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Abstract 
This study aims to evaluate the feasibility of stabilizing copper-laden sludge by the 
application of alumina-based ceramic products. The processing temperature, material 
leaching behaviour, and the effect of detoxification were investigated in detail. CuO 
was used to simulate the copper-laden sludge and X-ray Diffraction was performed to 
monitor the incorporation of copper into the copper aluminate spinel (CuAl2O4) phase 
in ceramic products. It was found that the development of CuAl2O4 increased with 
elevating temperatures up to and including 1000 oC in the 3 h short sintering scheme. 
When the sintering temperature went above 1000 oC, the CuAl2O4 phase began to 
decompose due to the high temperature transformation to CuAlO2. The leachability 
and leaching behaviour of CuO and CuAl2O4 were compared by usage of a prolonged 
leaching test modified from U.S. EPA’s toxicity characteristic leaching procedure. 
The leaching results show that CuAl2O4 is superior to CuO for the purpose of copper 
immobilization over longer leaching periods. Furthermore, the detoxification effect of 
CuAl2O4 was tested through bacterial adhesion with Escherichia coli K12, and the 
comparison of bacterial adhesion on CuO and CuAl2O4 surfaces shows the beneficial 
detoxification effect in connection with the formation of the CuAl2O4 spinel. This 
study demonstrates the feasibility of transforming copper-laden sludge into the spinel 
phase by using readily available and inexpensive ceramic materials, and achieving a 
successful reduction of metal mobility and toxicity. 
 
Keywords: Sludge; Spinel; Ceramic; Stabilization; Detoxification; Copper   
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The discharge of hazardous metals into receiving waters is detrimental to human 

health and the environment. As a type of hazardous metal that is subject to potential 

bioaccumulation, copper may cause stomach and intestinal distress, liver and kidney 

damage, and anaemia in humans (Gardea-Torresdey et al., 1996). Copper is present in 

the wastewater generated from printed circuit board manufacturing, electroplating, 

wire drawing, copper polishing, paint production, wood preservatives and printing 

operations. Common strategies that are chosen to remove hazardous metals from 

wastewater include physicochemical processes such as precipitation, coagulation, 

reduction, ion exchange and membrane processes (Park et al., 2005). However, the 

treatments mentioned above always result in the production of large amounts of 

hazardous-metal bearing sludge which requires additional treatment. 

 

At present, sludge with hazardous metal residues needs to be disposed of in 

controlled landfills. However, the high cost of this strategy, combined with the limited 

number of landfills capable of accepting highly toxic metal wastes, has made the 

development of effective and economical treatment technologies essential. Many 

investigators have attempted to immobilize toxic metals using sorbents or cements 

and then correlating the performance directly with metal leachability (Kapoor and 

Viraraghavan, 1996; Lin et al., 1998; Bailey et al., 1999). However, 

solidification/stabilization technologies via sorption or cementation mechanisms are 

not generally successful in the prevention of leaching in acidic environments, i.e. a pH 

value less than 4.0 (Bonen and Sarkar, 1995; Yousuf et al., 1995).  
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Based on phase transformation at high temperature, attempts to stabilize radioactive 

waste in vitrified glass or ceramic materials have been carried out through a variety of 

thermal treatments (Lewis et al., 1993; Lewis et al., 1994; Wronkiewicz et al., 1997; 

Wang et al., 2005; Shih and Leckie, 2007). However, the products are not reusable 

due to their radioactive nature. A similar thermal treatment process with relatively 

lower firing temperatures (900-1600 
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oC) compared to vitrification may be helpful in 

promoting the effective incorporation of waste materials into ceramic products, such 

as bricks, tiles, refractories, and aggregates (Teixeira da Silva et al., 1998; Shih and 

Leckie, 2007). Converting hazardous sludge to ceramic products via well-controlled 

thermal treatment can remove hazardous metals from the waste stream and enable 

them to become reusable. The leachability of hazardous metals can be reduced 

because of the change of mineral phase after thermal treatment. Shih et al. (2006a, 

2006b) successfully stabilized simulated nickel sludge by sintering with alumina, 

hematite and kaolinite as the ceramic raw materials. They reported significant 

reduction of nickel leachability from the spinel phases of the products, compared to 

the phase of nickel oxide.  

