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Time-Invariant Uncertain Systems: a Necessary and

Sufficient Condition for Stability and Instability via

HPD-QLFs

Graziano Chesi ∗

Abstract

This paper investigates linear systems with polynomial dependence on time-invariant
uncertainties constrained in the simplex via homogeneous parameter-dependent quadratic
Lyapunov functions (HPD-QLFs). It is shown that a sufficient condition for estab-
lishing whether the system is either stable or unstable can be obtained by solving a
generalized eigenvalue problem. Moreover, this condition is also necessary by using a
sufficiently large degree of the HPD-QLF.

Keywords: Uncertain system, Stability, Instability, Lyapunov function, SMR.

1 Introduction

Various methods have been proposed for stability of linear systems with time-invariant un-
certainty constrained in a polytope. Generally, these methods exploit parameter-dependent
Lyapunov functions and LMIs, see e.g. [1] which considers Lyapunov functions with linear
dependence, [2] which proposes Lyapunov functions with polynomial dependence, [3] which
introduces the class of HPD-QLFs, [4] which proposes a general framework for LMI relax-
ations, [5] where homogeneous solutions are characterized, [6] which addresses the case of
semi-algebraic sets, and [7, 8] where matrix-dilation approaches are considered.

Some of these methods provide necessary and sufficient conditions for robust stability.
However, the necessity is achieved for an unknown degree of the polynomials used. This
implies that, if the system is unstable, no conclusion can be reached. This paper addresses
this problem via HPD-QLFs for in the case of polynomial dependence on the uncertainty. It is
shown that a sufficient condition for establishing either stability or instability can be obtained
by solving a generalized eigenvalue problem, and that this condition is also necessary by using
a sufficiently large degree of the HPD-QLF. The idea behind this condition is to exploit the
LMI relaxation introduced in [3] via the square matricial representation (SMR)1 in order to
characterize the instability via the presence of suitable vectors in certain eigenspaces.

∗G. Chesi is with the Department of Electrical and Electronic Engineering, University of Hong Kong.
Contact information: please see http://www.eee.hku.hk/~chesi

1The SMR allows one to establish if a polynomial is a sum of squares (SOS) of polynomials via an LMI,
see e.g. [9, 10, 11, 12] and references therein.
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Before proceeding, it is worth explaining that the proposed approach differs from [13]
which investigates robust H∞ performance via eigenvalue problems, from [14] which exploits
D/G-scaling in the case of rational dependence on the uncertainty, from [15] which derives
a recursive algorithm based on the linear fractional representation, and from [16, 17] which
propose a branch-and-bound method in the case of linear dependence on the uncertainty.

2 Preliminaries

Notation: R,C: real and complex numbers; R0: R \ {0}; In: n × n identity matrix; A > 0:
symmetric positive definite matrix; A⊗B: Kronecker’s product; A′, tr(A), det(A): transpose,
trace and determinant of A; vec(A): vector with the columns of A stacked below each other;
spc(A) = {λ ∈ C : det(λI − A) = 0}; span(v1, . . . , vk) = {a1v1+ . . .+akvk, a1, . . . , ak ∈ R};
sq(p) =

(
p21, . . . , p

2
q

)′
with p ∈ Rq; CT, DT: continuous-time and discrete-time; s.t.: subject

to.
Let us consider the uncertain system

{
(CT case) ẋ(t) = A(p)x(t)
(DT case) x(t + 1) = A(p)x(t)

∀p ∈ P (1)

where t ∈ R is the time, x(t) ∈ Rn is the state, p ∈ Rq is the uncertain parameter, and
P is the simplex, i.e. P = {p ∈ R

q :
∑q

i=1 pi = 1, pi ≥ 0} . The function A : Rq → R
n×n

is a matrix form of degree mA, i.e. a matrix whose entries are forms (i.e. homogeneous
polynomials) of degree mA. Let us define

A =
{
A(p) ∈ R

n×n : p ∈ P
}
. (2)

In the sequel we will say that:

- (CT case) A(p) is stable if and only if Re(λ) < 0 for all λ ∈ spc(A(p));

- (DT case) A(p) is stable if and only if |λ| < 1 for all λ ∈ spc(A(p));

- A is stable if and only if A(p) is stable for all p ∈ P;

- A (resp., A(p)) is unstable if is not stable.

