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Based on finite-element analysis of cracked reinforced
concrete beams, a tensile stress block was proposed in
part | of this paper. Here, the proposed tensile stress
block is contrasted with existing ones developed by others
to provide an overall review. The proposed tensile stress
block is then applied to a section analysis of beams to
evaluate the moment-curvature curves of typical beam
sections. The section analysis results are compared with
available experimental results and empirical curves given
in design codes to demonstrate the validity of the tensile
stress block. Subsequently, the proposed tensile stress
block is applied to member analysis by first dividing the
beam member into short segments and then applying
section analysis to each segment to evaluate the load-
deflection curves of typical beam members. The member
analysis results are checked against finite-element analysis
results and available experimental results to fine-tune the
tensile stress block and verify the accuracy of the fine-
tuned tensile stress block. Such member analysis could be
extended to multi-level analysis of frame structures for
their full-range load-deflection behaviour at the elastic,
post-crack and post-peak states.

I. INTRODUCTION

As tension stiffening might contribute significantly to the
flexural stiffness of reinforced concrete members after the
concrete has cracked (as shown by Gilbert and Warner (1978),
it could be up to 100%), it is important to model the tension
stiffening effect properly for accurate analysis of the deflection
of reinforced concrete beams and slabs under service load.
There are two basic approaches for taking into account the
tension-stiffening effect when analysing the deflection of
flexural members.

The first approach is to directly generate the moment-
curvature curve of the reinforced concrete section with tension
stiffening taken into account. Branson (1968) proposed that the
effective moment of inertia I¢ of the section may be adjusted
according to the state of cracking and the applied moment as
per Equation 1 to allow for the tension stiffening effect

M n
Tegp = Ior + (Ig *Icr) (]Wn>

where I; is the moment of inertia before cracking, I is the
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moment of inertia when fully cracked, M, is the cracking
moment, M is the applied moment and » is a dimensionless
factor. This approach is adopted in the ACI building code (ACI,
2008) with n set equal to 3-0. Instead of working with the
moment of inertia, CEB-FIP Model Code 1990 (CEB, 1993) and
Eurocode 2 (CEN, 2005) work with the curvature of the section.
In particular, Eurocode 2 provides the following formula for
the curvature 1 of the section

Me\*
1/):1/)2+(7/J1*1/)2)ﬁ<M>

in which v, is the curvature if the section remains uncracked,
1, is the curvature if the section is fully cracked and j is a
coefficient taking account of the influence of the duration of
loading or of repeated loading (3 = 1-0 for a single short-term
load and 8 = 0-5 for a sustained load or many cycles of
repeated load).

The second approach is to allow for the tensile stresses induced
in the concrete between adjacent cracks by means of a tensile
stress block. Many tensile stress blocks have been developed.
Gilbert and Warner (1978) considered three tensile stress
blocks, all having linear ascending branches but one with a
discontinuous saw tooth descending branch, another with a
continuous non-linear descending branch and a third with a
discontinuous multi-linear descending branch. Carreira and
Chu (1986) used the stress—strain curve of concrete under
direct tension, which is a continuous non-linear curve, as the
tensile stress block. Prakhya and Morley (1990) followed
Carreira and Chu’s curve but modified the shape of the curve to
fit the experimental results obtained by Clark and Speirs (1978)
and Clark and Cranston (1979). Damjanic and Owen (1984)
adopted a tensile stress block with a linear ascending branch
and a discontinuous linear descending branch. Schnobrich
(1985) adopted a tensile stress block with a linear ascending
branch and a continuous linear descending branch derived
from in-plane tests of concrete. Kaklauskas and Ghaboussi
(2001) derived the tensile stress block by back-calculating from
the experimental results of Clark and Speirs (1978). Torres et
al. (2004) derived the tensile stress block by fitting it with the
empirical moment-curvature curves given in Eurocode 2 (CEN,
2005). Scott (1983) and Beeby et al. (2005) proposed the use of
tensile stress blocks each comprising multi-linear ascending
and descending branches.
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Relatively speaking, the second approach of using a tensile
stress block to allow for the tension stiffening effect is more
generally applicable. In theory, it is applicable to any
arbitrarily shaped (rectangular or non-rectangular) frame
members (columns and beams) with or without axial loads and
subjected to uniaxial or biaxial bending. Moreover, while the
empirical moment- curvature curves given in the design codes
are applicable only to analysis under the servicing condition
well before the peak moments are reached, tensile stress blocks
can be applied to full-range analysis under both servicing and
ultimate conditions.