 

It was previously reported that copper could be incorporated into the products 

sintered from clay materials, but the incorporation mechanism and phase 

transformation pathway have not been discussed in detail (Wei et al., 2001). An 

equilibrium phase diagram for Cu2O-Al2O3 system was published (Wartenberg and 

Reuch, 1935), and the formation of the copper spinel was obtained by calcining the 

co-precipitation mixture of copper and aluminium hydroxide (Gadalla and White, 

1964). Jacob and Alcock (1975) investigated the thermodynamics of copper aluminate 

spinel (CuAl2O4) formation and delineated the equilibrium phase diagram of the 
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Cu2O-CuO-Al2O3 system. The above equilibrium studies have provided a great 

opportunity to highlight the interaction between copper oxide and alumina at high 

temperatures. It is thus anticipated that the incorporation of copper-laden sludge into 

ceramic materials through thermal treatment may be a promising strategy for 

stabilizing hazardous copper wastes. However, the potential of initiating copper spinel 

formation in the industrial short-sintering scheme of ceramic products (i.e. tiles, 

insulators, refractories) will require further investigation. 

 

As an environmentally benign product, the material’s surface should be capable of 

supporting microbial activities. The adhesion of bacteria is usually the key factor for 

developing biofilm on material surfaces, which later becomes the major support basis 

for other biological growth. Due to the strong aquatic toxicity, copper oxide has been 

used in paints for marine environments to reduce the formation of biofilm on material 

surfaces. Copper-based paint may work as a selective medium for organisms by 

creating a toxic boundary layer at the surface as the component biocides leach out 

(Evans, 1981; Douglas-Helders et al., 2003). The use of copper-based paints to 

prevent biofilm development and a biofouling effect has gained increasing attention 

due to its environmental impact of releasing toxic copper ions into aquatic ecosystems 

(Chamberlain et al., 1988; Katranitsas et al., 2003). It has been reported that concrete 

sewer pipes coated with copper oxide exhibit antimicrobial characteristics and can 

achieve 99% inhibition against the bacterium (Hewayde et al., 2007). Toxicities of 

compounds can be measured singly and in mixtures of various complexities, using 

acute toxicity bioassays (Fernández-Alba et al., 2001, 2002). Recently, Xu et al. (2005) 

conducted a bacterium attachment study to evaluate the effectiveness of antifouling. 

Therefore, the density of bacteria adhering to product’s surfaces may potentially be 
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used to evaluate the results of metal detoxification after the incorporation of 

hazardous copper waste into ceramics. 

 

In this study, the effect of incorporating CuO, as the simulated copper-laden sludge, 

into γ-alumina (γ-Al2O3) ceramic precursors was observed under a short sintering 

process (3 h) with temperatures ranging 650-1150 oC. A prolonged leaching 

procedure similar to the toxicity characteristic leaching procedure (TCLP) was carried 

out to examine the stabilization effect of copper in the product phases. Whilst 

considering the toxic nature of CuO for microbial adhesion, the surfaces of CuO and 

the CuAl2O4 were compared through bacterial adhesion experiment to evaluate the 

detoxification effect of producing the copper aluminate spinel in ceramics. 

 

 

2. Materials and Methods 

 

When thermally treated, the metal components of sludge are usually first 

transformed into oxide forms and thus CuO (Sigma Aldrich) was used to simulate the 

thermal reaction of copper-laden sludge. Experiments were carried out by firing the 

mixture of CuO and γ-Al2O3 precursor. The γ-Al2O3 was prepared from HiQ-7223 

alumina powder (Alcoa), which has a reported average particle size (d50) of 54.8 nm. 

