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Tension stiffening in concrete beams. Part 1: FE analysis

P. L. Ng PhD, J. Y. K. Lam PhD and A. K. H. Kwan PhD, MICE, CEng

Although after cracking, concrete has negligible tension

capacity, the intact concrete between cracks within the

tension zone of a reinforced concrete beam can still

develop significant tensile stresses to contribute to the

flexural stiffness of the concrete beam. Such a tension

stiffening effect in a flexural member is not quite the

same as that in an axial member because the tensile

stresses in a cracked flexural member are induced not

only by the steel reinforcement–concrete bond but also

by the curvature of the flexural member. In this study,

the tensile stresses developed in cracked concrete beams

are analysed using a finite-element (FE) model that takes

into account the non-linear biaxial behaviour of the

concrete and the non-linear bond stress–slip behaviour

of the steel reinforcement–concrete interface. Based on

the numerical results so obtained, a tensile stress block

is proposed for section analysis of the moment–

curvature curves of reinforced concrete beams at both

the uncracked and cracked states. It will be shown in

part 2 of this paper that the tensile stress block may also

be used for member analysis of the load–deflection

curves of concrete beams without resorting to FE

analysis.

1. INTRODUCTION

In a reinforced concrete member, the stiffness of the concrete

decreases after cracking but does not drop to zero because the

uncracked concrete between adjacent cracks is still able to

carry some tensile stresses to contribute to the overall stiffness

of the member. This phenomenon is called tension stiffening. It

occurs in both axial and flexural members. In axial members,

such as struts subjected to uniaxial loads and panels subjected

to biaxial loads, tensile stresses are induced in the concrete

between cracks mainly by the stress transfer through the steel

reinforcement–concrete bond. Extensive studies on tension

stiffening in axial members have been carried out, including

experimental investigations (Jiang et al., 1984; Wollrab et al.,

1996), theoretical modelling (Floegl and Mang, 1982; Gupta

and Maestrini, 1989; Wu et al., 1991; Choi and Cheung, 1996)

and the development of tensile stress blocks (Link et al., 1989;

Gupta and Maestrini, 1990; Massicotte et al., 1990; Fields and

Bischoff, 2004).

In flexural members, tensile stresses are induced in the

concrete between cracks not only by the stress transfer through

the steel reinforcement–concrete bond but also by the shearing

action of the curvature of the flexural member. In other words,

there are two mechanisms that induce tensile stresses in the

concrete of a cracked flexural member. The first mechanism, by

which the stress transfer through the bond induces tensile

stresses, is similar to that in a cracked axial member, as

depicted in Figure 1(a). The second mechanism, by which the

shearing action of the curvature induces tensile stresses, is like

that of a short length of unreinforced concrete beam between

two adjacent cracks subjected to curvature, as depicted in

Figure 1(b) which shows that near the cracks, the plane

sections no longer remain plane after cracking and shear

stresses are developed to pull the uncracked concrete in the

tension zones thereby inducing significant tensile stresses in

the uncracked concrete. Hence, tension stiffening in flexural

members is not the same as that in axial members.

Since the shearing action of curvature mentioned above is not

yet common knowledge, further explanation is given in this

paper. Basically, at locations near the cracks, vertical fibres (i.e.

fibres that are initially vertical) in the tension zones are no

longer perpendicular to horizontal fibres (fibres that are

initially horizontal). Significant shear strains and stresses are

developed at the centroidal axis near the cracks. The shear

stresses pull the tension zones near the cracks so that at a

certain distance away from the cracks, the tension zones

develop tensile stresses as in uncracked sections. This is like the

shear lag near cracked concrete, as was pointed out by Hughes

(see Figure 2 of Hughes (2008)). Alternatively, the action may

be visualised as the development of shear stresses to maintain

equilibrium between the uncracked and cracked sections. At

the uncracked sections, tensile stresses develop due to

curvature of the member, while only negligible tensile stresses

develop at the cracked sections. So, between an uncracked

section and a cracked section, there must be horizontal shear

stresses developed along the centroidal axis to balance the

difference in horizontal tensile forces. Without curvature, as in

an axial member, no such tensile stresses due to curvature

would be developed. That is why the authors have chosen to

call this ‘the shearing action of curvature’.

There have been relatively few reported studies on the tension

stiffening in flexural members compared with that in axial

members. Two alternative methods of accounting for the

tension stiffening in flexural members have been developed.