Some of the above-mentioned tensile stress blocks and the
one given in BS 8110 (BSI, 1985) are shown in Figure 1 for
comparison. It is evident from this figure that the existing

tensile stress blocks differ widely. Since the tensile stress
block could significantly affect moment- curvature and load-
deflection curves, it is vital to adopt an appropriate one for
analysis. However, the large differences between the existing
tensile stress blocks make it difficult to judge which particular
one is more appropriate. Part 1 of this paper (Ng et al., 2010)
proposed a new tensile stress block based on finite-element
(FE) analysis of the tension stress fields in typical reinforced
concrete beams. This new tensile stress block is probably the
first one developed by direct determination of the actual
distribution of mean tensile stress within the beam depth. In
this paper, the newly developed tensile stress block is
compared with existing ones, applied to section analysis to
evaluate the accuracy of the resulting moment-curvature
curves and then applied to member analysis to evaluate the
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Figure |. Existing tensile stress blocks
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accuracy of the resulting load-deflection curves. Moreover, a
multi-level analysis method (combining section and member
analysis) for the non-linear load -deflection analysis of frame
structures is presented.

2. REVIEW OF EXISTING TENSILE STRESS BLOCKS
Full-field and accurate measurement of tensile stresses in a
cracked concrete beam is extremely difficult. For this reason,
the existing tensile stress blocks have, in general, been
developed by proposing a certain tensile stress block with
unknown parameters and determining the unknown parameters
by curve fitting of theoretical moment-curvature or load-
deflection curves obtained from experiment.

Among the three stress blocks considered by Gilbert and
Warner (1978), they found that the one with a discontinuous
saw tooth descending branch and the one with a
discontinuous multi-linear descending branch could fit well
with experimental results. The one with a continuous non-
linear descending branch did not fit the experimental results
well.

Carreira and Chu (1986) found that their proposed continuous
stress-—strain curve for the stress block fitted the experimental
results well only when the shape of the curve was adjusted
each time according to the experimental results. They have not
arrived at any generally applicable stress block. On the other
hand, Prakhya and Morley (1990) modified Carreira and Chu’s
curve to have a linear ascending branch and, by fitting with
available experimental results, derived an empirical formula for
the parameter defining the shape of the descending branch of
the curve. They thus arrived at a more generally applicable
stress block.

The four stress blocks adopted by Damjanic and Owen (1984),
Schnobrich (1985), Kaklauskas and Ghaboussi (2001) and
Torres et al. (2004) are characterised by each having a linear
ascending branch and a linear descending branch. Schnobrich’s
stress block is continuous in the sense that the descending
branch is continuous with the ascending branch, whereas the
other three stress blocks are discontinuous because of the
abrupt drop in stress after reaching the peak. Nevertheless,
these stress blocks can all be defined in terms of two
parameters, a; and a,, as depicted in Figure 2.

The stress blocks proposed by Scott (1983) and Beeby et al.
(2005) are characterised by continuous multi-linear ascending
and descending branches. According to Beeby et al., there
could be rapid decay of the tension stiffening effect within a
certain time after loading and therefore, when measuring the
tension-stiffening effect in tests, the rapid decay must be taken
into account.

Lastly, the stress block given in BS 8110 (BSI, 1985) is just a
linear ascending curve with no descending branch. No
justification for this stress block could be found and it is
difficult to understand why the stress block should be like this.

