalizer in
MZP transmission.

Theorem 1 (Stable Inverse Channel Construction Theorem):
If a channel ℎ(𝑧) =

∑𝐿−1
𝑘=0 ℎ𝑘𝑧

−𝑘 has no zero on the
unit circle, then the inverse of 𝑔(𝑧) = ℎ(𝑧)ℎ∗(1/𝑧∗)
is stable. Moreover, 𝑔(𝑧) can be decomposed into
𝑔(𝑧) = ℎ𝑚𝑖𝑛(𝑧)ℎ

∗
𝑚𝑖𝑛(1/𝑧

∗) where ℎ𝑚𝑖𝑛(𝑧) is of minimum
phase.

Proof: Since the zeros of 𝑔(𝑧) = ℎ(𝑧)ℎ∗(1/𝑧∗) occurs
in pairs: one inside the unit circle and one mirrored outside
the unit circle, 𝑔(𝑧) can be decomposed into the minimum
phase part ℎ𝑚𝑖𝑛(𝑧) and its maximum phase anti-causal part
ℎ∗𝑚𝑖𝑛(1/𝑧

∗) [20, Section 2. 4. 4]. Since both 1/ℎ𝑚𝑖𝑛(𝑧) and
1/ℎ∗𝑚𝑖𝑛(1/𝑧

∗) are stable, the inverse of 𝑔(𝑧) is stable. More
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specifically, ℎ𝑚𝑖𝑛(𝑧) can be constructed by the 𝐿 − 1 zeros
𝑧𝑘 of ℎ(𝑧) as

ℎ𝑚𝑖𝑛(𝑧) =

𝐿−2∏
𝑘=0

(𝑧 − 𝑧′𝑘), (12)

where

𝑧′𝑘 =

{
𝑧𝑘, ∣𝑧𝑘∣ < 1
1/𝑧∗𝑘, ∣𝑧𝑘∣ > 1

. (13)

An application of Theorem 1 is that, when the matched filter
ℎ∗(1/𝑧∗) is cascaded with channel ℎ(𝑧), the inverse of the
composite channel is guaranteed to be stable. In the presence
of matched filter, the received signal in (1) is modified as (see
Appendix A for the derivation)

r(𝑖) = R
(
H0 +H1𝑧

−𝐾
) (

H0 +H1𝑧
∗𝐾)𝐻

TWd(𝑖)

+ 𝜼(𝑖). (14)

Applying Theorem 1 in (14) leads to

r(𝑖) = R
(
H𝑚𝑖𝑛, 0 +H𝑚𝑖𝑛, 1𝑧

−𝐾
)

× (
H𝑚𝑖𝑛, 0 +H𝑚𝑖𝑛, 1𝑧

∗𝐾)𝐻
TWd(𝑖) + 𝜼(𝑖)

= RH𝑚𝑖𝑛, 0H
𝐻
𝑚𝑖𝑛, 1TWd(𝑖+ 1)

+R
(
H𝑚𝑖𝑛, 0H

𝐻
𝑚𝑖𝑛, 0 +H𝑚𝑖𝑛, 1H

𝐻
𝑚𝑖𝑛, 1

)
TWd(𝑖)

+RH𝑚𝑖𝑛, 1H
𝐻
𝑚𝑖𝑛, 0TWd(𝑖 − 1) + 𝜼(𝑖), (15)

where

H𝑚𝑖𝑛, 0 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝑚𝑖𝑛, 0 0 0 ⋅ ⋅ ⋅ 0
... ℎ𝑚𝑖𝑛, 0 0 ⋅ ⋅ ⋅ 0

ℎ𝑚𝑖𝑛,𝐿−1 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ...
...

. . . ⋅ ⋅ ⋅ . . . 0
0 ⋅ ⋅ ⋅ ℎ𝑚𝑖𝑛,𝐿−1 ⋅ ⋅ ⋅ ℎ𝑚𝑖𝑛, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

(16)

and

H𝑚𝑖𝑛, 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋅ ⋅ ⋅ ℎ𝑚𝑖𝑛, 𝐿−1 ⋅ ⋅ ⋅ ℎ𝑚𝑖𝑛, 1

...
. . . 0 ⋅ ⋅ ⋅ ...

0 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ℎ𝑚𝑖𝑛,𝐿−1

...
. . . ⋅ ⋅ ⋅ . . .

...
0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

(17)
with ℎ𝑚𝑖𝑛, 𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝐿 − 1, is the 𝑖th coefficient of
ℎ𝑚𝑖𝑛(𝑧) in (12).

