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Computing Equilibrium Points of Genetic Regulatory

Networks

Graziano Chesi ∗

Abstract

Computing equilibrium points of genetic regulatory networks is a problem of pri-
mary importance for numerous investigations in these systems. This paper addresses
this problem for differential equation models, with the regulation function expressed
in a general form which includes both SUM form and PROD form for saturation func-
tions of any type. Specifically, a recursive algorithm is proposed, which provides at each
recursion a region guaranteed to contain all equilibrium points. This region progres-
sively shrinks, and asymptotically converges to the sought set of equilibrium points.
Moreover, the proposed algorithm can also allow one to delimit and find limit cy-
cles. Some numerical examples are reported to illustrate and validate the proposed
algorithm, including examples where standard mathematical tools fail to compute the
sought equilibrium points.

Keywords: Genetic regulatory network, Differential equation, Saturation, Equilibrium
point, Limit cycle.

1 Introduction

Genetic regulatory networks explain the interactions between genes and proteins to form
complex systems that perform complicated biological functions, see for instance [1, 2, 3,
4, 5, 6, 7, 8]. Basically, there are two types of genetic regulatory network models, i.e.,
the Boolean model (or discrete model) and the differential equation model (or continuous
model). In Boolean models, the activity of each gene is expressed in one of two states, ON
or OFF, and the state of a gene is expressed by a Boolean function of the states of other
related genes. In the differential equation models, the variables describe the concentrations
of gene products, such as mRNAs and proteins, as continuous values of the gene regulation
systems. See for example [9, 10, 11, 12, 13] and references therein for a wider categorization
of genetic regulatory networks models.

This paper focuses on genetic regulatory networks described through differential equation
models. In these models the dynamics of each concentration is expressed by a function of
all concentrations of the system. This function typically consists of two parts: a linear
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part which defines the natural decay rate of the concentration itself, and a nonlinear part
which defines the influence by all the other concentrations. The nonlinear part can be either
described via sum of saturation functions (in this case the system is said to be in SUM form)
or via product of saturation functions (in this case the system is said to be in PROD form).
See for instance [14, 15, 16, 17].

A fundamental problem in these networks consists of determining the equilibrium points,
i.e. the amounts of concentrations for which the regulation process results complete. This
is a necessary step for several investigations, such as steady-state, stability, disturbance
rejection, etc. Unfortunately, to determine equilibrium points of genetic regulatory networks
is a difficult problem because these systems contain saturation functions, and hence the
calculation of the equilibrium points amounts to solving a system of nonlinear equations.
Indeed, there do not exist techniques able to guarantee to find all solutions of such a system,
except in the case of polynomial equations, which however can be addressed only for small
degrees and small number of variables, see for instance [18, 19, 20, 21] and references therein.

In this paper we address the problem of computing equilibrium points of genetic regula-
tory networks described through differential equation models. We consider a general model
which includes both SUM form and PROD form for saturation functions of any type. The
contribution consists of a recursive algorithm which holds the following properties. First,
at each recursion the algorithm provides a region containing all equilibrium points, i.e. no
equilibrium is lost. Second, this region progressively shrinks, i.e. the conservatism does not
increase. Third, this region asymptotically converges to the set of equilibrium points, i.e. all
equilibrium points are found. The proposed algorithm is illustrated and validated through
some numerical examples with synthetic and real genetic regulatory networks. In these ex-
amples it is also shown that standard mathematical tools for solving systems of nonlinear
equations may fail to compute the sought equilibrium points. Moreover, in these examples it
is also explained that the proposed algorithm can be useful to delimit and find limit cycles.

The paper is organized as follows. Section 2 introduces some preliminaries on genetic
regulatory networks. Section 3 describes the proposed results. Section 4 presents some
numerical examples. Finally, Section 5 reports some concluding remarks.