In part 1 of this paper (Ng et al., 2010), the tension stress fields
in typical reinforced concrete beams were analysed by the FE
method. It was found that before cracking, the mean tensile
stress-theoretical tensile strain curve is a straight line
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Figure 2. Tensile stress block with linear ascending and

descending branches

ascending to the tensile strength of concrete; after cracking,
the curve comprises a non-linear ascending branch reaching to
about half of the tensile strength of concrete and a descending
branch with a long tail. Hence, in theory, two distinct stress
blocks, one for the pre-crack state and the other for the post-
crack state, should be adopted.

For practical applications, it is proposed to combine the two
stress blocks into one consisting of a linear ascending branch
and a discontinuous linear descending branch (like the existing
stress blocks with linear ascending and descending branches),
as shown in Figure 2. The proposed stress block is given by

o=E.efore<eg,

0 fi(a28 — €)

for e < € < &
(a2£ct - sct)

3c 0 =0 for ;e < €

in which o and € are the stress and strain, E, is the initial
elastic modulus, f; is the tensile strength and & is the tensile
strain at peak tensile stress (€.; = f/Ec).

Although the existing stress blocks with linear ascending and
descending branches and the proposed stress block have similar
shapes, their respective a; and a, values (summarised in Table
1 for comparison) are not quite the same. Damjanic and Owen
(1984) suggested a constant value of 0-5 for a; and a typical
range of 5-10 for a;,. Schnobrich (1985) adopted a constant
value of 1-0 for a; and a constant value of 20 for a,.
Kaklauskas and Ghaboussi (2001) proposed a typical range of
0-6-0-7 for a; and a range of 6-27 depending on py (the
tension reinforcement ratio) for a,. Torres et al. (2004) derived
the value of @ as 0-40 or 0-45 depending on the applied
moment and the value of a, as 7-27 depending on both p; and
d[h (d[h is the effective depth to total depth ratio). In contrast,
the proposed stress block has a; and a, values that depend
only on the type of loading: for a point load (PL), a; = 0-4 and
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Tensile stress block a) ay

Damjanic and Owen (1984) 05 5-10 (typical range)

Schnobrich (1985) 1-0 20 (constant value)

Kaklauskas and Ghaboussi (2001) 0-6—0-7 (typical range) 6—27 (depending on p*)

Torres et al. (2004) o =040if M = 1-25M,, 7-27 (depending on p, and d/ht)
a; =045if M < 1-25M,,

Proposed stress block oy = 0-40 for a PL} a; = 18 fora PL
o = 0-50 for a UDL§ a; = 14 fora UDL

* p, is tension reinforcement ratio

T d/h is effective depth to total depth ratio
I Point load

§ Uniformly distributed load

Table |. Tensile stress blocks with linear ascending and descending branches

a, = 18; for a uniformly distributed load (UDL), a; = 0-5 and
a, = 14.

3. SECTION ANALYSIS ! e

3.1. Material modelling

For the concrete, it is assumed that when under tension the
stress-strain relation follows the proposed tensile stress block
and when under compression the stress-strain relation follows
the equation proposed by Saenz (1964). On the other hand, for Tk
the steel reinforcement, the stress-strain relation is assumed to (a)
be elasto-plastic with strain hardening when under tension or
compression. These assumed stress-strain relations are plotted 4
in Figure 3 for illustration.

‘<~h c
L

3.2. Method of analysis

The method of analysis employed here is a modified version of
the method developed by Liauw and Kwan (1984) and Kwan
and Liauw (1985), which is applicable to any arbitrary shaped
section subjected to axial load and biaxial bending. Two
common assumptions are made in the analysis €

(a) plane sections remain plane after bending
(b) there is perfect bond between the steel reinforcement and
the concrete.

Secant stiffness is used in the formulation.