Equation (15) implies that the received signal r(𝑖) is in-
terfered by both previous and following blocks. Fortunately,
these two IBIs can be removed by zero-padded transmission
strategy which forces

R
𝑍𝑃

H𝑚𝑖𝑛, 0H
𝐻
𝑚𝑖𝑛, 1T𝑍𝑃

= 0,

and
R

𝑍𝑃
H𝑚𝑖𝑛, 1H

𝐻
𝑚𝑖𝑛, 0T𝑍𝑃

= 0.

Therefore, putting T = T
𝑍𝑃

and R = R
𝑍𝑃

in (15), we have

r(𝑖) = R
𝑍𝑃

(
H𝑚𝑖𝑛, 0H

𝐻
𝑚𝑖𝑛, 0 +H𝑚𝑖𝑛, 1H

𝐻
𝑚𝑖𝑛, 1

)
×T

𝑍𝑃
Wd(𝑖) + 𝜼(𝑖) (18)

= GWd(𝑖) + 𝜼(𝑖), (19)

where

G ≜ R
𝑍𝑃

(
H𝑚𝑖𝑛, 0H

𝐻
𝑚𝑖𝑛, 0 +H𝑚𝑖𝑛, 1H

𝐻
𝑚𝑖𝑛, 1

)
T

𝑍𝑃
. (20)

It is straightforward that the ZF and MMSE pre-equalizers
of (19) are,

W
MZP−ZF

= 𝛼G−1, (21)

and

W
MZP−MMSE

= 𝛼G𝐻

[
GG𝐻 +

1

𝜌
I

]−1

, (22)

respectively, and Theorem 1 guarantees that (21) and (22) are
stable.

Remark 1: Notice that the channel state information at
transmitter (CSIT) is usually perturbed due to the feedback
error, its impact on the MZP scheme is limited compared to
the original pre-equalizers shown in (7) and (8). The reason
is as follows. Assuming Ĝ = G+P in which P is an error
matrix, we substitute WMZP−ZF = 𝛼Ĝ−1 into (19) and it
yields

r(𝑖) = 𝛼(Ĝ −P)Ĝ−1d(𝑖) + 𝜼(𝑖) (23)

= 𝛼d(𝑖)− 𝛼PĜ−1d(𝑖) + 𝜼(𝑖), (24)

where the perturbed term PĜ−1 is bounded since Ĝ−1 is
stable when the perturbation P is small enough over the non-
ill-conditioned G. Therefore, the effect of the CSIT error is
reduced, compared to (7) and (8). Notice that in this analysis,
the statistical properties of error are not taken into account.
They can be exploited for a robust pre-equalizer design, but
it is out of the scope of this paper.

IV. TIME-DOMAIN FAST ALGORITHMS

While computing (21) and (22), the computational com-
plexity of a 𝐾 × 𝐾 matrix inverse operation is 𝑂(𝐾3) and
it sharply increases with 𝐾 . The complexity can be reduced
to 𝑂(𝐾2) by exploiting the well-known Levinson-Durbin
algorithm [21, p. 865], but it is still high for large 𝐾 . In
order to further reduce the complexity, we propose a time-
domain fast algorithm based on the approximate Cholesky
decomposition. Before our main result is presented, we need
to define the asymptotic equivalence between two matrix
sequences.

Definition 1: [19, p. 172] Two sequences of 𝑘× 𝑘 matrices
{A𝑘} and {B𝑘} are said to be asymptotically equivalent if

(1) A𝑘 and B𝑘 are uniformly bounded in strong norm:

∣∣A𝑘∣∣𝑆 , ∣∣B𝑘∣∣𝑆 ≤𝑀 <∞, 𝑘 = 1, 2, ⋅ ⋅ ⋅
where 𝑀 is a finite constant, and

(2) A𝑘 −B𝑘 goes to zero in weak form as 𝑘 → ∞:

lim
𝑘→∞

∣∣A𝑘 −B𝑘∣∣𝑊 = 0.

The asymptotic equivalence of the sequences {A𝑘} and
{B𝑘} is abbreviated as A𝑘 ∼ B𝑘. It implies that A𝑘 is a
close approximation to B𝑘, and vice versa.

Then, we have the following approximate Cholesky decom-
position.

