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Abstract 

Electrospinning of fibrous tissue engineering scaffolds has been traditionally conducted using positive voltages. In 

the current study, positive voltage (PV) electrospinning and negative voltage (NV) electrospinning were investigated 

for forming fibrous membranes of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). In both PV-electrospinning 

and NV-electrospinning, the fiber diameter generally increased with increasing needle inner diameter and PHBV 

concentration but decreased with increasing working distance. The use of a conductivity-enhancing surfactant, 

benzyl triethylammonium chloride (BTEAC), significantly reduced PHBV fiber diameters from the micron scale to 

the sub-micron scale. Interestingly, with increasing applied voltage, the fiber diameter increased for PV-

electrospinning but decreased for NV-electrospinning. The PV-electrospun fibrous membranes from solutions 

without BTEAC (PVEfm) and with BTEAC (PVEfm-B) and NV-electrospun membranes from solutions without 

BTEAC (NVEfm) and with BTEAC (NVEfm-B) were characterized in terms of their structure, wettability, thermal 

properties and tensile properties. Both PVEfm and NVEfm exhibited similar water contact angle (~104°) but the 

contact angle of PVEfm-B or NVEfm-B was not measurable. The elongation at break of PVEfm-B or NVEfm-B 

was significantly higher than that of PVEfm or NVEfm. Using NV-electrospinning or a combination of NV- and 

PV-electrospinning may be very useful for developing suitable scaffolds for tissue engineering applications. 
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1. Introduction 

Electrospinning is a simple and versatile technique for fabricating ultrafine fibers. Since its discovery 

several decades ago, electrospinning has been investigated for producing fibrous materials for 

applications in many industries including biomedical engineering [1-2]. To date, a great majority of 

researchers who performed electrospinning studies applied positive voltages (PVs) to the electrospinning 

source (i.e. an electrode immersed into the polymer solution or a clip attached to the metallic spinneret) 

and grounded the fiber collecting device during the fiber formation process, which resulted in the 

formation of positively charged polymer jets and eventually possibly positively charged fibers. Only a 

few researchers tried to conduct electrospinning experiments by applying negative voltages (NVs) to the 

electrospinning source. In 2005, Kalayci et al. noted that “while induction charging using a negative 

charge is known in electrospinning, experimental studies are limited” [3]. In a review article published in 

2007, Greiner and Wendorff pointed out that “electrostatic charging of the fibers plays a major role in 

tissue formation during the deposition on the substrate, but this issue has only been discussed in a few 

papers” [4]. In spite of the awareness of limited studies on NV-electrospinning, NV-electrospinning still 

has not received much attention from researchers. The limited studies on NV-electrospinning are 

summarized in table 1 [3, 5-9]. From this table, it is obvious that: (1) the few researchers mainly focused 

on exploratory studies without realizing the potential biomedical implications of NV-electrospinning, and 

(2) there has been virtually no report on NV-electrospinning of tissue engineering scaffolds. However, in 

the tissue engineering field, NV-electrospinning may have significant implications such as improvement 

of fiber alignment, influences of surfactant, fiber influence on cell behaviour, etc. 

Electrospun aligned fibers are suitable candidates for constructing scaffolds for regenerating different 

types of body tissues such as ligaments [10], nerves [11], skeletal muscles [12], and vascular tissues [13]. 

When a high speed rotating disc was used to collect aligned fibers during electrospinning, residual 

positive charges on electrospun fibers repelled the incoming fibers, thus affecting the degree of fiber 

alignment [14]. Similarly, when a high speed rotating cylinder was used to obtain multilayered structures 

consisting of aligned fibers, fiber alignment at the bottom layer was reliable while fiber alignment at the 
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upper layer worsened, which was believed to be caused by charge repulsion (Tong HW and Wang M, 

unpublished). The use of PV- and NV-electrospinning simultaneously to form aligned fibers may solve 

the fiber alignment problem because the residual negative charges on the NV-electrospun fibers would 

not repel the incoming PV-electrospun fibers. 

Surfactants are commonly used for electrospinning fibers in order to suit one or more of the following 

four purposes: (1) to improve the electrospinnability, (2) to reduce the electrospun fiber diameter 

significantly, (3) to eliminate the formation of beaded fibers, and (4) to form core-shell fibers by emulsion 

electrospinning. Due to different applications, the surfactants used for electrospinning can be cationic [15], 

anionic [16] or non-ionic [17]. These surfactants, which may carry positive or negative charges, could 

have different behaviours when NV-electrospinning is employed instead of the conventional PV-

electrospinning. The use of surfactant for NV-electrospinning may have significant importance in the 

tissue engineering field due to its influence on the characteristics of scaffolds formed, which arise from 

the distinctive process of fiber formation in an electric field under high NV. 