A rectangular coordinate system is adopted to define the
location of any point in the section. Let the coordinates of a Figure 3. Assumed stress—strain relation of (a) concrete and
certain point in the section be (x, y). Following the assumption (b) steel reinforcement

that plane sections remain plane after bending, the distribution

of the axial strain € in the section is a linear function of the x-

and y-coordinates, as given by The axial stresses developed in the section have to satisfy the

following axial and moment equilibrium equations
E=8&, +tKyXr+K,y

where g, is the axial strain at the origin of the coordinate P

JadAC > oA

system, K, is the curvature about the x-axis and x, is the My | = JUIdAc + Z OxAs
curvature about the y-axis. As a perfect bond is assumed, this M A Z SvA
equation is applicable to both the concrete and the steel oydie Yas

reinforcement.
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in which P is the axial load, M, and M, are the bending
moments about the r-axis and y-axis respectively, o is the
axial stress, A. is the area of concrete, Ay is the area of steel
reinforcement; the integrations are to be applied over the
whole area of concrete and the summations are to be applied to
all steel reinforcing bars.

The axial stresses in the concrete and the steel reinforcement
may be expressed as E.€ and Eg, respectively, in which E; is
the secant modulus of the concrete and E; is the secant
modulus of the steel reinforcement. Expressing the axial stress
o in terms of the axial strain & and substituting the axial strain
& by the linear function given in Equation 4, Equation 5
becomes

P & &
My | =8| xy | = {[S] + [Ss]} | xy
M, Ky Ky

where [S] is the section stiffness matrix, and [S.] and [S] are
given by

J E.dA. J E.xdA, J E.ydA,
7a [Sc] = JECchAC J.ECchdAC JECchdAC
JEcydAc JEcxydAC JECyZdAC

Z E, A,

| s = | D Esxas

Z E;yA,

Z E xA
Z E.x? A,
Z E xyA,

Z EyA,
Z E xyA,
Z E.y? A,

Initially, before any loading is applied, the secant moduli E.
and E; are each taken as the initial elastic modulus of the
respective material. After loading is applied, the secant
modulus E; or E; at any point in the section is determined as
the ratio o/ based on the axial stress and strain results
obtained in the previous loading step.

The integration for evaluation of [S.] is performed by
numerical integration using Gaussian quadrature. For arbitrary
shaped sections, there are two viable methods. First, the section
may be divided into a mesh

of triangular elements using

perimeter of the section, as proposed by Kwan and Liauw
(1985).

The loads may be applied in the form of prescribed forces
(prescribed values of P, M and M,) or prescribed
displacements (prescribed values of &, «, and «.). In both
cases, the unknown forces or displacements can be determined
by just solving Equation 6. For generating the moment-
curvature curve of a section subjected to a constant axial load
and a uniaxial bending moment about the x-axis, the axial
load P and the bending moment My should be applied as
prescribed forces and the curvature x, should be applied as a
prescribed displacement in small increments. Since the actual
computer time is insignificant, the loading process is simulated
by applying the prescribed forces or displacements in more
than 200 loading steps until the peak load or moment has been
reached.

3.3. Comparison with experimental results of Sakai and
Kakuta (1980)

In order to verify the validity and accuracy of the proposed
tensile stress blocks and section analysis method, the beams
tested by Sakai and Kakuta (1980) are analysed and the
theoretical moment-curvature curves so obtained compared
with experimental results. Two of the beams tested (beams
M-13 and M-16) were selected for the analysis. Both beams
have a uniform cross-section of 150 mm breadth by 300 mm
depth and an effective depth of 270 mm. They were each
simply supported with a span of 3400 mm and subjected to two
PLs applied at 1000 mm from the mid-span location. The
material properties and details of the beams are given in Table
2. Apart from minor differences in material properties, the
main difference between the two beams is that M-13 has a
tension reinforcement ratio of 0-596% while M-16 has a
tension reinforcement ratio of 0-9320%.

Two tensile stress blocks were used in the theoretical analysis.
The first stress block is that for a PL, which has a values of

a; = 0-4 and a, = 18, whereas the second stress block is that
for a UDL, a; = 0-5 and a, = 14. Figure 4 shows a comparison
between theoretical results, experimental results and the
empirical moment-curvature curves provided by the ACI
building code (ACI, 2008) and Eurocode 2 (CEN, 2005). The
figure shows that the moment - curvature curves given by the
ACI building code and Eurocode 2 differ slightly. Nevertheless,
for every beam, the experimental results fall between the
moment-curvature curves given by the two codes. More
importantly, for each beam, regardless of the tensile stress