2 Preliminaries

First of all, let us introduce the notation used throughout the paper:

- R+: positive real number set, i.e. {x ∈ R : x ≥ 0};

- 0n: null vector of size n× 1;

- In: identity matrix of size n× n;

- ei: i-th column of In;

- diag(x1, . . . , xn): diagonal matrix with xi at the (i, i) entry;

- XT : transpose of vector/matrix X ;

- TF: transcription factor.
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The genetic regulatory networks considered in this paper are described by the differential
equation model







ṁi(t) = −aimi(t) + bi(p1(t), . . . , pn(t))
ṗi(t) = −cipi(t) + dimi(t)

i = 1, . . . , n
(1)

where mi(t), pi(t) ∈ R+ are the concentrations of mRNA and protein of the i-th gene, ai, ci ∈
R+ are the degradation rates, di ∈ R+ expresses the effect ofmi(t) on pi(t), and bi : R

n
+ → R+

is the regulatory function of the i-th gene. This function is typically nonlinear, and either
always increases or always decreases with respect to any component of p(t) whenever its
other components are fixed, i.e.

(−1)kibi(p1, . . . , pi−1, x2, pi+1, . . . , pn) ≥ (−1)kibi(p1, . . . , pi−1, x1, pi+1, . . . , pn)
∀x1, x2 : x1 ≤ x2 ∀p1(t), . . . , pn(t) ∈ R+ ∀i = 1, . . . , n

(2)

for some k1, . . . , kn ∈ {0, 1}.
In genetic regulatory networks with SUM form, the function bi(p1(t), . . . , pn(t)) is ex-

pressed as the sum of functions of a single variable, i.e.

bi(p1(t), . . . , pn(t)) =
n

∑

j=1

αi,jbi,j(pj(t)) (3)

where αi,j ∈ R+ is the contribution of TF j to the transcriptional rate for gene i, and
bi,j : R+ → R+ is a monotonic function, i.e. bi,j(pj(t)) either always increases or always
decreases with respect to pj(t).

In genetic regulatory networks with PROD form, the function bi(p1(t), . . . , pn(t)) is ex-
pressed as the product of the functions bi,j(pj(t)), i.e.

bi(p1(t), . . . , pn(t)) = αi

n
∏

j=1

bi,j(pj(t)) (4)

where αi ∈ R+ represents the transcriptional rate for gene i.
Each function bi,j(pj(t)) in (3) and (4) is typically expressed as

bi,j(pj(t)) =







f(pj(t)) if TF j is an activator of gene i

1− f(pj(t)) if TF j is a repressor of gene i

γ otherwise
(5)

where γ ∈ R is a constant depending on the model which expresses the independence of
gene i on TF j (γ = 0 for SUM form, γ = 1 for PROD form), and the function f(pj(t)) is
a saturation function. For saturation function we mean a function satisfying the following
properties:















f : R+ → [0, 1]
f(0) = 0
limx→∞ f(x) = 1
f(x2) ≥ f(x1) ∀x1, x2 : x1 ≤ x2

(6)

3



Hence, a saturation function is an increasing function between 0 and 1 defined for positive
value of the variable. For instance, in the case of regulatory functions with Hill form, the
function f(pj(t)) is given by

f(pj(t)) =
pj(t)

H

βH + pj(t)H
(7)

where β ∈ R+ and H is an integer known as Hill coefficient.
In order to describe the results of this paper in a more compact form, we introduce a

matrix version of the model (1) according to
{

ṁ(t) = Am(t) + b(p(t))
ṗ(t) = Cp(t) +Dm(t)

(8)

where
m(t) = (m1(t), . . . , mn(t))

′

p(t) = (p1(t), . . . , pn(t))
′ (9)

are the vectors containing the concentrations of mRNA and protein, and

A = diag(−a1, . . . ,−an)
C = diag(−c1, . . . ,−cn)
D = diag(d1, . . . , dn)

(10)

are diagonal matrices containing the decay rates (matrices A and C) and the effect of m(t)
on p(t) (matrix D). The function b : Rn

+ → R
n
+ is a nonlinear function representing the

regulation of the process, whose i-th component bi(p(t)) satisfies the monotonicity condition
(2).

