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Tension stiffening in concrete beams. Part 2: member analysis

J. Y. K. Lam PhD, P. L. Ng PhD and A. K. H. Kwan PhD, MICE, CEng

Based on finite-element analysis of cracked reinforced

concrete beams, a tensile stress block was proposed in

part 1 of this paper. Here, the proposed tensile stress

block is contrasted with existing ones developed by others

to provide an overall review. The proposed tensile stress

block is then applied to a section analysis of beams to

evaluate themoment–curvature curves of typical beam

sections. The section analysis results are compared with

available experimental results and empirical curves given

in design codes to demonstrate the validity of the tensile

stress block. Subsequently, the proposed tensile stress

block is applied tomember analysis by first dividing the

beammember into short segments and then applying

section analysis to each segment to evaluate the load–

deflection curves of typical beammembers. Themember

analysis results are checked against finite-element analysis

results and available experimental results to fine-tune the

tensile stress block and verify the accuracy of the fine-

tuned tensile stress block. Suchmember analysis could be

extended tomulti-level analysis of frame structures for

their full-range load–deflection behaviour at the elastic,

post-crack and post-peak states.

1. INTRODUCTION

As tension stiffening might contribute significantly to the

flexural stiffness of reinforced concrete members after the

concrete has cracked (as shown by Gilbert and Warner (1978),

it could be up to 100%), it is important to model the tension

stiffening effect properly for accurate analysis of the deflection

of reinforced concrete beams and slabs under service load.

There are two basic approaches for taking into account the

tension-stiffening effect when analysing the deflection of

flexural members.

The first approach is to directly generate the moment–

curvature curve of the reinforced concrete section with tension

stiffening taken into account. Branson (1968) proposed that the

effective moment of inertia Ieff of the section may be adjusted

according to the state of cracking and the applied moment as

per Equation 1 to allow for the tension stiffening effect

Ieff ¼ Icr þ Ig � Icrð Þ M cr

M

� �n

1

where Ig is the moment of inertia before cracking, Icr is the

moment of inertia when fully cracked, Mcr is the cracking

moment, M is the applied moment and n is a dimensionless

factor. This approach is adopted in the ACI building code (ACI,

2008) with n set equal to 3.0. Instead of working with the

moment of inertia, CEB-FIP Model Code 1990 (CEB, 1993) and

Eurocode 2 (CEN, 2005) work with the curvature of the section.

In particular, Eurocode 2 provides the following formula for

the curvature ł of the section

ł ¼ ł2 þ ł1 � ł2ð Þ � M cr

M

� �2

2

in which ł1 is the curvature if the section remains uncracked,

ł2 is the curvature if the section is fully cracked and � is a

coefficient taking account of the influence of the duration of

loading or of repeated loading (� ¼ 1.0 for a single short-term

load and � ¼ 0.5 for a sustained load or many cycles of

repeated load).

The second approach is to allow for the tensile stresses induced

in the concrete between adjacent cracks by means of a tensile

stress block. Many tensile stress blocks have been developed.

Gilbert and Warner (1978) considered three tensile stress

blocks, all having linear ascending branches but one with a

discontinuous saw tooth descending branch, another with a

continuous non-linear descending branch and a third with a

discontinuous multi-linear descending branch. Carreira and

Chu (1986) used the stress–strain curve of concrete under

direct tension, which is a continuous non-linear curve, as the

tensile stress block. Prakhya and Morley (1990) followed

Carreira and Chu’s curve but modified the shape of the curve to

fit the experimental results obtained by Clark and Speirs (1978)

and Clark and Cranston (1979). Damjanic and Owen (1984)

adopted a tensile stress block with a linear ascending branch

and a discontinuous linear descending branch. Schnobrich

(1985) adopted a tensile stress block with a linear ascending

branch and a continuous linear descending branch derived

from in-plane tests of concrete. Kaklauskas and Ghaboussi

(2001) derived the tensile stress block by back-calculating from

the experimental results of Clark and Speirs (1978). Torres et

al. (2004) derived the tensile stress block by fitting it with the

empirical moment–curvature curves given in Eurocode 2 (CEN,

2005). Scott (1983) and Beeby et al. (2005) proposed the use of

tensile stress blocks each comprising multi-linear ascending

and descending branches.
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Relatively speaking, the second approach of using a tensile

stress block to allow for the tension stiffening effect is more

generally applicable. In theory, it is applicable to any

arbitrarily shaped (rectangular or non-rectangular) frame

members (columns and beams) with or without axial loads and

subjected to uniaxial or biaxial bending. Moreover, while the

empirical moment–curvature curves given in the design codes

are applicable only to analysis under the servicing condition

well before the peak moments are reached, tensile stress blocks

can be applied to full-range analysis under both servicing and

ultimate conditions.