an automatic mesh generator Beam M-13 Beam M-16
and then the integration
performed on eac.h element, Concrete initial elastic modulus E.,: GPa 28-5 289
as proposed by Liauw and Concrete cylinder strength f.: MPa 29-0 314
Kwan (1984). Alternatively, Concrete tensile strength f.: MPa 2-8 3-0
the area integration may be Steel initial elastic modulus E,,: GPa 193 193
transformed into a boundary Breadth b: mm 150 150
integration using Green’s Overall depth h: mm 300 300
Depth to tension reinforcement d: mm 270 270
theorem and then the Area of tension reinforcement Ag: mm? 241 377
boundary integration

performed by means of a
boundary walk along the

Table 2. Material properties and details of beams tested by Sakai and Kakuta (1980)
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Figure 4. Comparison between section analysis results,
experimental results of Sakai and Kakuta (1980) and empirical

curves given in design codes: (a) beam M-13 (p, = 0-596%);
(b) beam M-16 (p. = 0:932%)

block used, the theoretical moment-curvature curve agrees
closely with the experimental results, thus verifying the
validity of the proposed tensile stress blocks.

4. MEMBER ANALYSIS

4.1. Method of analysis

To analyse the load-deflection behaviour of a flexural member
(such analysis is called member analysis), the member needs to
be divided into many short segments with each short segment
dealt with by section analysis. Each segment is treated as a
frame element with two nodes and six degrees of freedom (dof)
at each node. The six dof at each node are the three
displacements along the three coordinate axes and the three
rotations about the three coordinate axes, as in space frame
analysis.

Let the two nodes be denoted i and j. Following standard FE
formulation, the axial strain &,, curvature about x-axis «, and
curvature about y-axis «, at any location within the frame
element may be expressed as

| = 3]
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in which [B] is the strain-displacement matrix, and [0;] and
[0;] are the nodal dof at nodes i and j. From [B], which defines
the strain-displacement relation, the stiffness matrix [K] of the
frame element may be derived as

K] = juaﬁs} 8] dI

in which the section stiffness matrix [S] is as given by
Equations 6 and 7, and the integration is to be performed over
the length of the frame element. For short frame elements,
within which the variations of &, x, and i, should be small,
the section stiffness matrix [S] may be assumed to be constant
within each element. The above formulation is for three-
dimensional space frame analysis, which requires a 12 X 12
stiffness matrix. For two-dimensional plane frame analysis, the
out-of-plane dof may simply be ignored to arrive at a 6 X 6
stiffness matrix.

4.2. Numerical procedures

The procedure to form the stiffness matrix of the flexural
member, which has been taken as an assembly of short
segments, is the same as in normal frame analysis. For the
non-linear analysis, an iterative procedure is used with the
loads applied in small increments. At each load increment step,
direct iteration using the secant stiffness of the structure is
employed. With this method, the loads may be applied either
directly in the form of prescribed forces or indirectly in the
form of prescribed displacements at the loading points. To
generate the load-deflection curve of a beam subjected to a
single PL at mid-span or two PLs at equal distance from mid-
span, prescribed displacements are applied at the loading
points and the reactions at the loading points are taken as the
applied loads. To generate the load-deflection curve of a beam
subject to a UDL, prescribed forces are applied and the
deflection at mid-span is taken as the deflection of the beam.

4.3. Comparison with FE analysis results

In part 1 of this paper (Ng et al., 2010), a number of beams
were analysed by the FE method. All the beams have a uniform
cross-section of 300 mm breadth by 600 mm depth and are
simply supported over a span of 6000 mm. The beams are
identical except for the tension reinforcement ratio p;, which
varies between 0-5 and 2-0%. Nominal shear reinforcement of
0-4% was provided in each beam. The material properties and
other details of the beams have been presented in part 1. For
each beam, two loading cases, that is PL at mid-span and a
UDL over the entire span, were considered in the FE analysis.