We observe that the model (8) under the assumption (2), which is an equivalent matrix
version of the model (1), includes:

1. genetic regulatory networks with SUM form, by choosing the i-th component of b(p(t))
as in (3);

2. genetic regulatory networks with PROD form, by choosing the i-th component of
b(p(t)) as in (4);

3. genetic regulatory networks that are neither in SUM form nor in PROD form, provided
that (2) holds. For instance, the choice for n = 3 given by

b(p(t)) =





b1,1(p1(t)) + b1,2(p2(t))
3

eb2,1(p1(t))b2,3(p3(t))

b3,2(p2(t))
3 +

√

b3,3(p3(t))



 (11)

defines a genetic regulatory networks which is neither in SUM form nor in PROD form,
but which is included in the model (8) under the assumption (2).

The problem addressed in this paper consists of determining the equilibrium points of
(8), i.e. the solutions of the system of nonlinear equations







Am+ b(p) = 0n
Cp+Dm = 0n
m, p ∈ R

n
+

(12)
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Remark 1. Before proceeding let us observe that existing mathematical tools for solving
systems of nonlinear equations generally do not guarantee to find all solutions of such sys-
tems. Indeed, systems of nonlinear equations can be solved via either analytical techniques
or numerical techniques. Analytical techniques can be used in the case of polynomial or
rational equations, and provides the sought solutions as roots of a one-variable polynomial.
Unfortunately, the degree of this polynomial is prohibitive (except for very small systems)
since in the worst case coincides with the maximum number of solutions of the system,
which is given by the degree of the equations to the power of the number of variables, see
for instance [18, 22, 19, 21]. Numerical techniques, which are either based on the numerical
minimization of a suitable function via for example Newton’s iterations starting from an
initial point, or on homotopy methods which adopts continuation strategies, do not suffer of
the previous problems. Unfortunately, these techniques cannot guarantee to find all sought
solutions, see for instance [23, 20] and Section 4.

Remark 2. Another remark concerns the fact that genetic regulatory networks can be
also modeled as stochastic systems, where the input is represented by a stochastic process
such as white noise. For instance, such an input could affect (8) according to

{

ṁ(t) = Am(t) + b(p(t)) + w(t)
ṗ(t) = Cp(t) +Dm(t)

(13)

where w(t) ∈ R
n is a stochastic process. In these systems there are no equilibrium points

in the classic sense since the input is a non-constant function of the time and hence the
equation

Am+ b(p) + w(t) = 0n (14)

would not admit solutions where m and p do not depend on the time (which is the classic
definition of equilibrium point). Instead, one can consider equilibrium points corresponding
to particular constant values of the stochastic process, such as its mean value, that the
algorithm proposed in this paper allows one to compute. Indeed, these equilibrium points
are defined analogously to (12) as







Am+ b(p) + w̄ = 0n
Cp+Dm = 0n
m, p ∈ R

n
+

(15)

where w̄ ∈ R
n is the the stochastic expectation of w(t).

3 Equilibria Computation

In this section we describe the proposed algorithm. Specifically, in Theorems 1 and 2 we
introduce two preliminary functions and we describe their properties. Then, in Theorem 3
we provide the main algorithm to be used to compute the sought equilibrium points.