Some of the above-mentioned tensile stress blocks and the

one given in BS 8110 (BSI, 1985) are shown in Figure 1 for

comparison. It is evident from this figure that the existing

tensile stress blocks differ widely. Since the tensile stress

block could significantly affect moment–curvature and load–

deflection curves, it is vital to adopt an appropriate one for

analysis. However, the large differences between the existing

tensile stress blocks make it difficult to judge which particular

one is more appropriate. Part 1 of this paper (Ng et al., 2010)

proposed a new tensile stress block based on finite-element

(FE) analysis of the tension stress fields in typical reinforced

concrete beams. This new tensile stress block is probably the

first one developed by direct determination of the actual

distribution of mean tensile stress within the beam depth. In

this paper, the newly developed tensile stress block is

compared with existing ones, applied to section analysis to

evaluate the accuracy of the resulting moment–curvature

curves and then applied to member analysis to evaluate the
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Figure 1. Existing tensile stress blocks
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accuracy of the resulting load–deflection curves. Moreover, a

multi-level analysis method (combining section and member

analysis) for the non-linear load–deflection analysis of frame

structures is presented.

2. REVIEW OF EXISTING TENSILE STRESS BLOCKS

Full-field and accurate measurement of tensile stresses in a

cracked concrete beam is extremely difficult. For this reason,

the existing tensile stress blocks have, in general, been

developed by proposing a certain tensile stress block with

unknown parameters and determining the unknown parameters

by curve fitting of theoretical moment–curvature or load–

deflection curves obtained from experiment.

Among the three stress blocks considered by Gilbert and

Warner (1978), they found that the one with a discontinuous

saw tooth descending branch and the one with a

discontinuous multi-linear descending branch could fit well

with experimental results. The one with a continuous non-

linear descending branch did not fit the experimental results

well.

Carreira and Chu (1986) found that their proposed continuous

stress–strain curve for the stress block fitted the experimental

results well only when the shape of the curve was adjusted

each time according to the experimental results. They have not

arrived at any generally applicable stress block. On the other

hand, Prakhya and Morley (1990) modified Carreira and Chu’s

curve to have a linear ascending branch and, by fitting with

available experimental results, derived an empirical formula for

the parameter defining the shape of the descending branch of

the curve. They thus arrived at a more generally applicable

stress block.

The four stress blocks adopted by Damjanic and Owen (1984),

Schnobrich (1985), Kaklauskas and Ghaboussi (2001) and

Torres et al. (2004) are characterised by each having a linear

ascending branch and a linear descending branch. Schnobrich’s

stress block is continuous in the sense that the descending

branch is continuous with the ascending branch, whereas the

other three stress blocks are discontinuous because of the

abrupt drop in stress after reaching the peak. Nevertheless,

these stress blocks can all be defined in terms of two

parameters, Æ1 and Æ2, as depicted in Figure 2.

The stress blocks proposed by Scott (1983) and Beeby et al.

(2005) are characterised by continuous multi-linear ascending

and descending branches. According to Beeby et al., there

could be rapid decay of the tension stiffening effect within a

certain time after loading and therefore, when measuring the

tension-stiffening effect in tests, the rapid decay must be taken

into account.

Lastly, the stress block given in BS 8110 (BSI, 1985) is just a

linear ascending curve with no descending branch. No

justification for this stress block could be found and it is

difficult to understand why the stress block should be like this.

In part 1 of this paper (Ng et al., 2010), the tension stress fields

in typical reinforced concrete beams were analysed by the FE

method. It was found that before cracking, the mean tensile

stress-theoretical tensile strain curve is a straight line

ascending to the tensile strength of concrete; after cracking,

the curve comprises a non-linear ascending branch reaching to

about half of the tensile strength of concrete and a descending

branch with a long tail. Hence, in theory, two distinct stress

blocks, one for the pre-crack state and the other for the post-

crack state, should be adopted.