The HiQ-7223 alumina was confirmed by X-ray Diffraction (XRD) to be the 

boehmite phase (AlOOH; ICDD PDF # 74-1875), and after heat treatment at 650 oC 

for 3 h it was successfully converted to γ-Al2O3 with an XRD crystallite size of 2-5 

nm (Zhou and Snyder, 1991; Wang et al., 2005). The γ-Al2O3 precursor and CuO 

were mixed to a total dry weight of 200 g at the Cu/Al molar ratio of 1:2, together 
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with 1 L of deionized water for ball milling of 18 h. The slurry samples were then 

dried and homogenized by mortar grinding. The derived powder was pressed into 20 

mm pellets at 650 MPa to ensure consistent compaction of the powder sample in 

readiness for the sintering process. After sintering, the samples were air-quenched and 

ground into powder for XRD analysis and the leaching test. 

 

Phase transformations during sintering were monitored by XRD. The diffraction 

patterns were collected using a Bruker D8 diffractometer (Bruker Co. Ltd.) equipped 

with Cu X-ray tube operated at 40 kV and 40 mA. Scans were collected from 10 to 

90o 2θ-angle, with a step size of 0.02o and a counting time of 1 s step-1. Phase 

identification was executed by matching XRD patterns with the powder diffraction 

files (PDF) database of the International Centre for Diffraction Data (ICDD). The 

leachability of the pure phase was tested using a leaching experiment which is a 

leaching procedure modified from the U.S. EPA SW-846 Method 1311 - Toxicity 

Characteristic Leaching Procedure (TCLP) with a pH 2.9 acetic acid solution 

(extraction fluid # 2) as the leaching fluid. Each leaching vial was filled with 10 mL 

of TCLP extraction fluid and 0.5 g of powder. The leaching vials were rotated end-

over-end at 60 rpm for agitation periods of 0.75 to 22 d. At the end of each agitation 

period, the leachates were filtered with 0.2 μm syringe filters, the pH was measured 

and the concentrations of all metals were derived from ICP-AES (Perkin-Elmer 

Optima 3300 DV). 

 

In this study, the bacterial adhesion experiment was carried out to first qualitatively 

observe the toxicity of CuAl2O4 surface. The Escherichia coli K12 bacteria strain was 

chosen for use in this adhesion evaluation on the surfaces of soda-lime glass (silica-
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based), CuAl2O4 and CuO pellets. The culture solution was prepared with 10 g of 

peptone bacteriological (Beijing Chemical Works, 44075-2H, 250 g), 10 g of NaCl 

(Riedel-deHaen) and 5 g of yeast extract in 1 L of water. The glass material was taken 

from the microscope slides commonly designed for laboratory work, and it is an 

example of a non-toxic surface in the study of bacterial adhesion. The CuO powder 

was pressed into pellets and heated at 950 
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oC for 3 h. This was to effectively enhance 

the pellet strength and surface smoothness to facilitate the experimental needs, but 

also aimed to maintain the phase status (CuO) of the material. The mixture of CuO 

and γ-Al2O3 powder (Cu/Al molar ratio = 1:2) was also pressed into pellets and heated 

until CuAl2O4 was observed as the single phase in the product (990 oC for 20 d). Both 

CuO and CuAl2O4 pellets derived from the above processes were later polished by the 

diamond lapping films progressively down to a diamond grit size of 0.1 μm. 

Measurement of the surface roughness of glass, CuO and CuAl2O4 samples was 

conducted using a JPK Instruments atomic force microscope (AFM) equipped by 

silicon-cantilevers with a force constant of 0.1 N m-1 under the Cleveland method 

(Cleveland et al., 1993). Height images (40 × 40 μm2) were used to calculate the 

roughness measurement based on the arithmetic average. Bacteria adhered on the 

substrata were stained with SYTO9 and observed using a fluorescence microscope 

(Nikon Eclipse E600). 