The first method aims at a direct evaluation of moment–

curvature curves, while the second attempts the development
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of tensile stress blocks. For the first method, Creazza and Di

Marco (1993) and Polak and Blackwell (1998) developed

theoretical models to evaluate moment–curvature curves.

Piyasena et al. (2002) carried out finite-element (FE) analysis of

the variation of curvature between adjacent cracks, from which

the moment–mean curvature curve could be derived. However,

despite the simplifying assumptions made, these theoretical

models are far too complicated for practical applications. For

this reason, design codes CEB-FIP Model Code 1990 (CEB,

1993) and ACI building code (ACI, 2008) instead give empirical

formulas for a quick and approximate evaluation of the

moment–curvature curves.

For the second method, several tensile stress blocks have been

developed. As full-field measurement of the tensile stresses in a

cracked concrete beam is extremely difficult, tensile stress

blocks are generally developed by proposing a certain tensile

stress block with unknown parameters and then determining

the unknown parameters by curve-fitting of the theoretical

moment–curvature or load–deflection curves with

experimental results. Gilbert and Warner (1978) considered

three alternative tensile stress blocks with different descending

branches. Prakhya and Morley (1990) adopted a tensile stress

block comprising a linear ascending branch and a non-linear

descending branch, while Kaklauskas and Ghaboussi (2001)

adopted a tensile stress block composed of a linear ascending

branch and a linear descending branch. Scott (1983) and Beeby

et al. (2005) proposed tensile stress blocks each comprising

multi-linear ascending and descending branches. Recently,

Torres et al. (2004) adopted the strategy of determining the

unknown parameters by curve-fitting with empirical moment–

curvature curves given in a design code. The tensile stress

block given in BS 8110 (BSI, 1985) is in the form of a linear

ascending curve with no descending branch at all. It is clear

then that all these tensile stress blocks differ widely and it is

difficult to judge which is more appropriate.

It should be noted that although the tensile stress block is

normally given in the form of a stress–strain curve, it is not the

same as the tensile stress–strain curve of the concrete material

itself. The tensile stress block has been given in such a form

solely for the purpose that it may be applied at all stress states.

In a cracked concrete beam, the tensile stress induced in the

concrete between two adjacent cracks varies not only with the

depth but also along the beam axis. At a cracked section, the

tensile stress is practically zero while at an uncracked section,

the tensile stress increases with the distance from the nearest

cracked section. Since the cracks are to be smeared in the

structural analysis such that each beam section may be assumed

to have a flexural stiffness changing smoothly with the mean

curvature regardless of the actual positions and spacing of the

cracks, the tensile stress block should be taken as the

distribution of the mean tensile stress within the beam depth.

However, due to the difficulties involved, the tension stress

fields in cracked concrete beams have never been thoroughly

measured; consequently, there is still insufficient experimental

data for evaluating the distribution of the mean tensile stress

within the beam depth. To overcome this difficulty, the present

study attempts to evaluate the tension stress fields in cracked

concrete beams by FE analysis. Typical reinforced concrete

beams with varying structural parameters have been analysed

and the tension stress fields under different conditions

obtained. This is probably the first time that the actual

distribution of mean tensile stress within a beam depth has

been directly determined.

2. FINITE-ELEMENT ANALYSIS

2.1. Secant stiffness formulation and direct iteration

In order to extend the analysis into the post-crack and post-

peak ranges within which the tangent stiffness can become

undefined or negative, secant stiffness is used in the

formulation of the stiffness matrices. For the non-linear

analysis, an iterative procedure with the loads applied in small

increments is used. At each load increment step, direct iteration

using the secant stiffness of the structure is employed. With

this method, the loads can be applied either directly in the

form of prescribed forces or indirectly in the form of prescribed

displacements at the loading points.

The above formulation and numerical procedures for

developing FE codes have been used since the 1980s (Liauw

and Kwan, 1982). In this particular study, the FE code used is a

tailor-made and refined version for reinforced concrete

members (Ng, 2007). It has been carefully validated before use.