The proposed member analysis method with tension stiffening
taken into account is here applied to the above-mentioned
beams to demonstrate the accuracy of the proposed method. In
member analysis, the beam is divided into 20 frame elements,
each of 300 mm length. When a PL is applied, the tensile stress
block with oy = 0-4 and a, = 18 is used, while for a UDL, the
tensile stress block with a; = 0-5 and a, = 14 is used. The
member analysis results are found to agree closely with the FE
analysis results. For illustration, the load-deflection curves of
the beams with p; = 1-0% obtained by member analysis and by
FE analysis are presented in Figure 5.
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The opportunity is taken here to conduct a parametric study of
the effects of adopting different values of a; and a, on the
load - deflection curves of the beams. In the parametric study,
three values of a; (0-3, 0-4 and 0-5) and three values of a, (10,
15 and 20) are considered, leading to a total of nine
combinations of a; and a, values for the member analysis. For
detailed evaluation, the member analysis and FE analysis
results are compared in Tables 3 and 4. Since the discrepancy
between the member analysis and FE analysis results varies
along the load-deflection curve, the overall discrepancy is
measured in terms of the maximum absolute error in secant
stiffness (the load to deflection ratio) within the range from
0-90% of the peak load. From the comparison, it is seen that
under a PL, the maximum absolute error in secant stiffness
would be smallest and equal to 7-1% when a; = 0-3 and

a, = 15, whereas under a UDL, the maximum absolute error in
secant stiffness would be smallest and equal to 8:5% when

a; = 0-4 and a, = 10. These optimum values of a; and a,
perform better than the original values derived by combining
the stress block at pre-crack state and the stress block at post-
crack state together to form a single combined stress block
because the combined stress block tends to overestimate the
tensile stress when the beam has just cracked.

Having evaluated the effects of adopting different values of a;
and a, on the accuracy of the member analysis, it is proposed,
for improved performance, to fine-tune the o values for a PL as
a; = 0-3 and a, = 15 and for a UDL as a; = 0-4 and a, = 10.
Moreover, since the use of different stress blocks for different
types of loading is inconvenient, it is proposed to unify the two

300

250

200

Total load: kN
@
o

100 -

—o— Finite-element analysis
—— Member analysis (o, = 0-4, a, = 18)

50 |

1 1 1 J

0 5 10 15 20
Mid-span deflection: mm

(a)

Total load: kN

—o— Finite-element analysis
—a— Member analysis (a; = 0'5, a, = 14)

0 5 10 15 20 25
Mid-span deflection: mm

(b)

Figure 5. Comparison of member analysis and finite-element
analysis results for a beam subjected to: (a) PL (p. = 1-:0%);

(b) UDL (p, = 1-0%)
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stress blocks for a PL and a UDL by setting a; = 0-4 and

a, = 10 for all types of loading. With this single set of a
values adopted regardless of the type of loading, the maximum
absolute error in secant stiffness would be smaller than 9%
under any loading case. The root mean square (RMS) errors in
secant stiffness within the range 0-90% of the peak load were
also evaluated. It was found that with the above set of a values
adopted regardless of the type of loading, the maximum RMS
error in secant stiffness would be smaller than 5% under any
loading case.

4.4. Comparison with experimental results of Clark and
Speirs (1978)

In order to verify the applicability and accuracy of the fine-
tuned and unified tensile stress block, the beams tested by
Clark and Speirs (1978) were analysed and the theoretical
moment-curvature and load -deflection curves so obtained
compared with the experimental results. Four of the beams
tested (beams 1 to 4) were selected for the analysis. All four
beams have a uniform cross-section of approximately 200 mm
breadth by 410 mm depth and an effective depth of about 370
mm. They were each simply supported with a span of 3200 mm
and subjected to two PLs applied at 600 mm from the mid-span
location. The material properties and details of the beams are
given in Table 5. Apart from minor differences in material
properties and dimensions, the major difference between the
four beams is that beams 1, 2, 3 and 4 have tension
reinforcement ratios of 1-91, 1:28, 0-79 and 0-449%,
respectively. The theoretical and experimental results are
compared for beams 1 and 2 in Figure 6 and for beams 3 and 4
in Figure 7. From Figures 6(a) and 7(a), it is evident that the
theoretical results for the moment-curvature curves agree very
closely with the experimental results. Likewise, from Figures
6(b) and 7(b), it is evident that the theoretical results for the
load - deflection curves fit the experimental results well. Hence,
the proposed analysis methods using the fine-tuned and
unified stress block yield accurate results within the range of
tension reinforcement ratios covered.