 

 

3. Results and Discussion 

 

3.1 Copper Spinel Formation 
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By sintering the mixture of CuO and γ-Al2O3, copper incorporation may proceed 

under a recrystallization reaction as follows: 

 

CuO + γ-Al2O3 → CuAl2O4         (1) 

 

It has been reported that the incorporation ability of γ-Al2O3 for nickel is affected 

by the sintering temperature (Shih et al., 2006a, 2006b). To investigate the effective 

temperature for alumina content to incorporate copper into the CuAl2O4 in the 

practice of sintering construction ceramic products, a 3 h short sintering scheme at 

temperatures ranging from 650 to 1150 oC was conducted. According to the database 

of the CuAl2O4 XRD pattern (ICDD PDF # 33-0448), its two major peaks are located 

at 2θ = 36.868 and 31.294o, corresponding to the diffraction planes of (3 1 1) and (2 2 

0) respectively. The result reveals that the sample sintered at 750 oC developed a 

distinguishable CuAl2O4 crystalline phase as shown in Fig. 1a. Jacob and Alcock 

(1975) observed the formation of the CuAl2O4 in their equilibrium thermal experiment 

(for 24 h) and reported the spinel formation temperature to start at 612 oC. However, 

when compared to the results observed in our short sintering experiment, it was 

discovered that an effective sintering period for industrial application to incorporate 

copper into CuAl2O4 in ceramic products should be at least above 750 oC. Since the 

solid state reaction is usually affected by both thermodynamic conditions and the 

diffusion process, this comparison may further suggest that spinel formation at 

temperatures below 750 oC is largely limited by the prevailing slow diffusion 

although it is thermodynamically feasible at temperatures above 612 oC. Below 750 

oC, the CuAl2O4 phase formed by the short sintering scheme may only be limited at 
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the grain boundary of reactants, and the very small quantity of such phase in the 

system was not reflected in the XRD results. 

 

Two 2θ ranges of the XRD pattern (2θ = 36.4-37.4o and 31.0-32.0o) were selected 

to further observe the peak intensity development to represent the CuAl2O4 spinel 

product generated from the system at elevated temperatures (Fig. 2). Figure 2a 

observes the crystallization of CuAl2O4 developed from the CuO + γ-Al2O3 precursor 

within the 2θ range of 36.4-37.4o at different sintering temperatures. Although there 

was a distinguishable CuAl2O4 phase in the 750 oC sintered sample, the substantial 

growth of CuAl2O4 in the system was observed to be at above 850 oC, which may 

indicate the energy needed to overcome the major diffusion barrier in the system. 

Below 1000 oC, the peak intensity of the CuAl2O4 phase increases as the temperature 

increases. However, at sintering temperatures higher than 1000 oC, the peak intensity 

of the CuAl2O4 phase was found to decrease with elevated temperatures. 

 

The XRD patterns within the 2θ range of 31.0-32.0o (Fig. 2b) show that the 

decrease of CuAl2O4 at higher temperatures was due to the formation of another new 

Cu-Al oxide phase, cuprous aluminate delafossite (CuAlO2; ICDD PDF # 75-2356). 

Figure 2b has further verified the optimal formation temperature of CuAl2O4 at 1000 

oC, and the phase transformation to CuAlO2 at higher temperatures was observed by 

the (0 0 6) diffraction plane signal of CuAlO2 at 2θ around 31.63o. Since the decrease 

of CuAl2O4 at higher temperatures was accompanied with a corresponding increase of 

CuAlO2 in the system, it is suggested that the formation of CuAlO2 occurred 

immediately after the decomposition of CuAl2O4, or went through structural 

transformation by discharging the excessive aluminum and oxygen from the crystal 
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structure. Nevertheless, both phase transformation mechanisms indicate that the 

opportunity of immobilizing copper from the Al-O incorporated structures is small 

when this phase transformation process takes place at high temperatures. Together 

with the interaction between unreacted CuO and Al
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2O3 (Jacob and Alcock, 1975), the 

CuAlO2 formation mechanisms at temperatures above 1000 oC can be organized in 

the following way: 

 

2CuAl2O4 → 2CuAlO2 + Al2O3 + 0.5O2                    (2) 

2CuO → Cu2O + 0.5O2                      (3) 

Cu2O + Al2O3 → 2CuAlO2                               (4) 

 

3.2 The Leaching Mechanisms 

 

To investigate the effect of copper immobilization after the incorporation by the 

spinel structure, the preferred method was to first compare the leachability of single 

phase samples under the same leaching environment. Therefore, this study prepared a 

leaching experiment sample with CuAl2O4 as the only phase appearing in the sample. 