2.2. Modelling of concrete

The concrete is modelled by plane stress elements, which are

simply three-noded triangular constant strain elements. Its

non-linear biaxial stress–strain behaviour is accounted for in

terms of the equivalent uniaxial strains defined by

�e1 ¼ 1

1� v1v2
�1 þ v2�2ð Þ1a

�e2 ¼ 1

1� v1v2
�2 þ v1�1ð Þ1b

where �e1 and �e2 are the equivalent uniaxial strains, �1 and �2
are the principal strains, v1 and v2 are Poisson’s ratios and

Steel reinforcing bar

Concrete

Crack Crack

Centroidal
axis

(a)

(b)

Concrete

Crack Crack

Centroidal
axis

Plane sections
no longer
remain plane

Only horizontal
stresses shown;
length of arrow
indicates magnitude

Figure 1. Tension stiffening in a flexural member: (a) stress
transfer through bond; (b) shearing action of curvature
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subscripts 1 and 2 denote quantities in the respective principal

directions. Each of the principal stresses �1 and �2 is assumed

to be a single variable function of the corresponding

equivalent uniaxial strain. In effect, therefore, the biaxial

stress–strain relation is decomposed into two independent

uniaxial stress–strain relations.

Due to biaxial effects, the tensile and compressive strengths in

the principal directions are not the same as the uniaxial tensile

and compressive strengths. They are determined using the

biaxial strength envelope developed by Kupfer and Gerstle

(1973), which consists of four distinct zones, namely the

tension–tension, tension–compression, compression–

compression and compression–tension zones. To evaluate the

tensile and compressive strengths in the principal directions, it

is necessary first to find out within which zone the biaxial

stress state falls and then locate the point on the strength

envelope that will be intercepted when the biaxial stresses keep

on increasing. The strength values at the intercepting point are

the tensile and compressive strengths in the principal

directions, denoted f tp and fcp respectively.

For any principal direction under tension, the stress–strain

curve follows that of Guo and Zhang (1987), which is given by

�
ftp

¼ 1:2
�
�tp

� �
� 0:2

�
�tp

� �6

for the ascending branch

2a

�
ftp

¼ �
�tp

� �
a

�
�tp

� 1
� �1�7

þ �
�tp

� �" #,

for the descending branch

2b

in which �tp is the strain at peak tensile stress and a is a

dimensionless coefficient equal to 0.312 f 2t ( f t being the

uniaxial tensile strength in MPa). Since the crack tips in

reinforced concrete beams are usually located near the neutral

axis where the tensile stresses are small, the fracture energy of

the crack tips has been neglected in the analysis.

For any principal direction under compression, the stress–

strain curve follows that of Saenz (1964), which is given by

�
f cp

¼ Eco

Ecp

� �
�
�cp

� �,

1þ Eco

Ecp
� 2

� �
�
�cp

� �
þ �

�cp

� �2
" #3

in which Eco is the initial elastic modulus, and Ecp and �cp are

the secant modulus and strain at peak compressive stress,

respectively.

For each principal direction, the principal stress � is obtained

by substituting the corresponding equivalent uniaxial strain as

� into Equation 2 or 3, whichever is applicable. Having

evaluated the principal stresses �1 and �2, the secant

stiffnesses Ec1 and Ec2 are calculated as �1/�e1 and �2/�e2,

respectively. From these secant stiffness values, the constitutive

matrix [D9c] of the concrete in the local coordinate system,

whose coordinate axes are the same as the principal directions,

is derived as

D9c½ � ¼

Ec1

1� v1v2

v2Ec1

1� v1v2
0

v1Ec2

1� v1v2

Ec2

1� v1v2
0

0 0 G

2
6666664

3
77777754

in which G is the shear modulus. Before cracking, the shear

modulus is just taken as the initial elastic shear modulus Go.

After cracking, since the principal directions are the directions

perpendicular and parallel to the cracks formed, the principal

directions become the cracking directions and are then fixed

(i.e. no longer allowed to rotate). As the crack may still be able

to transmit a small amount of shear stress by aggregate

interlock, the shear modulus after cracking is taken as ªGo, in

which ª is a dimensionless shear retention factor depending on

the tensile strain perpendicular to the crack, as given by He

and Kwan (2001). From the above constitutive matrix, the

constitutive matrix [Dc] of the concrete in the global

coordinate system is obtained simply by the usual coordinate

transformation.