Before proceeding, let us observe that the m-component of any solution of (12) is related
to its p-component by the relationship Cp+Dm = 0n where C,D are nonsingular diagonal
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matrices with C negative definite. This means that (12) can be equivalently rewritten as







−AD−1Cp+ b(p) = 0n
m = −D−1Cp

p ∈ R
n
+

(16)

Therefore, in the sequel we will focus on the computation of the vectors p fulfilling (16). We
indicate the set of such vectors as

E =
{

p ∈ R
n
+ : −AD−1Cp + b(p) = 0n

}

(17)

Theorem 1 Let H be the rectangle defined by

H =
{

p ∈ R
n
+ : pi ∈ [pi,−, pi,+]

}

(18)

for some p1,−, p1,+, . . . , pn,−, pn,+ ∈ R+, and let us define the map A(H) as

A(H) =
{

p ∈ R
n
+ : pi ∈ [qi,−, qi,+]

}

(19)

where q1,−, q1,+, . . . , qn,−, qn,+ ∈ R+ are computed according to

qi,− = max

{

pi,− , min
z∈Z

eTi C
−1DA−1z

}

(20)

qi,+ = min

{

pi,+ , max
z∈Z

eTi C
−1DA−1z

}

(21)

where Z is the set given by

Z = {b(p) : pi ∈ {pi,−, pi,+} , i = 1, . . . , n} . (22)

Then, the following properties hold:

- Property P1: A(H) ⊆ H;

- Property P2: p∗ ∈ H ∩ E ⇒ p∗ ∈ A(H);

- Property P3: H ∩A(H) = ∅ ⇒ H ∩ E = ∅.

Proof. First, the property P1 holds because from (20)–(21) one has

qi,− ≥ pi,− and qi,+ ≤ pi,+ ∀i = 1, . . . , n. (23)

Second, the property P2 holds due to the monotonicity property (2) of bi(p) with respect to
each component of p and to the linearity of the function eTi C

−1DA−1z with respect to z. In
fact, we have

p∗ ∈ H ⇒ bi(p
∗) ∈ [min

z∈Z
zi,max

z∈Z
zi]. (24)

Moreover,
p∗ ∈ E ⇒ eTi C

−1DA−1b(p∗) = p∗i . (25)
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Hence, it follows
p∗ ∈ H ∩ E ⇒ qi,− ≤ p∗i and qi,+ ≥ p∗i . (26)

Lastly, the property P3 holds because, if one suppose for contradiction that H ∩A(H) = ∅
and H contains a vector p∗ of E , then it would follow from the property P2 that p∗ belongs
to A(H), hence contradicting the assumption that H ∩A(H) = ∅. �

Let us observe that map A(·) requires trivial computations, i.e. evaluation of a linear
function in some given points. In fact, let us observe that the set Z is finite. From the map
A(·) we define the map B(·) in the following theorem.

Theorem 2 Let H be a rectangle in (18), and let us define the map B(H) as follows:

- (Step 1) set H(0) = H and k = 0 (k denotes the iteration number);

- (Step 2) if H(k) ∩ A(H(k)) = ∅, set B(H) = ∅ and exit;

- (Step 3) if A(H(k)) is a point, set B(H) = A(H(k)) and exit;

- (Step 4) if H(k) = A(H(k)), set B(H) = H(k) and exit;

- (Step 5) set H(k+1) = A(H(k)), k = k + 1, and go to 2.

Then, B(H) returns either a rectangle, a point, or the empty set. Moreover:

- Property P4: B(H) ⊆ H;

- Property P5: p∗ ∈ H ∩ E ⇒ p∗ ∈ B(H).

Proof. First of all, let us observe that the output of B(H) can be either the empty set (output
of Step 2), a point (output of Step 3), or a rectangle (output of Step 4). Then, the property
P4 follows from the fact that the output of B(H) is a sequence of applications of the map
A(·) for which the property P1 ensures that the output is a subset of the input. Lastly, the
property P5 holds since B(H) returns either a sequence of applications of the map A(·) for
which the property P2 ensures that no vector of H ∩ E can be lost, or the empty set in the
case H(k) ∩ A(H(k)) = ∅ which however guarantees the absence of vectors of E in H(k) (and
hence in H) due to the properties P2 and P3. �

The map B(·) transforms a given rectangle via a sequence of applications of the map A(·),
and returns a set which can be either a rectangle, a point, or the empty set. By exploiting
the map B(·) we derive the algorithm for the computation of the sought equilibrium points
as follows.