Theorem 2: Let {Ψ𝑘} be a sequence of finite-order
positive-definite Hermitian and banded Toeplitz matrices with
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the first row being 𝜓 = [𝜓0, ⋅ ⋅ ⋅ , 𝜓𝐿−1, 0, ⋅ ⋅ ⋅ , 0]1×𝑘, then
Ψ𝑘 is asymptotically equivalent to

Ψ𝑘 ∼ Ψ̃𝑚𝑖𝑛Ψ̃
𝐻
𝑚𝑖𝑛, (25)

where Ψ̃𝑚𝑖𝑛 is given by

Ψ̃𝑚𝑖𝑛 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝜓𝑚𝑖𝑛, 0 0 0 ⋅ ⋅ ⋅ 0
... 𝜓𝑚𝑖𝑛, 0 0 ⋅ ⋅ ⋅ 0

𝜓𝑚𝑖𝑛, 𝐿−1 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ...
...

. . . ⋅ ⋅ ⋅ . . . 0

0 ⋅ ⋅ ⋅ 𝜓𝑚𝑖𝑛, 𝐿−1 ⋅ ⋅ ⋅ 𝜓𝑚𝑖𝑛, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑘×𝑘

(26)

with 𝜓𝑚𝑖𝑛, 𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝐿 − 1, are the coefficients of the
minimum-phase part of 𝜓(𝑧) = 𝜓0 +

∑𝐿−1
𝑖=1 (𝜓𝑖𝑧

−𝑖 + 𝜓∗
𝑖 𝑧

𝑖).
Proof: See Appendix B.

Applying Theorem 2 in the MZP transmission, we have
Ψ𝑘 = G and Ψ̃𝑚𝑖𝑛 = H̃𝑚𝑖𝑛, 0, where

H̃𝑚𝑖𝑛, 0 = R
𝑍𝑃

H𝑚𝑖𝑛, 0T𝑍𝑃
. (27)

Then, the ZF pre-equalizer in (21) is asymptotically equivalent
to [19, Theorem 1, p. 172]

Ŵ
MZP−ZF

∼ 𝛼H̃−𝐻
𝑚𝑖𝑛, 0H̃

−1
𝑚𝑖𝑛, 0, (28)

whose computational complexity is 𝑂(𝐿𝐾).
And accordingly, an asymptotically equivalent MMSE pre-

equalizer with complexity 𝑂(𝐿𝐾) is given in the following
Corollary 1.

Corollary 1: The MMSE pre-equalizer in (22) is asymptot-
ically equivalent to

Ŵ
MZP−MMSE

∼ 𝛼G𝐻G̃−𝐻
𝑚𝑖𝑛G̃

−1
𝑚𝑖𝑛, (29)

where G̃𝑚𝑖𝑛 ∈ ℂ𝐾×𝐾 is given by

G̃𝑚𝑖𝑛 =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑔𝑚𝑖𝑛, 0 0 0 ⋅ ⋅ ⋅ 0
... 𝑔𝑚𝑖𝑛, 0 0 ⋅ ⋅ ⋅ 0

𝑔𝑚𝑖𝑛, 2𝐿−2 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ...
...

. . . ⋅ ⋅ ⋅ . . . 0
0 ⋅ ⋅ ⋅ 𝑔𝑚𝑖𝑛, 2𝐿−2 ⋅ ⋅ ⋅ 𝑔𝑚𝑖𝑛, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

with 𝑔𝑚𝑖𝑛, 𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 2𝐿 − 2, are the
coefficients of the minimum-phase part of
𝑔(𝑧)𝑔∗(1/𝑧∗) + 1/𝜌, and 𝑔(𝑧) =

∑2𝐿−2
𝑖=0 𝑔𝑖𝑧

−𝑖 in which
[𝑔2𝐿−2, 𝑔2𝐿−3, ⋅ ⋅ ⋅ , 𝑔0, 0, ⋅ ⋅ ⋅ , 0]1×𝐾 is the 𝐿th row of G.

Proof: See Appendix C.
Remark 2: The computational complexity of MZP-ZF in

(28) and MZP-MMSE in (29) can be derived as follows.
First notice that H̃𝑚𝑖𝑛, 0 = R

𝑍𝑃
H𝑚𝑖𝑛, 0T𝑍𝑃

in (27) is of
the same form as the matrix in (16) but with dimension
𝐾 ×𝐾 . In the MZP-ZF scheme, we want to compute y(𝑖) =
Ŵ

MZP−ZF
d(𝑖) = 𝛼H̃−𝐻

𝑚𝑖𝑛, 0H̃
−1
𝑚𝑖𝑛, 0d(𝑖). More specifically,

the calculation of y(𝑖) can be divided into two consecutive
steps: we first calculate y1(𝑖) = H̃−1