In order to introduce the proposed result, let us define

(CT case) d = mA

(DT case) d = 2mA
(3)

and let p{m} be a vector containing all monomials of degree m in p. Let us introduce

S =
{
S = S ′ : ∆

(
p{m}, S

)
does not contain

monomials pi11 . . . p
iq
q with at least one ij odd

}

U =
{
U = U ′ : ∆

(
p{m+d}, U

)
= 0 ∀p

}
(4)
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where the notation ∆(·, ·) means

∆ (b, B) = (b⊗ In)
′ B (b⊗ In) (5)

for any suitable b, B, and let S(β), U(α) be linear parameterizations of S,U . Define the
functions

P (sq(p), β) = ∆
(
p{m}, S(β)

)
(6)

and
(CT case) Q(sq(p), β) = −B′C − CB

(DT case) Q(sq(p), β) = (
∑q

i=1 p
2
i )

d
C −B′CB

(7)

for B = A(sq(p)) and C = P (sq(p), β). Let R(β) be a SMR matrix of the matrix form
Q(sq(p), β), i.e. a symmetric function satisfying

∆
(
p{m+d}, R(β)

)
= Q(sq(p), β). (8)

The following theorem is given in [3, 18, 12] and investigates robust stability of (1) via a
HPD-QLF of degree m, i.e. via a Lyapunov function of the form x′P (p, β)x.

Theorem 1 [18] The set A is stable if and only if there exist m such that the following
LMIs hold for some α, β: {

S(β) > 0
R(β) + U(α) > 0.

(9)

3 Stability and Instability Condition

Let us define
T (β) = ∆ (K, Idq ⊗ S(β)) (10)

where K is the matrix satisfying

p⊗ · · · ⊗ p
︸ ︷︷ ︸

d times

⊗p{m} = Kp{m+d} (11)

(see also (18) for a key property of T (β)) and define

η∗ = sup
α,β,η

η s.t.







S(β) > 0
R(β) + U(α)− ηT (β) > 0
tr(S(β)) = 1.

(12)

Let us define
V = R(β∗) + U(α∗) (13)

where α∗, β∗ are optimal values of α, β in (12), and let c1, . . . , cr be the eigenvectors of the
non-positive eigenvalues of V , i.e.

{
c′ici = 1
V ci = λici for some λi ∈ R, λi ≤ 0.

(14)
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Theorem 2 The set A is stable if and only if there exists m such that η∗ > 0. Moreover,
A is unstable if and only if there exist m and (u, y) ∈ R

q
0 ×Rn

0 such that A(ξ(u)) is unstable
and

u{m+d} ⊗ y ∈ span {c1, . . . , cr} (15)

where ξ : Rq
0 → P is the function

ξ(u) =

(
q
∑

i=1

u2
i

)−1

sq(u). (16)

Proof. Let us consider the stability statement, and let us observe that K in (11) is a full
column rank (see e.g. [3]), which directly implies from (10) that

T (β) > 0 ⇐⇒ S(β) > 0. (17)

Therefore, the stability statement follows from (17) and Theorem 1. Indeed, observe that
the constraint tr(S(β)) = 1 is not restrictive since S(β), R(β), U(α and T (β) are linear
functions, and it is introduced in order to normalized the solution of (12).

Let us consider the instability statement. The sufficiency is obvious because, if A(ξ(u)) is
unstable and ξ(u) ∈ P, then A is unstable for definition. Hence, let us consider the necessity
and let us assume that A is unstable. From the stability statement, we have η∗ ≤ 0. Observe
that

∆
(
p{m+d}, T (β)

)
=

(
q
∑

i=1

p2i

)d

P (sq(p), β) (18)

and let us suppose for contradiction that, for all m, (15) does not hold.
Let us consider firstly the CT case. This supposition implies that Re(λ) < −0.5η∗ for all

λ ∈ spc(A(p)) for all p ∈ P. In fact, from (6)–(8), (18) and Lemma 3 in [3], the first two
constraints in (12) imply

{
P (p) > 0
Q(p)− ηP (p) > 0

∀p ∈ P. (19)

Consequently, there exists ε > 0 such that A(p) + 0.5(η∗+ ε)I is stable for all p ∈ P. Let us
replace A(p) with A(p) + 0.5(η∗ + ε)I in our original problem. It follows that the new set A
is stable, and the new solution of (12), which we refer to as η#, satisfies η# = −ε. But since
ε > 0 this implies that (9) is not satisfied for any m, hence contradicting Theorem 1.