For practical applications, it is proposed to combine the two

stress blocks into one consisting of a linear ascending branch

and a discontinuous linear descending branch (like the existing

stress blocks with linear ascending and descending branches),

as shown in Figure 2. The proposed stress block is given by

� ¼ Eco� for � < �ct3a

� ¼ Æ1 ft Æ2�ct � �ð Þ
Æ2�ct � �ctð Þ for �ct , � < Æ2�ct3a

� ¼ 0 for Æ2�ct , �3c

in which � and � are the stress and strain, Eco is the initial

elastic modulus, f t is the tensile strength and �ct is the tensile
strain at peak tensile stress (�ct ¼ f t/Eco).

Although the existing stress blocks with linear ascending and

descending branches and the proposed stress block have similar

shapes, their respective Æ1 and Æ2 values (summarised in Table

1 for comparison) are not quite the same. Damjanic and Owen

(1984) suggested a constant value of 0.5 for Æ1 and a typical

range of 5–10 for Æ2. Schnobrich (1985) adopted a constant

value of 1.0 for Æ1 and a constant value of 20 for Æ2.

Kaklauskas and Ghaboussi (2001) proposed a typical range of

0.6–0.7 for Æ1 and a range of 6–27 depending on rt (the
tension reinforcement ratio) for Æ2. Torres et al. (2004) derived

the value of Æ1 as 0.40 or 0.45 depending on the applied

moment and the value of Æ2 as 7–27 depending on both rt and
d/h (d/h is the effective depth to total depth ratio). In contrast,

the proposed stress block has Æ1 and Æ2 values that depend

only on the type of loading: for a point load (PL), Æ1 ¼ 0.4 and
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Figure 2. Tensile stress block with linear ascending and
descending branches
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Æ2 ¼ 18; for a uniformly distributed load (UDL), Æ1 ¼ 0.5 and

Æ2 ¼ 14.

3. SECTION ANALYSIS

3.1. Material modelling

For the concrete, it is assumed that when under tension the

stress–strain relation follows the proposed tensile stress block

and when under compression the stress–strain relation follows

the equation proposed by Saenz (1964). On the other hand, for

the steel reinforcement, the stress–strain relation is assumed to

be elasto-plastic with strain hardening when under tension or

compression. These assumed stress–strain relations are plotted

in Figure 3 for illustration.

3.2. Method of analysis

The method of analysis employed here is a modified version of

the method developed by Liauw and Kwan (1984) and Kwan

and Liauw (1985), which is applicable to any arbitrary shaped

section subjected to axial load and biaxial bending. Two

common assumptions are made in the analysis

(a) plane sections remain plane after bending

(b) there is perfect bond between the steel reinforcement and

the concrete.

Secant stiffness is used in the formulation.

A rectangular coordinate system is adopted to define the

location of any point in the section. Let the coordinates of a

certain point in the section be (x, y). Following the assumption

that plane sections remain plane after bending, the distribution

of the axial strain � in the section is a linear function of the x-

and y-coordinates, as given by

� ¼ �o þ ky x þ kx y4

where �o is the axial strain at the origin of the coordinate

system, kx is the curvature about the x-axis and ky is the

curvature about the y-axis. As a perfect bond is assumed, this

equation is applicable to both the concrete and the steel

reinforcement.

The axial stresses developed in the section have to satisfy the

following axial and moment equilibrium equations

P

M y

Mx

2
4

3
5 ¼

ð
�dAcð
�xdAcð
� ydAc

2
6666664

3
7777775
þ

X
�As

X
�xAs

X
� yAs

2
66666664

3
77777775

5

Tensile stress block Æ1 Æ2

Damjanic and Owen (1984) 0.5 5–10 (typical range)

Schnobrich (1985) 1.0 20 (constant value)

Kaklauskas and Ghaboussi (2001) 0.6–0.7 (typical range) 6–27 (depending on r t*)

Torres et al. (2004) Æ1 ¼ 0.40 if M > 1.25Mcr

Æ1 ¼ 0.45 if M , 1.25Mcr

7–27 (depending on r t and d/h†)

Proposed stress block Æ1 ¼ 0.40 for a PL‡
Æ1 ¼ 0.50 for a UDL§

Æ2 ¼ 18 for a PL
Æ2 ¼ 14 for a UDL

* r t is tension reinforcement ratio
† d/h is effective depth to total depth ratio
‡ Point load
§ Uniformly distributed load

Table 1. Tensile stress blocks with linear ascending and descending branches

(a)

(b)

ft

fc

�fu

�fy

σ

σ

ε

fu

fy

ε

Figure 3. Assumed stress–strain relation of (a) concrete and
(b) steel reinforcement
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in which P is the axial load, Mx and My are the bending

moments about the x-axis and y-axis respectively, � is the

axial stress, Ac is the area of concrete, As is the area of steel

reinforcement; the integrations are to be applied over the

whole area of concrete and the summations are to be applied to

all steel reinforcing bars.