2.3. Modelling of steel reinforcement

In order to allow for bond slip between the longitudinal

reinforcing bars and the surrounding concrete, the longitudinal

reinforcement is modelled by discrete bar elements connected

to the concrete through bond elements. The bar elements are

one-dimensional elements possessing only axial stiffness. For

modelling the elastic, plastic and strain hardening behaviour of

the steel, the constitutive model proposed by Mander (1984) is

adopted. Based on this constitutive model, the relation between

the steel stress �s and steel strain �s is given by

�s ¼ Eso�s for �s < fy=Eso5a

�s ¼ fy for fy=Eso , �s < �sh5b

�s ¼ fy þ fu � fy
� �

1� �u � �s
�u � �sh

� �n
" #

for �sh , �s < �u

5c

where Eso is the initial elastic modulus, fy is the yield strength,

fu is the ultimate tensile strength, �sh is the strain at start of

strain hardening, �u is the ultimate strain and n is a

dimensionless parameter depending on the strain-hardening

property of the steel. From the steel stress �s and steel strain

�s, the secant stiffness Es of the steel is calculated as �s/�s.
With this secant stiffness, the stiffness matrix of the bar

element can be obtained in the usual way (ASCE, 1982). On the

other hand, the transverse reinforcement is assumed to be

perfectly bonded to the concrete and modelled as smeared

reinforcement (ASCE, 1982).
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2.4. Modelling of bond

The bond between the longitudinal reinforcement and concrete

is modelled using a four-noded bond element similar to the

interface element developed by Goodman et al. (1968). Each

bond element is assumed to have an infinitesimally small

thickness. It has two pairs of duplicated nodes. The two nodes

in each pair of duplicated nodes have the same coordinates but

different degrees of freedom. Between them, one is connected

to the steel reinforcement while the other is connected to the

concrete. The difference in displacement of the duplicated

nodes in the direction of the steel–concrete interface is taken

as the bond slip.

In this study, the bond stress–slip relation recommended by

CEB-FIP Model Code 1990 (CEB, 1993) is employed. It is given

by

�b ¼ �p
sb
s1

� �0�4
for sb < s16a

�b ¼ �p for s1 , sb < s26b

�b ¼ sb � s2
s3 � s2

� �
�f � �pð Þ þ �p

for s2 , sb < s3

6c

�b ¼ �f for s3 , sb6d

in which �b is the bond stress, �p is the peak bond stress, �f is
the residual bond stress, sb is the bond slip, and s1, s2 and s3
are the slip at the start of peak bond stress, slip at the end of

peak bond stress and slip at the start of residual bond stress,

respectively.

Initially, before bond slip occurs, the secant bond stiffness kb is

taken as 200 N/mm3, as recommended by CEB-FIP Model Code

1990. After bond slip has occurred, the bond stress �b is

determined by substituting the bond slip sb evaluated from the

nodal displacements of the bond element into the above

equations and the secant bond stiffness kb is calculated as

�b/sb. Having obtained the secant bond stiffness, the stiffness

matrix of the bond element in the local coordinate system may

then be derived following the procedures developed by

Goodman et al. (1968) with the area of the interface taken as

the length of the bond element multiplied by the total

perimeter of the steel reinforcing bars. Finally, the stiffness

matrix of the bond element in the global coordinate system is

obtained by the usual coordinate transformation.

3. ANALYSIS OF REINFORCED CONCRETE BEAMS

3.1. Beams analysed

A series of typical simply supported reinforced concrete beams

having different amounts of tension reinforcement and

subjected to either a single point load at mid-span or a

uniformly distributed load over the entire span were analysed.

All the beams analysed have a span of 6000 mm and a uniform

cross-section of 300 mm breadth by 600 mm depth. The

effective depth, that is the depth from the top of beam section

to the centreline of the tension reinforcement, is 550 mm. In

each beam, the tension reinforcement is provided in the form

of two main bars. Figure 2(a) shows the general layout of the

beams. In order to study the effects of the amount of tension

reinforcement, the tension reinforcement ratio rt was varied
(0.5, 1.0, 1.5 and 2.0%). The shear reinforcement ratio was

fixed at 0.4%. In total, eight reinforced concrete beams were

analysed.

The properties of the beam materials are presented in Table 1.

For the steel reinforcement–concrete bond, the material

parameters pertinent to deformed bars embedded in unconfined

concrete recommended by CEB-FIP Model Code 1990 were

adopted. Following the model code, the peak bond stress �p
and residual bond stress �f are taken as 2.0(f c)

0:5 and 0.3(f c)
0:5,

respectively.