4.5. Comparison with experimental results of Espion and
Halleux (1988)

To provide further evidence of the applicability of the fine-
tuned and unified tensile stress block, the beams tested by
Espion and Halleux (1988) were analysed and the theoretical
moment-curvature and load-deflection curves so obtained
compared with experimental results. Beams NO and N2, both
having a uniform cross-section of 150 mm breadth by 280 mm
depth, were selected for the analysis. In each beam, tension
reinforcement was provided at a depth of 251 mm and
compression reinforcement was provided at a depth of 34 mm.
Both beams were simply supported with a span of 3000 mm
and subjected to two PLs at the third points. The material
properties and details of the beams are presented in Table 6,
which shows that the two beams were provided with the same
steel reinforcement, giving a tension reinforcement ratio of
1-23% and a compression reinforcement ratio of 1-23%. The
two beams are identical except that beam NO was not subjected
to axial loading whereas beam N2 was subjected to a constant
axial compression load of 200 kN. Figure 8 shows a
comparison of the theoretical and experimental results for the
moment-curvature and load -deflection curves of the two
beams. The figure shows that, for beam NO, the theoretical
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a) a Maximum absolute error in secant stiffness: %
pe = 0-5% o= 1-0% pe = 1-5% pe = 2:0%
03 10 12-3 7-3 66 5.7
15 7-1 4-6 71 61
20 4.8 39 77 65
0-4 10 8:7 34 67 5-8
15 6 46 77 63
20 73 4.9 8:2 66
05 10 7-9 7-4 71 61
15 12-0 83 80 67
20 13-5 9-0 9-0 72

Table 3. Comparison with FE analysis results (PL case). The largest value of maximum absolute

error for each set of a values is shown in bold face

a) as Maximum absolute error in secant stiffness: %
pr=05% pr=1:0% pr=15% pr=2:0%
03 10 7-6 60 9-5 80
15 4-4 60 9-5 7-4
20 39 60 9-4 73
0-4 10 4-4 4-4 8-5 52
15 8-8 59 84 80
20 11-4 68 84 4.7
05 10 12-1 10-3 81 35
15 17-6 12:2 81 4-4
20 20-2 12.7 81 50

Table 4. Comparison with FE analysis results (UDL case). The largest value of maximum absolute

error for each set of a values is shown in bold face

Beam | Beam 2 Beam 3 Beam 4

Concrete initial elastic modulus E..: GPa
Concrete cylinder strength f.: MPa
Concrete tensile strength f: MPa

Steel initial elastic modulus Es,: GPa

Breadth b: mm

Overall depth h: mm

Depth to tension reinforcement d: mm
Depth to compression reinforcement d’: mm
Area of tension reinforcement Ag: mm?
Area of compression reinforcement Ag: mm?

265 280 303 25-0

338 333 381 289

21 21 31 22
210 210 210 210
203 203 204 204
410 408 407 409
380 363 373 379

37 20 33 35
1472 943 603 339
402 101 101 101

Table 5. Material properties and details of beams tested by Clark and Speirs (1978)

curves are almost identical to the experimental results.
Moreover, although the possible effects of axial load have not
been considered in the development of the proposed tensile
stress block, for beam N2 subjected to axial load, the
theoretical curves also agree very well with the experimental
results. This indicates that the tensile stress block might also be
applicable to flexural members subjected to axial loads.
However, the evidence is too limited to draw any firm
conclusions at this stage. Further research on tensile stress
blocks in the presence of an axial load is recommended.

5. MULTI-LEVEL ANALYSIS
The above method may be extended to analysis of a complete

frame structure using a multi-level approach of first dividing
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the frame structure into members, then analysing each
member-by-member analysis in which the member is
subdivided into many short segments, and finall