The axial stresses in the concrete and the steel reinforcement

may be expressed as Ec� and Es�, respectively, in which Ec is

the secant modulus of the concrete and Es is the secant

modulus of the steel reinforcement. Expressing the axial stress

� in terms of the axial strain � and substituting the axial strain

� by the linear function given in Equation 4, Equation 5

becomes

P

M y

Mx

2
4

3
5 ¼ S½ �

�o
ky

kx

2
4

3
5 ¼ Sc½ � þ Ss½ �� � �o

ky

kx

2
4

3
56

where [S] is the section stiffness matrix, and [Sc] and [Ss] are

given by

Sc½ � ¼

ð
EcdAc

ð
EcxdAc

ð
Ec ydAcð

EcxdAc

ð
Ecx

2dAc

ð
EcxydAcð

Ec ydAc

ð
EcxydAc

ð
Ec y

2dAc

2
6666664

3
7777775

7a

Ss½ � ¼

X
EsAs

X
EsxAs

X
Es yAs

X
EsxAs

X
Esx

2As

X
EsxyAs

X
Es yAs

X
EsxyAs

X
Es y

2As

2
66666664

3
77777775

7b

Initially, before any loading is applied, the secant moduli Ec

and Es are each taken as the initial elastic modulus of the

respective material. After loading is applied, the secant

modulus Ec or Es at any point in the section is determined as

the ratio �/� based on the axial stress and strain results

obtained in the previous loading step.

The integration for evaluation of [Sc] is performed by

numerical integration using Gaussian quadrature. For arbitrary

shaped sections, there are two viable methods. First, the section

may be divided into a mesh

of triangular elements using

an automatic mesh generator

and then the integration

performed on each element,

as proposed by Liauw and

Kwan (1984). Alternatively,

the area integration may be

transformed into a boundary

integration using Green’s

theorem and then the

boundary integration

performed by means of a

boundary walk along the

perimeter of the section, as proposed by Kwan and Liauw

(1985).

The loads may be applied in the form of prescribed forces

(prescribed values of P, My and Mx) or prescribed

displacements (prescribed values of �o, ky and kx ). In both

cases, the unknown forces or displacements can be determined

by just solving Equation 6. For generating the moment–

curvature curve of a section subjected to a constant axial load

and a uniaxial bending moment about the x-axis, the axial

load P and the bending moment My should be applied as

prescribed forces and the curvature kx should be applied as a

prescribed displacement in small increments. Since the actual

computer time is insignificant, the loading process is simulated

by applying the prescribed forces or displacements in more

than 200 loading steps until the peak load or moment has been

reached.

3.3. Comparison with experimental results of Sakai and

Kakuta (1980)

In order to verify the validity and accuracy of the proposed

tensile stress blocks and section analysis method, the beams

tested by Sakai and Kakuta (1980) are analysed and the

theoretical moment–curvature curves so obtained compared

with experimental results. Two of the beams tested (beams

M-13 and M-16) were selected for the analysis. Both beams

have a uniform cross-section of 150 mm breadth by 300 mm

depth and an effective depth of 270 mm. They were each

simply supported with a span of 3400 mm and subjected to two

PLs applied at 1000 mm from the mid-span location. The

material properties and details of the beams are given in Table

2. Apart from minor differences in material properties, the

main difference between the two beams is that M-13 has a

tension reinforcement ratio of 0.596% while M-16 has a

tension reinforcement ratio of 0.932%.

Two tensile stress blocks were used in the theoretical analysis.

The first stress block is that for a PL, which has Æ values of

Æ1 ¼ 0.4 and Æ2 ¼ 18, whereas the second stress block is that

for a UDL, Æ1 ¼ 0.5 and Æ2 ¼ 14. Figure 4 shows a comparison

between theoretical results, experimental results and the

empirical moment–curvature curves provided by the ACI

building code (ACI, 2008) and Eurocode 2 (CEN, 2005). The

figure shows that the moment–curvature curves given by the

ACI building code and Eurocode 2 differ slightly. Nevertheless,

for every beam, the experimental results fall between the

moment–curvature curves given by the two codes. More

importantly, for each beam, regardless of the tensile stress

Beam M-13 Beam M-16

Concrete initial elastic modulus Eco: GPa 28.5 28.9
Concrete cylinder strength f c: MPa 29.0 31.4
Concrete tensile strength f t: MPa 2.8 3.0
Steel initial elastic modulus Eso: GPa 193 193
Breadth b: mm 150 150
Overall depth h: mm 300 300
Depth to tension reinforcement d: mm 270 270
Area of tension reinforcement Ast: mm2 241 377

Table 2. Material properties and details of beams tested by Sakai and Kakuta (1980)
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block used, the theoretical moment–curvature curve agrees

closely with the experimental results, thus verifying the

validity of the proposed tensile stress blocks.