The beams were discretised into 12 layers of FEs, as depicted

by the mesh shown in Figure 2(b). During FE analysis, loading

was applied in small increments to each beam as prescribed

displacement when the beam was subjected to a single point

load at mid-span or as prescribed force when the beam was

6000

550600

(a)

(b)

Figure 2. (a) General layout (dimensions in millimetres) and
(b) finite-element mesh

Concrete

Uniaxial tensile strength f t: MPa 3.0
Uniaxial compressive strength f c: MPa 30.0
Initial elastic modulus Eco: GPa 30.0
Poisson’s ratio � 0.2

Steel reinforcement

Yield strength fy: MPa 460
Ultimate tensile strength fu: MPa 552
Initial elastic modulus Eso: GPa 200
Tensile strain at start of strain hardening �sh: % 1
Ultimate tensile strain �u: % 10

Steel reinforcement–concrete bond

Peak bond stress �p: MPa 11.0
Residual bond stress �f : MPa 1.6
Slip at start of peak bond stress s1: mm 0.6
Slip at end of peak bond stress s2: mm 0.6
Slip at start of residual bond stress s3: mm 1.0

Table 1. Material properties
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subjected to a uniformly distributed load. At each load

increment step, direct iteration was employed. The direct

iteration at each load increment step was repeated until the

change in secant modulus in every FE was less than 2.0%. In

the analysis of each beam, about 100 load increment steps

were applied until the tension reinforcement yielded and the

maximum tensile strain reached 2500 ��.

3.2. Analysis results

The crack pattern and stress distributions in a typical

reinforced concrete beam (rt ¼ 0.5% and subjected to a point

load at mid-span) obtained by the FE analysis are presented in

Figure 3. The first crack forms at mid-span where the bending

moment is largest. As the applied load increases, further cracks

appear at regular spacings from previous cracks formed, as

shown in Figure 3(a) for the crack pattern when the applied

load is equal to 45% of the peak load.

From Figures 3(b) and 3(c), which show the stresses induced in

the concrete and the tension reinforcement, it is evident that

the concrete and steel stresses vary in the longitudinal

direction between two adjacent cracks. Basically, at a cracked

section, the tensile stress in the concrete first increases with

distance from the neutral axis and then decreases to a

negligible value; at an uncracked section, the tensile stress in

the concrete increases with distance from the neutral axis and

then remains at a certain significant value. On the other hand,

the tensile stress in the tension reinforcement always reaches a

local maximum value at a cracked section and decreases to a

local minimum value at about halfway between two adjacent

cracks.

Figure 3(d), which shows the bond stress between the tension

reinforcement and the concrete, indicates that the bond stress

exhibits sharp changes at cracks. At the two opposite sides of a

crack, the bond stresses are in opposite directions. At the left-

hand side of a crack, the bond slip of the reinforcement and

the bond stress acting on the concrete are to the right, but at

the right-hand side, the bond slip of the reinforcement and the

bond stress acting on the concrete are to the left. Consequently,

the bond between the reinforcement and the uncracked

concrete is always transferring tensile force to the concrete,

leading to a gradual increase in the tensile stress of the

concrete with distance from the nearest crack.

The tensile force transferred from the reinforcement through

the bond to the concrete (calculated by adding the bond forces

together) is illustrated and compared with the actual tensile

force in the tension zone of the concrete for the beam with

rt ¼ 0.5% and subjected to either a point load or a uniformly

distributed load in Figure 4. The tensile force transferred from

the reinforcement through the bond to the concrete accounts

for about 45–55% of the actual tensile force induced in the

tension zone of the concrete. Hence, as explained earlier and

illustrated in Figure 1, curvature of the beam should induce a

significant tensile force in the tension zone of the concrete.