𝑚𝑖𝑛, 0d(𝑖) and then
y(𝑖) = 𝛼H̃−𝐻

𝑚𝑖𝑛, 0y1(𝑖). As can be found in [22, Algorithm
4. 3. 2, p. 153], the complexity of the forward substitution is

TABLE I
ALGORITHM 1: FAST MATRIX INVERSE ALGORITHM FOR MZP-ZP

PRE-EQUALIZER

1. Calculate all 𝐿− 1 zeros of channel ℎ(𝑧);
2. Compute the minimum phase part ℎ𝑚𝑖𝑛(𝑧) according to
(12) and (13);
3. Construct H̃𝑚𝑖𝑛, 0 according to (16) and (27);
4. Calculate ŴMZF−ZF ∼ 𝛼H̃−𝐻

𝑚𝑖𝑛, 0H̃
−1
𝑚𝑖𝑛, 0 in (28).

TABLE II
ALGORITHM 2: FAST MATRIX INVERSE ALGORITHM FOR MZP-MMSE

PRE-EQUALIZER

1. Calculate 𝑔(𝑧) = ℎ(𝑧)ℎ∗(1/𝑧∗);
2. Compute 𝑔(𝑧) = 𝑔(𝑧)𝑔∗(1/𝑧∗) + 𝜌−1;
3. Find out all 4𝐿− 3 zeros of 𝑔(𝑧);
4. Construct the minimum phase part 𝑔𝑚𝑖𝑛(𝑧) according to
Corollary 1, and then G̃𝑚𝑖𝑛 in (30);
5. Compute ŴMZP−MMSE ∼ 𝛼G𝐻G̃−𝐻

𝑚𝑖𝑛G̃
−1
𝑚𝑖𝑛 in (29).

𝑂(2𝐿𝐾). Thus, the complexity for MZP-ZF is 𝑂(4𝐿𝐾) per
transmitted vector and 𝑂(8𝐿𝐾) for MZP-MMSE.

Remark 3: In this paper, we established a general frame-
work to design the ZF and MMSE pre-equalizers with low
computational complexity. This work includes the results
in [17] as a special case, where a time-reversed filter and
an approximate ZF pre-equalizer are used without stability
analysis.

Summary: Combining the matched filter in Section III with
the pre-equalizer in the present section, two fast matrix inverse
algorithms with respect to MZP-ZF and MZP-MMSE pre-
equalizers are summarized in Tables I and II, respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the Monte-Carlo simulation results are pre-
sented and some discussions follow. Simulation parameters are
summarized in Table III. Simulation results are averaged over
105 runs. For fair comparison with different pre-equalizers,
the transmit power after pre-equalizer is normalized.

We first illustrate the effect of matched filter discussed
in Section III. In Fig. 1, the BER performance of ZF and
MMSE pre-equalizers in ZP transmission (i.e., (7) and (8)) are
compared to those in MZP transmission (i.e., (21) and (22))
when the block length 𝐾 = 64. For compactness, the notation
for a transmission scheme with a specific pre-equalizer is
abbreviated. For instance, the ZP transmission with ZF pre-
equalizer is abbreviated as “ZP-ZF”.

In Fig. 1, it is observed that the ZP-ZF fails to deliver a
satisfactory BER performance because of the unstable channel
inverse. On the contrary, the MZP-ZF outperforms the ZP-
ZF because the matched filter eliminate the channel zero. For
the ZP-MMSE, it achieves the best BER performance when
SNR ≤ 22 dB, since the diagonal loading term I/𝜌 in (8)
stabilize the matrix inverse at low SNR. However, it reaches
a BER floor when SNR ≥ 20 dB. For the MZP-MMSE,
although it performs worse than ZP-MMSE at low SNR, it
does not show any error floor and achieves lower BER when
SNR ≥ 22 dB.