4. MEMBER ANALYSIS

4.1. Method of analysis

To analyse the load–deflection behaviour of a flexural member

(such analysis is called member analysis), the member needs to

be divided into many short segments with each short segment

dealt with by section analysis. Each segment is treated as a

frame element with two nodes and six degrees of freedom (dof)

at each node. The six dof at each node are the three

displacements along the three coordinate axes and the three

rotations about the three coordinate axes, as in space frame

analysis.

Let the two nodes be denoted i and j. Following standard FE

formulation, the axial strain �o, curvature about x-axis kx and

curvature about y-axis ky at any location within the frame

element may be expressed as

�o
ky

kx

2
4

3
5 ¼ B½ � �i

� j

� �
8

in which [B] is the strain–displacement matrix, and [�i] and

[� j] are the nodal dof at nodes i and j. From [B], which defines

the strain–displacement relation, the stiffness matrix [K] of the

frame element may be derived as

K½ � ¼
ð
B½ �T S½ � B½ � dl9

in which the section stiffness matrix [S] is as given by

Equations 6 and 7, and the integration is to be performed over

the length of the frame element. For short frame elements,

within which the variations of �o, kx and ky should be small,

the section stiffness matrix [S] may be assumed to be constant

within each element. The above formulation is for three-

dimensional space frame analysis, which requires a 12 3 12

stiffness matrix. For two-dimensional plane frame analysis, the

out-of-plane dof may simply be ignored to arrive at a 6 3 6

stiffness matrix.

4.2. Numerical procedures

The procedure to form the stiffness matrix of the flexural

member, which has been taken as an assembly of short

segments, is the same as in normal frame analysis. For the

non-linear analysis, an iterative procedure is used with the

loads applied in small increments. At each load increment step,

direct iteration using the secant stiffness of the structure is

employed. With this method, the loads may be applied either

directly in the form of prescribed forces or indirectly in the

form of prescribed displacements at the loading points. To

generate the load–deflection curve of a beam subjected to a

single PL at mid-span or two PLs at equal distance from mid-

span, prescribed displacements are applied at the loading

points and the reactions at the loading points are taken as the

applied loads. To generate the load–deflection curve of a beam

subject to a UDL, prescribed forces are applied and the

deflection at mid-span is taken as the deflection of the beam.

4.3. Comparison with FE analysis results

In part 1 of this paper (Ng et al., 2010), a number of beams

were analysed by the FE method. All the beams have a uniform

cross-section of 300 mm breadth by 600 mm depth and are

simply supported over a span of 6000 mm. The beams are

identical except for the tension reinforcement ratio rt, which
varies between 0.5 and 2.0%. Nominal shear reinforcement of

0.4% was provided in each beam. The material properties and

other details of the beams have been presented in part 1. For

each beam, two loading cases, that is PL at mid-span and a

UDL over the entire span, were considered in the FE analysis.

The proposed member analysis method with tension stiffening

taken into account is here applied to the above-mentioned

beams to demonstrate the accuracy of the proposed method. In

member analysis, the beam is divided into 20 frame elements,

each of 300 mm length. When a PL is applied, the tensile stress

block with Æ1 ¼ 0.4 and Æ2 ¼ 18 is used, while for a UDL, the

tensile stress block with Æ1 ¼ 0.5 and Æ2 ¼ 14 is used. The

member analysis results are found to agree closely with the FE

analysis results. For illustration, the load–deflection curves of

the beams with rt ¼ 1.0% obtained by member analysis and by

FE analysis are presented in Figure 5.
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Figure 4. Comparison between section analysis results,
experimental results of Sakai and Kakuta (1980) and empirical
curves given in design codes: (a) beam M-13 (rt ¼ 0.596%);
(b) beam M-16 (rt ¼ 0.932%)
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The opportunity is taken here to conduct a parametric study of