From the incorporation efficiency experiment, it was observed that 1000 oC as the 

sintering temperature could attain the highest yield of CuAl2O4 phase without 

initiating the formation of the CuAlO2 phase, although small amounts of reactants 

(Al2O3 and CuO) were still observed in the system. To ensure the complete 

transformation of reactants to the product phase (CuAl2O4), a longer sintering time 

(20 d) was used to facilitate reaction equilibrium. Moreover, the sintering temperature 

of 990 oC, which is slightly less than 1000 oC, was chosen to further prevent the 

generation of the CuAlO2 phase during the prolonged sintering process. The XRD 
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pattern in Fig. 1b shows the success achieved by preparing the CuAl2O4 sample, 

where no peak of CuO or Al
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2O3 reactant phase was found in the pattern. 

 

Samples used in the leaching test were ground into powder and measured to 

ascertain the BET surface area to yield values of 1.35 m2 g-1 for CuAl2O4 and 0.17 m2 

g-1 for CuO. The pH values are shown in Fig. 3a, which reveals the greater pH 

increase of CuO leachate. Within the first few days, the pH of CuO leachate 

experienced a significant increase which was then maintained at around 4.7-4.9 

throughout the rest of the leaching period. In contrast, the pH of the CuAl2O4 leachate 

was maintained at the beginning value of its leaching fluid throughout the entire 

leaching period. The increase of leachate pH may arise due to the dissolution of 

cations through ion exchange with protons in the solution. This is accompanied by the 

destruction of crystals at the solid surface by the acidic leaching fluid. The increase in 

leachate pH may indicate that CuO is more vulnerable to proton-mediated dissolution. 

On the other hand, CuAl2O4 (sintered from γ-Al2O3 + CuO) may show higher intrinsic 

resistance to such acidic attack, even with higher surface areas. 

 

As the leaching for solid is likely dominated by surface reactions, it is expected to 

be proportional to sample surface area. In addition, since the same weight of sample 

(0.5 g) was always used, the total copper content in the sample, subject to the different 

copper phases, should also be normalized for comparison. Figure 4 summarizes the 

amounts of leached copper from samples normalized with respect to the surface areas 

of tested solids. The copper in the CuO leachate was over 400 times higher than that 

in the CuAl2O4 leachate near the end of the leaching period. This confirms that the 

CuAl2O4 spinel phase has a higher intrinsic resistance to such acidic attack compared 
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to the CuO phase and the sintering strategy designed for copper-laden sludge is 

proven to be beneficial in stabilizing copper. The curve in the small diagram of Fig. 4 

further provides the details of copper concentrations in the CuAl
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2O4 leachate.  

 

When the pH of the CuO leachate reached ~ 4.9, the leaching of CuO stabilized at a 

copper concentration of ~ 2500 mg L-1 (~ 10-1.4 M) in the leachate. As a general 

assumption of cation-proton exchange mechanism, the destruction of copper oxide by 

the acidic attack of the solution can be expressed as: 

 

CuO(s) + 2H+
(aq) → Cu2+

(aq) + H2O                              (5) 

 

However, the concentration of copper ions in the solution [Cu2+
(aq)] is also limited 

by the potential precipitation/dissolution reactions, such as in respect to Cu(OH)2(s):   

 

Cu(OH)2(s) ↔ Cu2+
(aq) + 2OH-

(aq)                                (6) 

 

where the solubility constant (Ksp) of Eq. 6 is 10-19.25 (Stumm and Morgan, 1996). At 

pH 4.9, the product of [Cu2+
(aq)] × [OH-

(aq)]2 was found to be 10-19.6, which is very 

close to the Ksp of Cu(OH)2(s). This result indicates that the system was very close to 

the saturation of Cu(OH)2(s) and the stabilization of copper concentration in the CuO 

leachate was likely controlled through the equilibrium with the Cu(OH)2(s) phase.  