Next, we compare the proposed low-complexity matrix
inverse methods in (28) and (29) to the direct matrix inverse
(DMI) pre-equalizers in (21) and (22) under different data
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TABLE III
SIMULATION PARAMETERS

Transmit scheme ZP, MZP
Channel length (𝐿) 5
Prefix length 5
Block length (𝐾) 64, 128, 256, 512, 1024
Channel coefficients distributions i.i.d. Gaussian
Modulation type Single-carrier QPSK
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ZP−ZF, (7)
MZP−ZF, (21)
MZP−MMSE, (22)
ZP−MMSE, (8)

Fig. 1. BER of ZP and MZP transmission. All pre-equalizers are based on
the direct matrix inverse (DMI) methods.

block lengths. In Fig. 2, the SNR is 15 dB while the block
length 𝐾 varies from 64 to 1024 (notice that the abscissa
of Fig. 2 is in base-2 logarithmic scale). It is seen that the
MZP-ZF with proposed matrix inverse method coincides well
with the DMI pre-equalizer in (21). On the other hand, the
MZP-MMSE with proposed matrix inverse method shows
a performance difference from DMI when 𝐾 is small but
converges to that of DMI as 𝐾 increases, and it achieves
almost the same performance at 𝐾 = 1024. Obviously, the
convergence speed of the proposed MZP-MMSE in (29) is
a little slower than the proposed MZP-ZF in (28). This is
because the number of non-zero elements of the matrix G̃𝑚𝑖𝑛

in (30) is twice of the matrix H𝑚𝑖𝑛, 0 in (16).
Fig. 3 compares the proposed low-complexity matrix in-

verse methods in (28) and (29) to the DMI pre-equalizers in
(21) and (22) versus SNR, where the data block length is
𝐾 = 1024. For MZP-ZF scheme, it is observed that the BER
performance of the proposed matrix inverse method (28) is
indistinguishable from the DMI method in (21) over all SNRs.
However, for the MZP-MMSE scheme, the proposed matrix
inverse method in (29) shows slight BER degradation with
respect to the DMI method, but it still performs much better
than the MZP-ZF scheme.

VI. CONCLUSIONS

Linear pre-equalizer is hard to be exploited by the zero-
padded block transmission because of the possibly unstable
channel inverse. In this paper, a matched zero-padded block
transmission scheme is proposed to tackle the unstable channel
inverse problem. Moreover, two practical ZF and MMSE
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Fig. 2. BER of MZP-ZF and MZP-MMSE pre-equalizers with SNR=15dB
(Proposed matrix inverse vs. DMI methods).
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Fig. 3. BER of MZP-ZF and MZP-MMSE pre-equalizers with K=1024
(Proposed matrix inverse vs. DMI methods).

pre-equalizers with low computational complexity are devel-
oped by exploiting the asymptotic decomposition on banded
Toeplitz matrix. They have almost the same BER performance
with those based on the direct matrix inverse pre-equalizers
when the data block length is large.

APPENDIX A
DERIVATION OF EQ.(14)

Before the transmit signal x(𝑖) = [𝑥(𝑖𝐾), 𝑥(𝑖𝐾 +
1), ⋅ ⋅ ⋅ , 𝑥(𝑖𝐾 + 𝐾 − 1)]𝑇 is sent to the channel ℎ(𝑧) =
[ℎ0, ℎ1, ⋅ ⋅ ⋅ , ℎ𝐿−1], a matched filter ℎ∗(1/𝑧∗) is inserted and
its output is

𝑦(𝑛) =

𝐿−1∑
𝑗=0

ℎ∗𝑗𝑥(𝑛+ 𝑗). (31)

And accordingly, its block expression is given by

y(𝑖) = H𝐻
0 x(𝑖) +H𝐻

1 x(𝑖 + 1)

=
(
H𝐻

0 +H𝐻
1 𝑧

𝐾
)
x(𝑖) (32)
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where y(𝑖) = [𝑦(𝑖𝐾), 𝑦(𝑖𝐾+1), ⋅ ⋅ ⋅ , 𝑦(𝑖𝐾+𝐾− 1)]𝑇 , H0

and H1 are defined in (2) and (3), respectively.
Then, y(𝑖) is sent through the channel. Similar to (1), the

received signal can be written as

z(𝑖) =
(
H0 +H1𝑧

−𝐾
)
y(𝑖) (33)

=
(
H0 +H1𝑧

−𝐾
) (

H0 +H1𝑧
∗𝐾)𝐻

x(𝑖) (34)

which is the signal model exploited in (14).