the effects of adopting different values of Æ1 and Æ2 on the

load–deflection curves of the beams. In the parametric study,

three values of Æ1 (0.3, 0.4 and 0.5) and three values of Æ2 (10,

15 and 20) are considered, leading to a total of nine

combinations of Æ1 and Æ2 values for the member analysis. For

detailed evaluation, the member analysis and FE analysis

results are compared in Tables 3 and 4. Since the discrepancy

between the member analysis and FE analysis results varies

along the load–deflection curve, the overall discrepancy is

measured in terms of the maximum absolute error in secant

stiffness (the load to deflection ratio) within the range from

0–90% of the peak load. From the comparison, it is seen that

under a PL, the maximum absolute error in secant stiffness

would be smallest and equal to 7.1% when Æ1 ¼ 0.3 and

Æ2 ¼ 15, whereas under a UDL, the maximum absolute error in

secant stiffness would be smallest and equal to 8.5% when

Æ1 ¼ 0.4 and Æ2 ¼ 10. These optimum values of Æ1 and Æ2

perform better than the original values derived by combining

the stress block at pre-crack state and the stress block at post-

crack state together to form a single combined stress block

because the combined stress block tends to overestimate the

tensile stress when the beam has just cracked.

Having evaluated the effects of adopting different values of Æ1

and Æ2 on the accuracy of the member analysis, it is proposed,

for improved performance, to fine-tune the Æ values for a PL as

Æ1 ¼ 0.3 and Æ2 ¼ 15 and for a UDL as Æ1 ¼ 0.4 and Æ2 ¼ 10.

Moreover, since the use of different stress blocks for different

types of loading is inconvenient, it is proposed to unify the two

stress blocks for a PL and a UDL by setting Æ1 ¼ 0.4 and

Æ2 ¼ 10 for all types of loading. With this single set of Æ
values adopted regardless of the type of loading, the maximum

absolute error in secant stiffness would be smaller than 9%

under any loading case. The root mean square (RMS) errors in

secant stiffness within the range 0–90% of the peak load were

also evaluated. It was found that with the above set of Æ values

adopted regardless of the type of loading, the maximum RMS

error in secant stiffness would be smaller than 5% under any

loading case.

4.4. Comparison with experimental results of Clark and

Speirs (1978)

In order to verify the applicability and accuracy of the fine-

tuned and unified tensile stress block, the beams tested by

Clark and Speirs (1978) were analysed and the theoretical

moment–curvature and load–deflection curves so obtained

compared with the experimental results. Four of the beams

tested (beams 1 to 4) were selected for the analysis. All four

beams have a uniform cross-section of approximately 200 mm

breadth by 410 mm depth and an effective depth of about 370

mm. They were each simply supported with a span of 3200 mm

and subjected to two PLs applied at 600 mm from the mid-span

location. The material properties and details of the beams are

given in Table 5. Apart from minor differences in material

properties and dimensions, the major difference between the

four beams is that beams 1, 2, 3 and 4 have tension

reinforcement ratios of 1.91, 1.28, 0.79 and 0.44%,

respectively. The theoretical and experimental results are

compared for beams 1 and 2 in Figure 6 and for beams 3 and 4

in Figure 7. From Figures 6(a) and 7(a), it is evident that the

theoretical results for the moment–curvature curves agree very

closely with the experimental results. Likewise, from Figures

6(b) and 7(b), it is evident that the theoretical results for the

load–deflection curves fit the experimental results well. Hence,

the proposed analysis methods using the fine-tuned and

unified stress block yield accurate results within the range of

tension reinforcement ratios covered.

4.5. Comparison with experimental results of Espion and

Halleux (1988)

To provide further evidence of the applicability of the fine-

tuned and unified tensile stress block, the beams tested by

Espion and Halleux (1988) were analysed and the theoretical

moment–curvature and load–deflection curves so obtained

compared with experimental results. Beams N0 and N2, both

having a uniform cross-section of 150 mm breadth by 280 mm

depth, were selected for the analysis. In each beam, tension

reinforcement was provided at a depth of 251 mm and

compression reinforcement was provided at a depth of 34 mm.

Both beams were simply supported with a span of 3000 mm

and subjected to two PLs at the third points. The material

properties and details of the beams are presented in Table 6,

which shows that the two beams were provided with the same

steel reinforcement, giving a tension reinforcement ratio of

1.23% and a compression reinforcement ratio of 1.23%. The

two beams are identical except that beam N0 was not subjected

to axial loading whereas beam N2 was subjected to a constant

axial compression load of 200 kN. Figure 8 shows a

comparison of the theoretical and experimental results for the

moment–curvature and load–deflection curves of the two

beams. The figure shows that, for beam N0, the theoretical
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Figure 5. Comparison of member analysis and finite-element
analysis results for a beam subjected to: (a) PL (rt ¼ 1.0%);
(b) UDL (rt ¼ 1.0%)
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curves are almost identical to the experimental results.