Let us consider now the DT case. The supposition that (15) does not hold for any m
implies that |λ| <

√
1− η∗ for all λ ∈ spc(A(p)) for all p ∈ P. Starting from this fact, one

can construct another problem leading to a contradiction and hence proving the statement.
The construction of this problem is completely similar to the one in the CT case, and it is
omitted for conciseness. �

Theorem 2 requires to solve (12), which is a generalized eigenvalue problem and hence
a quasi-convex optimization problem. The pairs (u, y) in R

q
0 × Rn

0 satisfying (15) can be
found with the technique in [19, 12] which amounts to finding the roots of a polynomial
obtained via pivoting. The vectors c1, . . . , cr can be obtained once (12) has been solved,
being eigenvectors of V .
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In order to clarify the construction of (12), let us consider a simple situation with n = 2,
q = 2, mA = 1 and m = 1 in the CT case. Let us select p{m} = (p1, p2)

′ and p{m+d} =
(p21, p1p2, p

2
2)

′. A parametrization S(β) for the set S in (4) and the matrix K in (11) are
hence

S(β) =







β1 β2 0 −β7

⋆ β3 β7 0
⋆ ⋆ β4 β5

⋆ ⋆ ⋆ β6







, K =







1 0 0
0 1 0
0 1 0
0 0 1







.

Then, the matrix T (β) is directly given by (10). Lastly, the matrices R(β) and U(α) can be
computed as described in [3, 12] and are omitted for conciseness.

Remark 1. The proposed condition provides a solution for the decidability problem of
establishing whether A(p) is either stable or unstable. Indeed, for any chosen degree m of
the HPD-QLF, Theorem 2 allows one to establish either stability (if η∗ > 0) or instability (if
(15) holds). Moreover, the theorem guarantees that, for a finite m, one of these conditions
is satisfied.

4 Examples

Here we present some illustrative examples. The computational time of the proposed condi-
tion for all these examples (and of [17] for the examples in Section 4.1) is in the range 1–3
seconds.

4.1 Linear Dependence

Consider in the DT case the example of Figure 3 in [17], where n = 3, q = 3 and mA = 1.
With m = 1 Theorem 2 proves that A is unstable, in particular we obtain

ξ(u) = (0.0821, 0.1425, 0.7754)′

spc(A(ξ(u))) = {−1.0002, 0.1863± 0.5453i} .

Some details are: β ∈ R
26; α ∈ R

297; u is found from (15) with the technique in [19, 12] by
finding the roots of a cubic polynomial.

Still in the DT case, consider the example of Figure 5 in [17], where n = 3, q = 4 and
mA = 1. With m = 0 Theorem 2 proves that A is unstable, in particular

ξ(u) = (0.3172, 0.6828, 0.0000, 0.0000)′

spc(A(ξ(u))) = {0.0910,−0.6655,−1.0560} .

Some details are: β ∈ R5; α ∈ R255; u is found from (15) with the technique in [19, 12] by
finding the roots of a quartic polynomial.

4.2 Nonlinear Dependence

Here the aim is to show that the proposed approach works well also in the case where
the portion of the simplex yielding an unstable system is extremely small, in particular a
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point. Consider in the CT case the problem of establishing whether M(θ) is stable for all
θ ∈ {θ ∈ R2 : θ1 + θ2 ≤ 1, θi ≥ 0}, where

M(θ) = M0 +Mi

∑2

i=1(θi − θ∗i )
2

vec(M0) = (−1.1, 0, 0,−1.2, 1.2, 1.2,−4.6,−5.5,−5.5)′

vec(M1) = (−1.7, 0.3, 0, 0,−1.5, 0.5, 0.5, 0.2,−1.3)′

vec(M2) = (−1.5, 0, 0.3, 0,−1.8, 0.2,−0.6, 0,−1.4)′

θ∗ = (
√
2/5, π/9)′.

It can be verified that M(θ) is stable for all admissible θ except θ = θ∗. This problem can
be addressed with the proposed approach. Indeed, let us define

A(p) = M0s(p)
2 +Mi

∑2

i=1 (pi − θ∗i s(p))
2

p1 = θ1, p2 = θ2, p3 = 1− θ1 − θ2, s(p) =
∑3

i=1 pi.

We have n = 3, q = 3 and mA = 2. Theorem 2 proves that A is unstable with m = 0, in
particular we obtain

ξ(u) = (0.2828, 0.3491, 0.3681)′

spc(A(ξ(u))) = {−1.1000, 0.0000,−4.3000} .

Some details are: β ∈ R5; α ∈ R81; u is found from (15) with the technique in [19, 12] by
finding the roots of a quadratic polynomial.

For completeness, we slightly modify M(θ) in order to consider a stable system, in par-
ticular we redefine M0 as M0 − 10−3I3. We find that η∗ > 0, which implies from Theorem 2
that A is stable.

5 Conclusion

We have proposed a condition via HPD-QLFs for establishing stability and instability of
linear systems with polynomial dependence on uncertainties constrained in the simplex.
This condition is necessary and sufficient.
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