It is well known in the biomaterials field that the polarity and density of electrical charges on biomaterials 

surface play an important role in affecting the behaviour of cells seeded on the biomaterial [18-19]. It was 

also found that charges could be retained on PV-electrospun fibers for relatively long times [7, 20-21]. 

While fibrous scaffolds formed through electrospinning can bear charges and these charges may be 

retained on scaffolds for some time, the PV- and NV-electrospun fibrous scaffolds may have significant 

effects on cell reaction and tissue formation. 

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a natural, biocompatible and biodegradable polymer, 

is a good candidate material for tissue engineering applications. Many researchers have already 

demonstrated the suitability of using PHBV or PHBV-based materials for biomedical applications. Xin et 

al. fabricated PHBV microspheres covalently conjugated with different proteins and showed their 

potential for liver tissue engineering [22]. The use of PHBV for cartilage regeneration was reported by 

Liu et al., who found that PHBV foams seeded with pre-differentiated human adipose-derived stem cells 

were capable of producing neo-cartilage in a heterotopic animal model [23]. Using PV-electrospinning, 
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PHBV has been successfully fabricated into ultrafine fibers having different diameters, morphologies and 

compositions in our previous studies [24-26]. It is of both scientific and technological importance that 

NV-electrospinning of PHBV fibers is investigated. The present study therefore employed both NV-

electrospinning and PV-electrospinning in forming PHBV fibrous membranes and compared properties of 

NV-electrospun PHBV fibrous membranes with those of PV-electrospun PHBV fibrous membranes. The 

results obtained in this study will help develop novel tissue engineering scaffolds employing NV-

electrospinning. 

 

2. Materials and methods 

 

2.1. Materials 

PHBV with a molecular weight of 310,000 and containing 2.9 mol% of 3-hydroxyvalerate was obtained 

from Tianan Biologic Material Ltd., China. The solvent, chloroform (VWR BDH Prolabo, UK), for 

making PHBV polymer solution was of analytical grade. The polymer and solvent were used in the as-

received state without further purification. The electrical conductivity-enhancing surfactant, benzyl 

triethylammonium chloride (BTEAC), was obtained from Fluka, Germany. 

 

2.2. Solution preparation and electrospinning 

To prepare PHBV solutions for electrospinning, PHBV was dissolved in chloroform with heating (50°C) 

and stirring (1000 rpm) for about 30 minutes using a hotplate magnetic stirrer (RET control visc 

IKAMAG®, USA). For some PHBV solutions, to enhance their electroconductivity for electrospining 

and therefore obtain smaller diameter fibers, small amounts of BTEAC (0 to 2 wt%, with respect to the 

mass of PHBV) were dissolved in the PHBV solutions. A traditional electrospinning setup was employed 

for PV-electrospinning [26]. The experimental setup for NV-electrospinning was the same as the PV-

electrospinning setup except that the high positive voltage power supply was replaced by the high 

negative voltage power supply (Gamma High Voltage Research, USA). Because of this change, the 
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direction of the electric field was reversed. Charge rearrangement still occurred but all positions for 

attracting positive charges originally became positions for attracting negative charges, and vice versa. As 

a result, a polymer jet, which may carry negative charges, was initiated. Apart from PHBV fibers, PHBV 

films were made and the wettability and thermal properties of the PHBV films were compared with that 

of the PHBV fibers. The PHBV films were prepared by the solvent-casting method. Briefly, 3 mL of 

PHBV solution with a concentration of 15 %w/v was transferred to a Petri dish and the dish was gently 

shaken in order to obtain a homogeneous layer of PHBV solution on the dish. After evaporation of 

chloroform, a flat solvent-cast film was obtained. 

 

2.3. Diameter of the electrospun fibers 

To investigate the influence of different electrospinning parameters on fiber diameter, using PV or NV, 

the PHBV fibers were electrospun with different polymer solution concentrations (from 5 to 25 %w/v), 

solution feeding rates (from 1 to 9 ml/h), needle inner diameters (from 0.4 to 1.2 mm), working distances 

(from 5 to 30 cm), applied voltages (from 5 to 35 kV for PV-electrospinning; from -5 to -35 kV for NV-

electrospinning), and BTEAC contents (from 0 to 2 wt%, with respect to the mass of PHBV). The 

diameter of the PV- and NV-electrospun PHBV fibers were then investigated systematically using a 

scanning electron microscope (SEM, Stereoscan 440, UK). For determining the diameters and diameter 

distributions of fibers electrospun under different conditions, each SEM micrograph was analysed using 

an image analysis program (UTHSCSA Image Tool). For each type of fibers, the fiber diameter was 

measured at 100 different points. 