APPENDIX B
PROOF OF THEOREM 2

Since the Hermitian Toeplitz matrix Ψ𝑘 is posi-
tive definite, the elements of its first row 𝜓 =
[𝜓0, ⋅ ⋅ ⋅ , 𝜓𝐿−1, 0, ⋅ ⋅ ⋅ , 0]1×𝑘 satisfy ∣𝜓0∣ > ∣𝜓𝑖∣ for any
𝑖 ∕= 0 [20, p. 765]. Furthermore, the zeros of 𝜓(𝑧) =∑𝐿−1

𝑖=0 𝜓𝑖𝑧
−𝑖 +

∑−1
𝑖=−𝐿+1 𝜓

∗
−𝑖𝑧

−𝑖 occurs in pairs and there-
fore 𝜓(𝑧) can be decomposed into the minimum phase part
𝜓𝑚𝑖𝑛(𝑧) and its maximum phase anti-causal part 𝜓∗

𝑚𝑖𝑛(1/𝑧
∗)

[20, Section 2. 4. 4]. That is,

𝜓(𝑧) = 𝜓𝑚𝑖𝑛(𝑧)𝜓
∗
𝑚𝑖𝑛(1/𝑧

∗).

Let 𝜓𝑚𝑖𝑛, 𝑖, 0 ≤ 𝑖 ≤ 𝐿− 1, be the coefficients of 𝜓𝑚𝑖𝑛(𝑧).
Similar to the derivation from (14) to (15), we have

Ψ𝑘 = Ψ̃𝑚𝑖𝑛Ψ̃
𝐻
𝑚𝑖𝑛 + Ψ̃𝑚𝑖𝑛, 1Ψ̃

𝐻
𝑚𝑖𝑛, 1, (35)

in which Ψ̃𝑚𝑖𝑛 is given in (26) and

Ψ̃𝑚𝑖𝑛, 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋅ ⋅ ⋅ 𝜓𝑚𝑖𝑛,𝐿−1 ⋅ ⋅ ⋅ 𝜓𝑚𝑖𝑛, 1

...
. . . 0 ⋅ ⋅ ⋅ ...

0 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ 𝜓𝑚𝑖𝑛,𝐿−1

...
. . . ⋅ ⋅ ⋅ . . .

...
0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑘×𝑘

.

Since {Ψ𝑘} and {Ψ̃𝑚𝑖𝑛} are sequences of finite-order
banded Toeplitz matrices, they are uniformly bounded in
strong norm [19, Lemma 7, p. 198]. Moreover, since Ψ̃𝑚𝑖𝑛, 1

has only 𝐿(𝐿 − 1)/2 non-zero elements, it is reasonable to
assume

∣∣Ψ̃𝑚𝑖𝑛, 1Ψ̃
𝐻
𝑚𝑖𝑛, 1∣∣𝐹 = 𝑐,

in which 𝑐 is a real constant. Then we have

lim
𝑘→∞

∣∣Ψ𝑘 − Ψ̃𝑚𝑖𝑛Ψ̃
𝐻
𝑚𝑖𝑛∣∣𝑊 = lim

𝑘→∞
∣∣Ψ̃𝑚𝑖𝑛, 1Ψ̃

𝐻
𝑚𝑖𝑛, 1∣∣𝑊

= lim
𝑘→∞

𝑐√
𝑘
= 0. (36)

Therefore, in view of Definition 1, we obtain

Ψ𝑘 ∼ Ψ̃𝑚𝑖𝑛 Ψ̃𝐻
𝑚𝑖𝑛, (37)

which completes the proof.

APPENDIX C
PROOF OF COROLLARY 1

Although G ∈ ℂ𝐾×𝐾 in (20) is a positive-definite Hermi-
tian Toeplitz matrix, GG𝐻 is not always Toeplitz. Therefore,
unlike the MZP-ZF case in (21), we cannot directly apply
Theorem 2 in the MZP-MMSE case in (22). However, notice
that with [𝑔2𝐿−2, 𝑔2𝐿−3, ⋅ ⋅ ⋅ , 𝑔0, 0, ⋅ ⋅ ⋅ , 0]1×𝐾 being the
𝐿th row of G and let

Ḡ =⎡
⎢⎢⎢⎣
𝑔2𝐿−2 𝑔2𝐿−3 ⋅ ⋅ ⋅ 𝑔0

𝑔2𝐿−2 𝑔2𝐿−3 ⋅ ⋅ ⋅ 𝑔0
. . .

. . . ⋅ ⋅ ⋅ . . .
𝑔2𝐿−2 𝑔2𝐿−3 ⋅ ⋅ ⋅ 𝑔0

⎤
⎥⎥⎥⎦(38)

with size 𝐾 × (𝐾 + 2𝐿− 2),

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋅ ⋅ ⋅ 𝑔0 ⋅ ⋅ ⋅ 𝑔𝐿−2

...
. . . 0 ⋅ ⋅ ⋅ ...