The load–deflection curves of the beams analysed are plotted

in Figure 5. For each beam, at an applied load smaller than

Applied load

A

A

B

B

C

C

(a)

(b)

(c)

(d)

A–A B  B– C  C–

Tensile
stress

Crack locations

Bond stress
Bond slip
to the right

Bond slip
to the left Crack locations

Figure 3. (a) Crack pattern (rt ¼ 0.5%, applied load ¼ 45% of
peak load); (b) stress distribution in concrete; (c) tensile
stress in reinforcement; (d) bond stress

(a)

(b)

A B

0

195 kN

Tensile force
induced in concrete

Tensile force
transferred by bond87 kN

A B

Crack spacing (�0·8 times beam depth)

A B

0

79 kN

153 kN

Tensile force
induced in concrete

Tensile force
transferred

by bond

A B

Crack spacing (�0·6 times beam depth)

C

C

C

C

Figure 4. Tensile force transferred through the bond and
tensile force induced in concrete: (a) beam subjected to point
load at mid-span (rt ¼ 0.5%); (b) beam subjected to uniformly
distributed load (rt ¼ 0.5%)
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about 20% of the peak load, the load–deflection curve is

linear. As the applied load increases and when the beam

eventually cracks, the gradient of the load–deflection curve

decreases. However, upon further increase in applied load,

when no more new cracks are formed, the gradient of the curve

becomes constant until the beam starts to fail because of

yielding of the tension reinforcement and crushing of concrete.

At the post-peak state, all the beams exhibit ductile behaviour

because they are under-reinforced.

4. DERIVATION OF TENSILE STRESS BLOCK

4.1. Tension stress field

The general shapes of the tension stress fields within cracked

and uncracked sections were shown in Figure 3. For simply a

presentation of numerical results, the tensile stress in the

concrete obtained directly by FE analysis can be plotted

against depth. However, the variation of the tensile stress in

concrete with depth changes dramatically with the stress state.

To avoid dealing with many different tensile stress–depth

curves at different stress states, it is better to plot the tensile

stress against the ‘theoretical tensile strain’. The theoretical

tensile strain is not the true tensile strain of the concrete, but is

the tensile strain value evaluated during structural analysis

(more specifically, section analysis for deriving the moment–

curvature curve) with the cracks smeared so that the flexural

stiffness of the beam section changes smoothly with the mean

curvature.

In theory, the theoretical tensile strain may be evaluated

simply as �z, where � is the mean curvature and z is the depth

from the neutral axis. However, after cracking, the curvature

fluctuates between adjacent cracks. To evaluate the mean

curvature, the local fluctuation of the curvature has to be

smoothed. Here, the mean curvature at a beam section is

evaluated from FE analysis results by considering a short

length of the beam starting and ending at one beam depth to

each side of the beam section. The deflection of this short

length of beam is fitted with a cubic polynomial curve and

then the polynomial curve is differentiated twice with respect

to the length to obtain the smoothened curvature value as the

mean curvature at the beam section. Having obtained the mean

curvature at each beam section, the tensile stress in the

concrete may then be plotted against the theoretical tensile

strain. As expected, the variation of tensile stress with

theoretical tensile strain still changes with the stress state, but

to a much lesser extent.

Also as expected, the variation of tensile stress with theoretical

tensile strain is quite different at different sections, depending

on whether the section is cracked or uncracked and the

distance from the nearest cracked section. As the cracks are to

be smeared in the structural analysis, it is the ‘mean tensile

stress’ that is of greater interest. The mean tensile stress is the

smoothed tensile stress in the concrete with local fluctuation in

the longitudinal direction removed. Here, the variation of the

mean tensile stress with theoretical tensile strain at a beam

section is obtained from FE analysis by considering a short

segment of the cracked beam starting and ending at a half

crack spacing to each side of the beam section. The short

segment has the same length as the crack spacing and is

divided into as many sections as possible. First, the variation of

tensile stress with theoretical tensile strain is plotted for each

section. Then the mean tensile stress at each theoretical tensile

strain level is evaluated as the root-mean-square of the tensile

stress values of the sections at the theoretical tensile strain

level being considered. Root-mean-square is adopted as the

mean because this will result in the same strain energy after

stress smoothing.

The variation of the mean tensile stress at the mid-span section

with the theoretical tensile strain so obtained by the above

method for beams with rt ¼ 0.5% is plotted in Figure 6. The

figure shows that, before cracking (applied load ¼ 15% of peak

load), the mean tensile stress–theoretical tensile strain curve of

each beam is basically a straight line ascending to a certain

peak value not higher than the tensile strength of the concrete.