Theorem 3 (Algorithm for equilibrium points computation) Let H be a rectangle in (18)
and let us define the map C(H) as follows:
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- (Step 1) if B(H) is either the empty set or a point, then set C(H) = B(H) and exit;

- (Step 2) divide the rectangle B(H) in 2k rectangles H1, . . . ,H2k by taking the middle
point on each side of B(H) with nonzero length;

- (Step 3) set C(H) =
⋃

i=1,...,2k C(Hi) and exit.

Then, the algorithm to be launched in C(Rn
+), for which the following properties hold:

- Property P6: the positive octant Rn
+ is progressively shrunk without losing any point of

E ;

- Property P7: the set provided by the algorithm asymptotically converges to the set E .

Proof. The property P6 holds because B(H) is guaranteed to include any vector in H ∩ E
according to the property P5, moreover from the property P4 one has that the set returned
by the algorithm cannot increase. Then, property P7 holds because no portion of Rn

+ is lost
in the division of each rectangle B(H). �

Hence, the proposed algorithm for computing the equilibrium points of (8) is launched as
C(Rn

+), which means that the positive octant Rn
+ is used as initial rectangle H. This because

R
n
+ is clearly guaranteed to contain all solutions of (16). Then, the initial rectangle is passed

to the map B(·). If the output of this map is either the empty set or a point, then the
algorithm stops as it is guaranteed that there are no equilibrium points inside the considered
rectangle. Otherwise, the output is another rectangle, which is then divided in smaller ones.
The rectangles obtained in this division are passed to the map C(·) itself, hence realizing
a recursive algorithm. As explained by the properties P6 and P7, the set provided by the
algorithm is guaranteed to contain all points of E at each recursion, and to asymptotically
converge to E .

Remark 3. It is worth to remark that the proposed algorithm differs from existing
techniques for computing the solutions of systems of nonlinear equations. A first difference
is that the proposed algorithm does not rely on analytical techniques, which can be used
only in special cases and typically for small systems. A second difference is that the pro-
posed algorithm does not consider one possible initial point only contrary to some numerical
techniques. Instead, the proposed algorithm consider the whole space of possible solutions,
and progressively shrinks this space to the sought set of equilibrium points without losing
any portion of it.

Remark 4. Lastly, it is interesting to observe that the proposed algorithm can also allow
one to investigate limit cycles of (8), which are periodic solutions m(t), p(t) of (8) satisfying
the condition

∃T ∈ R :

{

m(t) = m(t + T )
p(t) = p(t+ T )

∀t ≥ 0 (27)

where T represents the period. Indeed, at the first recursion of the proposed algorithm one
obtains the rectangle B(Rn

+) which is expected to contain existing limit cycles of (8) as they
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are periodic solutions of the system of differential equations. This suggests a strategy which
can be useful to establish the existence of limit cycles in (8). In fact, once that B(Rn

+)
has been found at the first recursion of the algorithm, one can investigate the trajectories
starting along its boundary (for instance, at the vertices) to reveal limit cycles. See for
instance Example 3.

4 Illustrative Examples

In this section we present some examples where the proposed algorithm is used. We report
only the p-component of each equilibrium point, being the m-component directly given by
D−1Cp according to (16). The computational time for all examples is lesser than 5 seconds
with an implementation of the proposed algorithm in Matlab 7 running under Windows XP
on a personal computer with Pentium IV 2.2 GHz and 2 GB RAM.