0 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ 𝑔0
...

. . . ⋅ ⋅ ⋅ . . .
...

0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝐾×𝐾

,

and

G−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
...

. . . 0 ⋅ ⋅ ⋅ ...

𝑔2𝐿−2 ⋅ ⋅ ⋅ . . . ⋅ ⋅ ⋅ ...
...

. . . ⋅ ⋅ ⋅ . . .
...

𝑔𝐿 ⋅ ⋅ ⋅ 𝑔2𝐿−2 ⋅ ⋅ ⋅ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝐾×𝐾

,

we have

ḠḠ𝐻 = GG𝐻 +G1G
𝐻
1 +G−1G

𝐻
−1. (39)

Since Ḡ is a banded Toeplitz matrix, Ḡ is uniformly
bounded in strong norm [19, Lemma 7, p. 198], that is,

∣∣Ḡ∣∣
𝑆
≤𝑀 <∞. (40)

Moreover, since G1 and G−1 consist of finite number of non-
zero elements, it is reasonable to assume that

∣∣G1G
𝐻
1 ∣∣

𝐹
= 𝑐1,

and
∣∣G−1G

𝐻
−1∣∣𝐹 = 𝑐−1,

in which 𝑐1 and 𝑐−1 are real constants. Consequently, we have

lim
𝐾→∞

∣∣∣∣
∣∣∣∣
(
ḠḠ𝐻 +

1

𝜌
I

)
−
(
GG𝐻 +

1

𝜌
I

)∣∣∣∣
∣∣∣∣
𝑊

= lim
𝐾→∞

∣∣G1G
𝐻
1 +G−1G

𝐻
−1∣∣𝑊

≤ lim
𝐾→∞

𝑐1 + 𝑐−1√
𝐾

= 0. (41)

According to Definition 1, we obtain

GG𝐻 +
1

𝜌
I ∼ ḠḠ𝐻 +

1

𝜌
I. (42)
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Recall Ḡ in (38), it is straightforward that ḠḠ𝐻 + 1
𝜌I is

Hermitian, Toeplitz and positive definite. Therefore, according
to Theorem 2, we have

ḠḠ𝐻 +
1

𝜌
I ∼ G̃𝑚𝑖𝑛G̃

𝐻
𝑚𝑖𝑛, (43)

where G̃𝑚𝑖𝑛 can be obtained via Theorem 2. Finally, combin-
ing (42) and (43) yields [19, Theorem 1, p. 172]

GG𝐻 +
1

𝜌
I ∼ G̃𝑚𝑖𝑛G̃

𝐻
𝑚𝑖𝑛, (44)

which completes the proof.

REFERENCES

[1] J. A. C. Bingham, “Multicarrier modulation for data transmission: an
idea whose time has come," IEEE Commun. Mag., vol. 28, no. 5, pp. 5-
14, May 1990.

[2] G. D. Forney, Jr. and M. V. Eyuboǧlu, “Combined equalization and
coding using precoding," IEEE Commun. Mag., pp. 25-34, Dec. 1991.

[3] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank
precoders and equalizers—part I: unification and optimal designs," IEEE
Trans. Signal Process., vol. 47, no. 7, pp. 1988-2006, July 1999.

[4] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank
precoders and equalizers—part II: blind channel estimation, synchro-
nization, and direct equalization," IEEE Trans. Signal Process., vol. 47,
no. 7, pp. 2007-2022, July 1999.

[5] M. Ghogho, D. C. McLernon, E. Alameda-Hernande, and A. Swami,
“Channel estimation and symbol detection for block transmission using
data-dependent superimposed training," IEEE Signal Process. Lett.,
vol. 12, no. 3, pp. 226-229, Mar. 2005.

[6] M. Ghogho, T. Whitwort, A. Swami, and D. McLernon, “Full-rank
and rank-deficient precoding schemes for single-carrier block transmis-
sions," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4433-4442,
July 2009.

[7] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications:
where Fourier meets Shannon," IEEE Signal Process. Mag., vol. 17,
no. 3, pp. 29-48, 2000.

[8] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel,
“Cyclic prefixing or zero padding for wireless multicarrier trans-
missions?" IEEE Trans. Commun., vol. 50, no. 12, pp. 2136-2148,
Dec. 2002.

[9] B. Li, S. Zhou, M. Stojanovic, and L. Freitag, “Pilot-tone based ZP-
OFDM demodulation for an underwater acoustic channel," in Proc.
IEEE Oceans’06, Boston, Sep. 2006, pp. 1-5.