 

2.4. Fibrous membranes for comparative study 

For the comparative study, four groups of PHBV fibrous membranes were made: (1) PV-electrospun 

fibrous membranes from PHBV solutions without BTEAC (designated as “PVEfm”), (2) PV-electrospun 

fibrous membranes from PHBV solutions with BTEAC (designated as “PVEfm-B”), (3) NV-electrospun 

fibrous membranes from PHBV solutions without BTEAC (designated as “NVEfm”), (4) NV-electrospun 
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fibrous membranes from PHBV solutions with BTEAC (designated as “NVEfm-B”). To fabricate these 

four groups of membranes, the PHBV solution concentration was fixed at 15 %w/v while the 

electrospinning processing parameters were kept constant as follows: (a) working distance = 15 cm, (b) 

solution feeding rate = 1 ml/h, (c) needle inner diameter = 0.5 mm, and (d) applied voltage = ±15 kV. The 

BTEAC content was 2 wt% for the formation of PVEfm-B and NVEfm-B. Each of these four groups of 

fibrous membranes was subjected to structural analysis by Fourier transform infrared (FTIR) 

spectroscopy, wettability evaluation by water contact angle measurement, thermal analysis by differential 

scanning calorimetry (DSC), and tensile testing. 

 

2.4.1. Structure 

FTIR spectroscopic analysis of the fibrous membranes was conducted using an FTIR equipment 

(Spectrum BX FTIR spectrometer from Perkin-Elmer, USA) over a range of 1000 – 2000 cm−1 at a 

resolution of 2 cm−1. 

 

2.4.2. Wettability 

The wettability of fibrous membranes was studied using a contact angle measuring machine (SL200B, 

Shanghai Solon Tech Inc Ltd, China). The contact angles of PHBV solvent-cast films were also 

determined. Each specimen was first attached onto the holder of the contact angle measuring machine. A 

drop of distilled water (0.4 µL) was then dropped onto the specimen surface. The contact angle of the 

water drop on the specimen surface was determined at room temperature following a standardized 

procedure and using a proprietary software. Three measurements were taken at different locations of the 

same specimen and the average value was obtained. The contact angle was expressed as the mean ± 

standard deviation. 

 

2.4.3. Thermal properties 
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DSC thermograms were obtained using a differential scanning calorimeter (Pyris 6 DSC from Perkin-

Elmer, USA). Specimens of the four groups of fibrous membranes and PHBV solvent-cast films were 

sealed in aluminium pans and weights of approximately 3 mg were used. An empty pan was used as 

reference. All experiments were conducted at a heating rate of 10°C/min from 4 to 200°C. Melting 

temperatures were determined from the thermograms. The enthalpy of fusion, ∆Hf, was also measured by 

DSC. While the heat of fusion value for 100% crystalline PHBV, ∆H0,PHBV, was 146 J/g [27],  the 

apparent degree of crystallinity, Xc, of PHBV fibers or films was calculated using the following equation: 

PHBV

f
c H

H
X

,0


          (1) 

 

2.4.4. Tensile properties 

Mechanical evaluation of fibrous membranes was performed by conducting tensile tests. The thickness of 

each fibrous membrane was measured using a digital micrometer (Mitutoyo, Japan). The tensile testing 

was performed using a tabletop Instron tester (Model 5848, Instron Inc., USA) with a load cell of 10 N. A 

cross-head speed of 2 mm/min was used for all tensile tests. All fibrous membranes were cut into 

rectangular strips (530 mm) and the strips were tested to the point of tensile failure. The machine-

recorded data was used to construct tensile stress-strain curves of the specimens. The ultimate tensile 

strength (σUTS), Young’s modulus (E) and elongation at break (ε) were determined from three independent 

strips obtained from each of the four above-mentioned groups of electrospun fibrous membranes. The 

values of these properties were expressed as the mean ± standard deviation. 

 

2.4.5. Statistical analysis 

All quantitative data were expressed as mean ± standard deviation. Statistical analyses were performed 

using Student’s t test. A value of p < 0.05 was considered to be statistically significant and p < 0.01 

highly significant. 
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3. Results and discussion 

In normal description, when the voltage changes from a less negative value (e.g. -15 kV) to a more 

negative value (e.g. -20 kV), the word “decrease” is used to describe the change. However, in the current 

study, the electric field strength for the applied voltage rather than the numerical value (e.g. -15 kV) was 

considered. Therefore, in this article, when the applied voltage changes from -15 kV to -20 kV, it is stated 

that the voltage “increases” from -15 kV to -20 kV. 