Moreover, although the possible effects of axial load have not

been considered in the development of the proposed tensile

stress block, for beam N2 subjected to axial load, the

theoretical curves also agree very well with the experimental

results. This indicates that the tensile stress block might also be

applicable to flexural members subjected to axial loads.

However, the evidence is too limited to draw any firm

conclusions at this stage. Further research on tensile stress

blocks in the presence of an axial load is recommended.

5. MULTI-LEVEL ANALYSIS

The above method may be extended to analysis of a complete

frame structure using a multi-level approach of first dividing

the frame structure into members, then analysing each

member-by-member analysis in which the member is

subdivided into many short segments, and finally dealing with

each short segment by section analysis.

After dividing the frame structure into frame members, each

frame member is subdivided into 20 or more segments with

each segment treated as a frame element with two nodes. For

each segment, the section stiffness matrix [S] is derived using

Equations 6 and 7 and then the stiffness matrix [K] of the

segment is derived using Equation 9. Having derived the

stiffness matrix of each segment, the stiffness matrix of the

frame member can be obtained by assembling the stiffness

matrices of the segments together. Upon completion of the

Æ1 Æ2 Maximum absolute error in secant stiffness: %

rt ¼ 0.5% rt ¼ 1.0% rt ¼ 1.5% rt ¼ 2.0%

0.3 10 12.3 7.3 6.6 5.7
15 7.1 4.6 7.1 6.1
20 4.8 3.9 7.7 6.5

0.4 10 8.7 3.4 6.7 5.8
15 6.1 4.6 7.7 6.3
20 7.3 4.9 8.2 6.6

0.5 10 7.9 7.4 7.1 6.1
15 12.0 8.3 8.0 6.7
20 13.5 9.0 9.0 7.2

Table 3. Comparison with FE analysis results (PL case). The largest value of maximum absolute
error for each set of Æ values is shown in bold face

Æ1 Æ2 Maximum absolute error in secant stiffness: %

r t ¼ 0.5% r t ¼ 1.0% r t ¼ 1.5% r t ¼ 2.0%

0.3 10 7.6 6.0 9.5 8.0
15 4.4 6.0 9.5 7.4
20 3.9 6.0 9.4 7.3

0.4 10 4.4 4.4 8.5 5.2
15 8.8 5.9 8.4 8.0
20 11.4 6.8 8.4 4.7

0.5 10 12.1 10.3 8.1 3.5
15 17.6 12.2 8.1 4.4
20 20.2 12.7 8.1 5.0

Table 4. Comparison with FE analysis results (UDL case). The largest value of maximum absolute
error for each set of Æ values is shown in bold face

Beam 1 Beam 2 Beam 3 Beam 4

Concrete initial elastic modulus Eco: GPa 26.5 28.0 30.3 25.0
Concrete cylinder strength f c: MPa 33.8 33.3 38.1 28.9
Concrete tensile strength f t: MPa 2.1 2.1 3.1 2.2
Steel initial elastic modulus Eso: GPa 210 210 210 210
Breadth b: mm 203 203 204 204
Overall depth h: mm 410 408 407 409
Depth to tension reinforcement d: mm 380 363 373 379
Depth to compression reinforcement d’: mm 37 20 33 35
Area of tension reinforcement Ast: mm2 1472 943 603 339
Area of compression reinforcement Asc: mm2 402 101 101 101

Table 5. Material properties and details of beams tested by Clark and Speirs (1978)
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assembly process, the frame member should have two external

nodes at its ends connected to the other parts of the frame

structure and a number of internal nodes. As the internal nodes

are not connected to any other parts of the frame structure, it

should be computationally more efficient to treat each frame

member as a substructure and eliminate the dof at the internal

nodes by static condensation before proceeding further to

analyse the complete frame structure. Having derived the

stiffness matrix of each frame member, the overall stiffness

matrix of the complete frame structure can be obtained by

assembling the stiffness matrices of the frame members

together.