[10] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak,
“Design of a multiband OFDM system for realistic UWB channel
environments," IEEE Trans. Microwave Theory Techniques, vol. 52,
no. 9, pp. 2123-2138, Sep. 2004.

[11] Y. Zhou, A. I. Karsilayan, and E. Serpedin, “Sensitivity of multiband ZP-
OFDM ultra-wide-band and receivers to synchronization errors," IEEE
Trans. Signal Process., vol. 55, no. 2, pp. 729-734, Feb. 2007.

[12] A. Goldsmith, Wireless Communications. Cambridge University Presss,
2005.

[13] R. F. Fischer, Precoding and Signal Shaping for Digital Transmission.
John Wiley & Sons Inc., 2002.

[14] M. Tomlinson, “New automatic equalizer employing modulo arith-
metic," Electron. Lett., pp. 138-139, Mar. 1971.

[15] H. Harashima and H. Miyakawa, “Matched-transmission technique
for channels with intersymbol interference," IEEE Trans. Commun.,
vol. COM-20, pp. 774-780, Aug. 1972.

[16] R. F. H. Fischer, R. Tzschoppe, and J. B. Huber, “Signal shaping for
peak-power and dynamics reduction in transmission schemes employing
precoding," IEEE Trans. Commun., vol. 50, pp. 736-741, May 2002.

[17] M. R. B. Shankar and K. V. S. Hari, “Reduced complexity equalization
schemes for zero padded OFDM systems," IEEE Signal Process. Lett.,
vol. 11, no. 9, pp. 752-755, Sep. 2004.

[18] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in
MIMO communications systems," IEEE Trans. Signal Process., vol. 53,
no. 8, pp. 2700-2712, Aug. 2005.

[19] R. M. Gray, “Toeplitz and circulant matrices: a review," Foundataions
Trends Commun. Inf. Theory, vol. 2, no. 3, pp. 155-239, Now Publishers
Inc., 2006.

[20] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering, and Array Processing. Artech House Inc., 2005.

[21] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Prin-
ciples, Algorithms, and Applications, 3rd edition. Prentice Hall Press,
2004.

[22] G. H. Golub and C. F. Van Loan, Matrix Computaitons, 3rd edition.
The Johns Hopkins University Press, 1996.

Wenkun Wen received the Ph.D degree in Telecom-
munications Engineering from Sun Yat-sen Univer-
sity, Guangzhou, China, in 2007. He joined the
Guangdong-Nortel R&D Center, Guangzhou, China,
in 2008 as a system engineer and worked on system
simulation for LTE systems. Since July 2009, He
has been working with the New Postcom Equipment
Co., Ltd., LTE R&D Center, Guangzhou, China,
as a senior system engineer. His research inter-
ests include system performance evaluation, multi-
carriers/single-carrier signal processing, space-time

signal processing, and equalization for wireless communications.

Minghua Xia obtained the Ph.D. degree in Telecom-
munications and Information Systems from Sun Yat-
sen University, Guangzhou, China, in 2007. He
joined the Electronics and Telecommunications Re-
search Institute (ETRI) of Korea, Beijing R&D Cen-
ter, Beijing, China, in March 2007, where he worked
as a researcher and participated in the projects on the
physical layer design of 4G mobile communications.
Since Aug. 2009, he has been working with the
University of Hong Kong as a Postdoctoral Fellow.
His research interests are in the area of network

information theory, space-time signal processing, multi-user MIMO systems
and cooperative relay transmission.

Yik-Chung Wu obtained the B.Eng. (EEE) degree
in 1998 and the M.Phil. degree in 2001 from The
University of Hong Kong (HKU). He started his
Ph.D. degree in 2002 at the Texas A&M University,
USA and obtained the Ph.D. degree in 2005. During
his study at Texas A&M University, he was fully
supported by the prestigious Croucher Foundation
scholarship. From Aug. 2005 to Aug. 2006, he was
with the Thomson Corporate Research, Princeton,
NJ, as a Member of Technical Staff. Since Sep.
2006, he has been with the University of Hong Kong

as an Assistant Professor. He was a TPC member for IEEE VTC Fall 2005,
Globecom 2006, 2008, ICC 2007 and 2008. He is currently serving as an
associate editor for the IEEE COMMUNICATIONS LETTERS.

Yik-Chung’s research interests are in general area of signal processing
and communication systems, and in particular receiver algorithm design,
synchronization techniques, channel estimation and equalization.