 

When leaching the CuAl2O4 phase, a “congruent dissolution” through the cation-

proton exchange reaction can be written as: 
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CuAl2O4(s) + 8H+
(aq) → Cu2+

(aq) + 2Al3+
(aq) + 4H2O               (7) 310 
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Such congruent dissolution would result in a theoretical [Al3+
(aq)]/[Cu2+

(aq)] molar 

ratio of 2.0 in the leachates. However, this ratio was observed at 0.75-0.80 in the 

leachate of CuAl2O4 as shown in Fig. 3b. Since the system was maintained in a more 

acidic environment (~ pH 3.2) and the copper concentration was much lower than that 

of the CuO leachate, the copper concentrations in the leachates of CuAl2O4 were all 

considerably under-saturated regarding to the Cu(OH)2(s) phase. The aluminium 

concentrations measured in the CuAl2O4 leachates were ~ 9.5 mg L-1 (~ 10-3.45 M). 

The reaction of amorphous aluminium hydroxide precipitation/dissolution is:  

 

am•Al(OH)3(s) ↔ Al3+
(aq) + 3OH-

(aq)                 (8) 

 

where the solubility constant (Ksp) of Eq. 8 is 10-32.7 (Stumm and Morgan, 1996). The 

product of [Al3+
(aq)] × [OH-

(aq)]3 was found to be 10-35.9 and it did not reach the 

saturation ([Al3+
(aq)] × [OH-

(aq)]3 = 10-32.7) of amorphous Al(OH)3(s) either. Therefore, 

this suggests that the leaching behaviour of CuAl2O4 in this experiment is likely to be 

an incongruent dissolution, where the majority of the Al-O bonds still remained on the 

CuAl2O4 spinel surface. Although some previous studies (Cailleteau et al., 2008; 

Ohlin et al., 2010) have further suggested the reorganization of remaining molecules 

in incongruent dissolution scenarios, the overall result indicates the existence of an 

Al-rich layer on the leached CuAl2O4 surface, which is beneficial for preventing the 

further leaching of Cu and may increase product durability. 

 

3.3 Adhesion of E. coli  
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Since the density of bacteria adhering to the product surface may potentially be 

used to evaluate the results of metal detoxification, this study first conducted a 

qualitative comparison of bacterial adhesion on the substrata of the CuAl2O4 spinel, 

CuO and soda-lime (silica-based) glass. Experimental studies have suggested the 

importance of the physicochemical and thermodynamic properties of both the 

substrata and the bacterial cell surface during the process of bacterial adhesion (Van 

Loosdrecht et al., 1989; Sjollema et al., 1990; Vadillo-Rodriguez and Logan, 2006). 

In this study, a type of testing bacteria, E. coli K12, was cultivated in a solution with a 

pH of ~ 6.5 and all the substratum samples were collectively placed in the same 

solution for better comparison. Since surface roughness may impact bacterial 

adhesion (Brant and Childress, 2002), the tested surfaces of samples were polished 

using diamond lapping films and the roughness values were measured by AFM to be 

2.3±1.7, 491±192 and 369±90 nm for glass, CuAl2O4 and CuO, respectively. 