4.1 Genetic Regulatory Network in PROD Form with Non-Hill

Function

Let us start by considering the genetic regulatory network described in PROD form given
by















ṁ1(t) = −0.17m1(t) + 0.73f(p2)(1− f(p3))
ṁ2(t) = −0.8m2(t) + 0.95(1− f(p3))
ṁ3(t) = −0.52m3(t) + 0.58(1− f(p1))
ṗi(t) = −pi(t) +mi(t) ∀i = 1, 2, 3

(28)

and the saturation function
f(pi(t)) = 1− e−pi(t)

2

. (29)

This genetic regulatory network is characterized by the fact that TF 1 is a regressor of gene
3, TF 2 is an activator of gene 1, and TF 3 is a regressor of genes 1 and 2.

Let us use the algorithm proposed in Theorem 3. At the first recursion of the algorithm
we obtain that the positive octant R+

3 is shrunk to the rectangle shown in Figure 1a. At the
second recursion, the rectangle previously found is divided in four equal rectangles, one of
which is shown in Figure 1b, another one shrinks to the equilibrium point shown in Figure 1b,
and the other two converges to the empty set. At the fourth recursion, another equilibrium
point is found as shown in Figure 1c, and only one rectangle is left. Then, at the eight
recursion the last equilibrium point is found and no rectangle is left as shown in Figure 1d.
We hence conclude that this system has three equilibrium points, in particular the set E in
(17) is given by

E =
{

(3.246, 1.189, 0.000)T , (0.461, 0.527, 0.902)T , (0.166, 0.366, 1.085)T
}

. (30)

For comparison, we attempt to use standard mathematical tools, in particular via Matlab
and Mathematica. We hence use the functions “solve” (Matlab function for both analytical
and numerical techniques) and ”findroot” (Mathematica function for numerical technique)
which find only one solution. This happens because the equations in (12) are neither poly-
nomial nor rational in this case, which means that no analytical technique exist for finding
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the solutions in this case. Existing tools therefore apply numerical techniques which allow
to find a local solution starting from an initial point, but the other solutions are lost.

4.2 Genetic Regulatory Network in SUM Form with Hill Function

In this example we consider the genetic regulatory network in SUM form with



















































ṁ1(t) = −2.0m1(t) + 0.9(1− f(p2)) + 0.5f(p3)
ṁ2(t) = −2.2m2(t) + 0.9(1− f(p3)) + 0.5f(p4)
ṁ3(t) = −2.4m3(t) + 0.9(1− f(p4)) + 0.5f(p5)

...
ṁ8(t) = −3.4m8(t) + 0.9(1− f(p9)) + 0.5f(p10)
ṁ9(t) = −3.6m9(t) + 0.9(1− f(p10)) + 0.5f(p1)
ṁ10(t) = −3.8m10(t) + 0.9(1− f(p1)) + 0.5f(p2)
ṗi(t) = −pi(t) +mi(t) ∀i = 1, . . . , 10

(31)

where the saturation function is chosen as the Hill function

f(pi(t)) =
1

1 + pi(t)6
. (32)

This genetic regulatory network is characterized by the cyclic structure where gene i has TF
i+ 1 as regressor and TF i+ 2 as activator.

By using the algorithm proposed in Theorem 3 we have that the positive octant R
10
+

shrinks to the set

E =
{

(0.449, 0.408, 0.375, 0.346, 0.321, 0.300, 0.281, 0.267, 0.251, 0.236)T
}

, (33)

hence implying that there is one equilibrium point only in this genetic regulatory network.
Also in this case we attempt to use standard mathematical tools as done in the previous

example. However, by using analytical techniques (which can be used since the equations
in (12) are rational for this example) we do not obtain any solution. This happens because
the degree of the one-variable polynomial that the analytical techniques allow one to find is
prohibitive in this case since the equations in (12) have degree 12 (the degree of b(p)) and 10
variables (the p-components of the state), therefore there can be up to 1210 solutions. Also,
we attempt to use numerical techniques, and find that they return the sought equilibrium
point. Unfortunately, these techniques are not able to establish whether this solution is
unique or not.