In order to extend the analysis into post-crack and post-peak

ranges, the secant stiffness matrix, which is always positive

definite, is used in the formulation and direct iteration with the

loads applied in increments is adopted in the numerical

procedures. Further details of the analysis method and some

preliminary results have been presented previously (Lam et al.,

2007). To allow for tension stiffening at the post-crack state,

the stress–strain relation of the concrete needs to be

incorporated with an appropriate tensile stress block, as

depicted here. To allow for strain increment reversal at the

post-peak state (the axial strains in the steel reinforcement

would eventually start to decrease as deformation of the
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Figure 6. Comparison of section and member analysis results
with the experimental results of Clark and Speirs (1978) for
beams 1 and 2: (a) moment–curvature curve;
(b) load–deflection curve
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Figure 7. Comparison of section and member analysis results
with the experimental results of Clark and Speirs (1978) for
beams 3 and 4: (a) moment–curvature curve;
(b) load–deflection curve

Beam N0 Beam N2

Concrete initial elastic modulus Eco: GPa 32.5 32.5
Concrete cylinder strength f c: MPa 41.6 41.6
Concrete tensile strength f t: MPa 4.0 4.0
Steel initial elastic modulus Eso: GPa 210 210
Breadth b: mm 150 150
Overall depth h: mm 280 280
Depth to tension reinforcement d: mm 251 251
Depth to compression reinforcement d’: mm 34 34
Area of tension reinforcement Ast: mm2 462 462
Area of compression reinforcement Asc: mm2 462 462
Axial load applied P: kN 0 200

Table 6. Material properties and details of beams tested by Espion and Halleux (1988)
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structure keeps on increasing), the stress–strain relation of the

steel reinforcement needs to incorporate the stress-path

dependence and residual strain, as explained in a previous

study (Kwan et al., 2002). With both tension stiffening and

strain increment reversal accounted for, full-range analysis

covering the elastic, post-crack and post-peak states can be

carried out. Such analysis should be useful for evaluating the

serviceability, ductility and deformability of frame structures

and for evaluating the ductility and deformability demands for

different members in the structure. Further research along this

line is being carried out and the results will be published in

due course.

6. CONCLUSIONS

The tensile stress block proposed in part 1 of this paper based

on FE analysis of cracked reinforced concrete beams has been

compared to existing ones developed by others to provide an

overall review. Although the existing tensile stress blocks differ

widely, there is a group of tensile stress blocks having the

common characteristic of comprising a linear ascending branch

and a linear descending branch. The proposed tensile stress

block, currently the only one directly derived from stress

distribution results, also belongs to this group.

A section analysis method that is applicable to any arbitrarily

shaped section subjected to axial load and biaxial bending has

been presented. It is incorporated with the proposed tensile

stress block and has been applied to analyse the beams tested

by Sakai and Kakuta (1980). Comparison between the

theoretical moment–curvature curves, the experimental results

and the empirical curves given by the ACI building code and

by Eurocode 2 revealed that they agree closely with each other,

thus verifying the validity of the proposed tensile stress block

and section analysis method.

A member analysis method that divides the frame member into

many short segments and deals with each short segment by

section analysis with the proposed tensile stress block has also

been presented. It was applied to member analysis of the

typical beams analysed by the FE method in part 1 of this

paper. As expected, the member analysis results agree closely

with the FE analysis results. Using this member analysis

method, a parametric study of the effects of adopting different

values for the parameters defining the shape of the tensile

stress block was carried out. It was found that the proposed

tensile stress block may be fine-tuned to improve its accuracy

and the two tensile stress blocks proposed for different types of

loading may be unified to become one tensile stress block for

any type of loading. The fine-tuned and unified tensile stress

block was applied to analyse beams tested by Clark and Speirs

(1978) and Espion and Halleux (1988). The good agreement

between the theoretical and experimental results verified the

applicability and accuracy of the fine-tuned and unified tensile

stress block and member analysis method.

Lastly, a multi-level method for the non-linear load–deflection

analysis of frame structures has been developed as an

extension of the proposed member analysis method. It first

divides the frame structure into frame members and then

subdivides each frame member into 20 or more segments. Each

segment is treated as a frame element with its stiffness matrix

derived by the section and member analysis methods presented

here. Having derived the stiffness matrix of each segment, the

stiffness matrix of each frame member and the overall stiffness

matrix of the frame structure may then be obtained by the

usual assembly process. With tension stiffening and strain

increment reversal properly accounted for, such multi-level

analysis may be applied to full-range analysis covering the

elastic, post-crack and post-peak states for evaluating the

serviceability, ductility and deformability of frame structures.

Further research using this multi-level approach is highly

recommended and is in fact being carried out by the authors.
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