 

Figure 5 shows the results from the comparison of E. coli bacterial adhesion on the 

surface of glass, CuAl2O4 and CuO after 18 h of bacterial cultivation. The amount of 

E. coli adhering to the glass surface visibly surpassed the amount on the surfaces of 

both the CuAl2O4 and CuO samples (Fig. 5a). However, due to the toxicity effect, no 

bacterial adhesion was found on the surface of the CuO substratum as shown in the 

Fig. 5c. With much lower copper leachability as compared to CuO, the CuAl2O4 

spinel clearly developed bacterial adhesion on the surface which showed its capacity 

to support microbial activities, although the level was lower than that of the glass 

substratum (Fig. 5b).   
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As the inhibition effect of copper oxide on biofouling has already been indicated 

(Evans, 1981; Balls, 1987; Chamberlain et al., 1988; Hodson and Burke, 1994; 

Douglas-Helders et al., 2003; Katranitsas et al., 2003; Hewayde et al., 2007), the 

comparison result of glass and CuO in this study is consistent with previous findings. 

Moreover, some studies suggested that the increase of nano-scale roughness of a 

surface increases bacterial adhesion (Shellenberger and Logan, 2002); other studies 

have demonstrated no significant relationship between surface roughness and bacterial 

adhesion (Li and Logan, 2004). In our work, the highest level of bacteria adhered to 

the glass surface, even with much lower roughness, thus indicating the dominant 

effect of substrata material. The growth of bacteria on the surface of the CuAl
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substratum suggests the successful detoxification of copper through the stabilization 

strategy of incorporating CuO into the aluminate spinel phase. Since the formation of 

a biofilm covering on a surface begins with the adhesion of a small number of bacteria, 

the results shown here provide direct evidence of the environmental friendliness of 

waste-incorporated ceramic products. Such information on the intrinsic properties of 

material is also important and beneficial when aiming to minimize the environmental 

impact even after the end of a product’s life. 
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Fig. 1. The XRD pattern of the CuO + γ-Al2O3 system shows the formation of the 
copper aluminate spinel when sintering at (a) 750 oC for 3 h, and (b) 990 oC for 20 d. 
The “C” represents copper oxide (CuO, ICDD PDF # 48-1548) and the “S” is for the 
copper aluminate spinel (CuAl2O4, ICDD PDF # 33-0448). The XRD pattern in (b) 
shows that CuAl2O4 was the only phase in the sample and it was later used to test the 
CuAl2O4 leachability.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 19



Fig. 2. The comparison of XRD patterns between (a) 2θ = 36.4o and 37.4o (b) 2θ = 
31.0o and 32.0o for CuO + γ-Al2O3 samples (with a molar ratio for Cu:Al of 1:2) 
sintered at 650 - 1150 oC for 3 h. The formation of CuAl2O4 was found to reach its 
maximum at 1000 oC, and the curves at the top-right corners of (a) and (b) illustrate 
the relative intensities of the spinel peaks at 2θ = 36.868o and 2θ = 31.294o, 
respectively. The phase transformation to CuAlO2 at higher temperatures was 
observed by the peak at 2θ around 31.63o.  
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Fig. 3. The (a) pH values and (b) [Al]/[Cu] molar ratios of the leachates of the CuO 
and CuAl2O4 phases. The leaching solution was TCLP extraction fluid no. 2 (acetic 
acid solution) with a pH of 2.9. Each leaching vial was filled with 10 ml of extraction 
fluid and 0.5 g of powder sample, and then rotated end-over-end between 0.75 and 22 
d.  
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Fig. 4.  Normalized copper concentrations in the leachates of CuO and CuAl2O4. The 
surface area of CuO powder is 0.17 m2 g-1 and the surface area of CuAl2O4 is 1.35 m2 
g-1. The leaching solution was TCLP extraction fluid no. 2 (acetic acid solution) with 
a pH of 2.9. Each leaching vial was filled with 10 ml of extraction fluid and 0.5 g of 
powder samples, and then rotated end-over-end between 0.75 and 22 d. The curve in 
the small diagram further provides the details concerning the copper concentrations in 
the CuAl2O4 leachate. 
 
 

 
 
 
 
 
 
Fig. 5. The Escherichia coli K12 bacterial adhesion on the surface of (a) glass, (b) 
CuAl2O4 and (c) CuO. All three materials were used as substrate and cultured for 18 h 
in the same solution containing E. coli K12 bacteria. 
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