When the beam has cracked slightly (applied load ¼ 20% of

peak load), the linear ascending branch of the curve reaches a

slightly lower peak value than before and a short descending

branch emerges. When the beam has cracked more extensively

(applied load > 30% of peak load), the ascending branch

becomes non-linear and reaches a peak value approximately

equal to half the tensile strength of concrete while the

descending branch extends to form a tail ending at a fairly

large theoretical tensile strain.

In general, tension stiffening is most significant when the beam

is under the servicing condition, that is when the applied load

is equal to about 30–60% of the peak load. Within this range

of applied load, the mean tensile stress–theoretical tensile

strain curve changes slightly with the stress state. Nevertheless,
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Figure 5. Load–deflection curves: (a) beams subjected to
point load at mid-span; (b) beams subjected to uniformly
distributed load
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the change is not large and, for simplicity, the four curves for

applied loads equal to 30, 40, 50 or 60% of the peak load may

be combined into a single curve for the post-crack state. In this

study, the single curve for the post-crack state was obtained by

arithmetic averaging of the aforementioned four curves. Such

averaging was repeated for the other concrete beams studied

and the curves so obtained are presented in Figure 7.

It is evident from Figure 7 that among the beams with different

rt values under the same type of loading (point load or

uniformly distributed load), the respective curves for the post-

crack state are fairly close to each other. Hence, the tension

reinforcement ratio rt does not appear to have a significant

effect on the variation of mean tensile stress with theoretical

tensile strain in the post-crack state. On the other hand, the

type of loading does seem to have a certain effect: the curves

for beams under a point load have lower peaks and longer tails

and the curves for beams subjected to a uniformly distributed

load have higher peaks and shorter tails.

4.2. Proposed tensile stress block

From the mean tensile stress–theoretical tensile strain curves

obtained by FE analysis, a tensile stress block may be derived.

The numerical procedures for obtaining the mean tensile stress

and theoretical tensile strain (explained in the previous section)

are completely general and should also be applicable to fibre-

reinforced concrete beams and beams subjected to combined

axial load and bending. However, further manipulation is

needed because the mean tensile stress–theoretical tensile

strain curve changes as the concrete cracks or, in other words,

the curve obtained after cracking is not quite the same as that

before cracking. To deal with this phenomenon, the following

strategy is adopted.

Figure 6 shows that before cracking, the mean tensile stress–

theoretical tensile strain curve is just an ascending straight line

reaching the concrete tensile strength. After cracking, the curve

changes to one with a non-linear ascending branch reaching

about half the tensile strength of concrete and a descending

branch with a long tail. The two distinct forms of the curve

before and after cracking are shown schematically in Figure

8(a). During cracking, the form of the curve changes abruptly

without a smooth transition. Hence, if tensile stress blocks are

to be developed for accurate analysis, there must be one for the

pre-crack state and another for the post-crack state. However,

traditional practice has been to adopt one tensile stress block

for both the pre-crack and post-crack states. Furthermore, from

the practical application point of view, it should be more

convenient to use just one tensile stress block in the analysis

regardless of the stress state. Therefore, if possible, it is

preferable to combine the distinct tensile stress blocks into one

that can be applied at both the pre-crack and post-crack states

without causing significant errors.

It is proposed to combine the two distinct tensile stress blocks

shown in Figure 8(a) into the one shown in Figure 8(b). The

proposed combined tensile stress block is in the form of a
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Figure 6. Curves of mean tensile stress plotted against
theoretical tensile strain: (a) beams subjected to point load at
mid-span (rt ¼ 0.5%); (b) beams subjected to uniformly
distributed load (rt ¼ 0.5%)
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multi-linear tensile stress–strain curve. It has a linear

ascending branch and a linear descending branch. In the

ascending branch, the tensile stress increases linearly from zero

to the tensile strength of the concrete f t at a gradient equal to

the initial elastic modulus of the concrete Eco. In the

descending branch, the tensile stress decreases linearly from a

certain tensile stress of f 9t to zero at an ultimate tensile strain

of �tu. The values of f 9t and �tu are expressed in terms of two

dimensionless coefficients, Æ1 and Æ2, as

f 9t ¼ Æ1 ft7a

�tu ¼ Æ2�ct7b

where Æ1 is a coefficient smaller than 1, Æ2 is a coefficient

greater than 1 and �ct is the tensile strain at which the peak

tensile stress occurs (note that �ct ¼ f t/Eco).