4.3 Repressilator Model in E. Coli

Here we consider the repressilator investigated in Escherichia coli [24]:







ṁi(t) = −mi(t) + αrep(1− f(pj(t)))
ṗi(t) = −βrep(pi(t)−mi(t))
i = lacl, tetR, cl; j = cl, lacl, tetR

(34)
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Figure 1: Steps of the proposed algorithm for the example in Section 4.1 (shown in the plane
p1–p2 for clarity of presentation): (a) first recursion, R3

+ is shrunk to a rectangle; (b) second
recursion, an equilibrium point is found (denoted by the “∗” mark); (c) fourth recursion,
another equilibrium point is found. (d): ninth recursion, the last equilibrium point is found.
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Figure 2: Found equilibrium point and limit cycle in the example of Section 4.3.

where the saturation function is the Hill function

f(pi(t)) =
1

1 + pi(t)2
(35)

and αrep, βrep ∈ R+ are positive constants.
Let us select the plausible values αrep = 10 and βrep = 1. By using the algorithm

proposed in Theorem 3 we find that there is a unique equilibrium point, in particular

E =
{

(2, 2, 2)T
}

. (36)

For this example it is interesting to observe that, in addition to the found equilibrium
point, there exists a limit cycle that the proposed algorithm can help to find. Indeed, as
explained in Remark 4, at the first recursion of the proposed algorithm one obtains the
rectangle B(R3

+), which is equal to [0.1010, 9.899]3. Then, the limit cycle is revealed by
simply computing the trajectory of the system starting at the vertices of this rectangle.
Figure 2 shows the projection on the plane p1-p2 of the found limit cycle.
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4.4 Genetic Regulatory Network in SUM Form with Non-Hill

Function

As last example, we consider the genetic regulatory network in SUM form described by






























ṁ1(t) = −2m1(t) + 0.5f(p5)
ṁ2(t) = −m2(t) + 0.1(1− f(p2)) + 0.4(1− f(p4))
ṁ3(t) = −0.6m3(t) + 0.2f(p1) + 1.1(1− f(p4))
ṁ4(t) = −m4(t) + 0.5(1− f(p3)) + 1.5f(p4)
ṁ5(t) = −2m5(t) + 0.3f(p2) + 0.3(1− f(p5))
ṗi(t) = −pi(t) +mi(t) ∀i = 1, . . . , 5

(37)

and the saturation function

f(pi(t)) =
2

π
arctan(pi(t)

2). (38)

This genetic regulatory network is characterized by the fact that TF 1 is an activator of gene
3, TF 2 is an activator of gene 5 and a regressor of gene 2, TF 3 is a regressor of gene 4, TF
4 is a regressor of genes 2 and 3 and an activator of gene 4, and TF 5 is an activator of gene
1 and a regressor of gene 5.

By using the algorithm proposed in Theorem 3 as done in the previous examples we
conclude that this system has three equilibrium points, in particular the set E in (17) is
given by

E =
{

(0.0037, 0.1961, 0.4518, 1.566, 0.1515)T, (0.0039, 0.3130, 1.003,
0.9278, 0.1570)T , (0.0046, 0.4827, 1.821, 0.1035, 0.1691)T

}

.
(39)

However, by using standard mathematical tools, we obtain only one solution similarly to
the example in Section 4.1.

5 Conclusion

We have proposed an algorithm which allows one to find the equilibrium points of genetic
regulatory networks described by differential equation models and which include both SUM
form and PROD form with saturation functions of any type. The proposed algorithm is
guaranteed to find all sought equilibrium points, moreover as shown by some numerical
examples the computation is reasonably fast also in cases where standard mathematical
tools for solving systems of nonlinear equations may fail.

It is hence expected that the proposed algorithm represents a useful tool for researchers
working in the area of genetic regulatory networks. In particular, the proposed algorithm
can allow one to investigate issues such as stability, disturbance rejection, and robustness,
for which the knowledge of the equilibrium points is required, see for instance [25, 26, 27, 28].
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