The equations for the above proposed tensile stress block are

� ¼ Eco� for � < �ct8a

� ¼ Æ1 ft Æ2�ct � �ð Þ
Æ2�ct � �ctð Þ for �ct , � < Æ2�ct8b

� ¼ 0 for Æ2�ct , �8c

The actual tensile stresses induced in the beam section depend

on the theoretical tensile strains in the beam section, especially

the maximum theoretical tensile strain at the extreme tension

fibre, as shown in Figure 9. If the maximum theoretical tensile

strain is smaller than �ct, then the tensile stress block

representing the tension stress field in the tension zone is a

triangular block. If the maximum theoretical tensile strain is

larger than �ct but smaller than Æ2�ct, then the tensile stress

block representing the tension stress field consists of a

triangular block for the pre-crack tension and a trapezoidal

block for the post-crack tension. Lastly, if the maximum

theoretical tensile strain is larger than Æ2�ct, then the tensile

stress block is a triangular block for the pre-crack tension, a

triangular block for the post-crack tension and a zero stress

block for concrete no longer capable of carrying any tension.

The values of Æ1 and Æ2 may be determined by referring back

to Figure 7. From the curves presented in the figure, it has been

calculated that for beams subjected to a point load, Æ1 ranges

from 0.37 to 0.47 with a mean of 0.41 and Æ2 is 17.2–19.7

with a mean of 18.2; for beams subjected to a uniformly

distributed load, Æ1 is 0.45–0.55 with a mean of 0.51 and Æ2 is

13.0–15.8 with a mean of 14.2. For simplicity, the minor

effects of the reinforcement ratio may be neglected. Hence, for

beams subjected to a point load, Æ1 and Æ2 may be taken as 0.4

and 18, respectively, and for beams subjected to a uniformly

distributed load, Æ1 and Æ2 may be taken as 0.5 and 14,

respectively.

The use of just one tensile stress block for both the pre-crack

and post-crack states would inevitably introduce errors in the

structural analysis, but it is considered that the errors so

introduced should be small. At the pre-crack state, the tensile

stress block is exactly the same as the mean tensile stress–

theoretical tensile strain curve before cracking and thus there

should be no errors introduced. At the post-crack state, the

tensile stress block would overestimate the tensile stresses at

the locations where the theoretical tensile strain is smaller than

�ct but these locations should be quite close to the neutral axis

and thus the errors in the bending moment so introduced

should be small, as will be shown in part 2 of this paper (Lam

et al., 2009).

5. CONCLUSIONS

The tension stress fields in the concrete of reinforced concrete

beams at both the pre-crack and post-crack states have been

analysed using an FE method that takes into account:
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(a) the cracking and non-linear biaxial behaviour of the

concrete

(b) the elastic, plastic and strain-hardening behaviour of the

steel reinforcement

(c) the non-linear bond stress–slip behaviour of the steel

reinforcement–concrete bond.

The results of the FE analysis indicate that, after cracking, the

tensile stress in concrete varies not only with depth but also in

the longitudinal direction between cracks. On the other hand,

the bond between the reinforcement and concrete is always

transferring tensile stresses to the uncracked concrete, leading

to a gradual increase in the tensile stress in the concrete with

distance from the nearest crack. However, the tensile force

induced in the concrete is generally larger than the tensile

force transferred through the bond, indicating that, along with

the stress transfer through the bond, the curvature of the beam

should also induce significant tensile forces in the tension

zones of the uncracked sections.

For the beams analysed, it was found that, in general, before

cracking, the mean tensile stress–theoretical tensile strain

curve is a straight line ascending to the tensile strength of

concrete. After cracking, the curve comprises a non-linear

ascending branch reaching about half the tensile strength and

a descending branch with a long tail. Both the applied load

level and the tension reinforcement ratio have little effect on

the mean tensile stress–theoretical tensile strain curve.

However, the type of loading (point load or uniformly

distributed load) does have an influence. Although in theory,

two distinct tensile stress blocks – one for the pre-crack state

and another for the post-crack state – should be adopted, it is

proposed for convenience in practical applications to combine

the two tensile stress blocks into one that can be applied at all

crack states. Based on the numerical results obtained, a

combined tensile stress block defined in terms of two

parameters, Æ1 and Æ2, which are dependent on the type of

loading, was derived. Its validity and applicability to section

and member analysis will be demonstrated in part 2 of this

paper (Lam et al., 2009).
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