 

3.1. Effect of needle inner diameter 

To study the effect of needle inner diameter on PV-electrospun PHBV fibers, electrospinning parameters 

except the needle inner diameter were fixed as follow: (1) applied voltage = 15 kV, (2) solution feeding 

rate = 5 ml/h, (3) working distance = 15 cm, (4) concentration of PHBV solution = 8 %w/v. The effect of 

needle inner diameter on NV-electrospun PHBV fibers was studied similarly except that the applied 

voltage was -15 kV. Figure 1(A-B) and figure 1(C-D) display SEM micrographs of PV- and NV-

electrospun PHBV fibers obtained using different needle diameters, respectively. No matter PV or NV 

was used, ultrafine PHBV fibers without beads could only be electrospun from a needle with inner 

diameter of 0.7 mm or below, provided that the polymer solution concentration was optimized while the 

polymer with suitable molecular weight was used. When the needle inner diameter was above 0.7 mm, 

clogging occurred at the needle tip in a very short period time before sufficient fibers could be collected. 

The average diameter of the electrospun PHBV fibers generally increased with increasing needle inner 

diameter, as shown in figure 1(E). This result is the same as those obtained by a few research groups on 

PV-electrospinning of different polymers [28]. Larger needle diameter would result in the formation of 

larger Taylor cone at the start of electrospinning, which facilitated larger initial polymer jet and hence a 

larger resulting fiber. It can also been seen in figure 1(E) that when the inner diameter of the needle was 

small (e.g. 0.4 mm), PV-electrospinning was preferred for the formation of small-diameter PHBV fibers. 

However, when the inner diameter of the needle was large (e.g. 0.7 mm), it was better to employ NV-

electrospinning for forming small-diameter PHBV fibers. This result demonstrated that the PHBV fibers 
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obtained from the two different techniques (i.e. PV-electrospinning and NV-electrospinning) may exhibit 

different fiber diameters without changing the needle inner diameter and other processing parameters, 

even though the effect of technique variation on fiber diameter is not as significant as that of the needle 

inner diameter. No matter PV or NV is used, a needle with diameter of 0.8 mm or larger is not 

recommended for the electrospinning of PHBV because the large needle causes significant exposure of 

the solution to the air during electrospinning. As a result, clogging at the tip of the needle can occur easily 

and only an insufficient amount of fibers can be electrospun before the needle is blocked by solidified 

polymer. 

 

3.2. Effect of solution feeding rate 

To study the effect of solution feeding rate, electrospinning took place at a voltage of 15 kV (or -15 kV 

for NV-electrospinning), a needle inner diameter of 0.4 mm and a working distance of 15 cm by using 8 

%w/v PHBV solution. The only parameter that was changed was the solution feeding rate. In both 

situations (i.e. PV- and NV-electrospinning), the fiber morphologies were similar when the solution 

feeding rate was varied between 1 and 7 ml/h, as shown in figure 2(A-B) and figure 2(C-D). The 

relationship between solution feeding rate and the average diameter of the PHBV fibers was plotted and is 

shown in figure 2(E). The diameters of the beaded fibers in SEM micrographs were not considered in 

constructing this plot. As could be seen from figure 2(E), the diameter of the fibers electrospun from the 8 

%w/v PHBV solution did not change significantly with the solution feeding rate even though one can 

argue that the PHBV fiber diameter slightly increased with increasing solution feeding rate during NV-

electrospinning. The average diameter of the electrospun PHBV fibers was about 1.4 μm as the solution 

feeding rate was varied from 1 to 7 ml/h. Although Tan et al. [29] and Cui et al. [30] did not investigate 

the solution feeding rate effect for NV-electrospinning, they also observed that the fiber diameter was not 

significantly affected by varying the solution feeding rate for PV-electrospinning. These results indicate 

that the cross-section of the initiating jet was not affected by the solution feeding rate significantly. 

However, beaded fibers were formed when the solution feeding rate was increased to 9 ml/h. 
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3.3. Effect of applied voltage  

To study the effects of applied voltage, parameters except applied voltage were fixed as follows: (1) 

working distance = 20 cm, (2) solution feeding rate = 5 ml/h, (3) needle inner diameter = 0.8 mm, (4) 

PHBV solution concentration = 8 %w/v. The morphologies of the PV- and NV-electrospun PHBV fibers 

at different applied voltages are shown in figure 3(A-B) and figure 3(C-D), respectively. When a PV-

electrospinning setup was used, higher voltage facilitated the formation of larger PHBV fibers [figure 

3(E)]. However, the fiber diameter slightly decreased with increasing voltage when NV-electrospinning 

was employed [figure 3(E)]. This could be explained by the presence of negatively charged groups in the 

electrospun polymer jet consisting of both polymer (i.e. PHBV) molecules and solvent (i.e. chloroform) 

molecules. The negatively charged groups could partly neutralize the positively charged polymer jet 

during PV-electrospinning but superimpose on the negatively charged polymer jet during NV-

electrospinning, resulting in lower amount of charges on positively charged jet but higher amount of 

charges on negatively charged jet, even though the absolute values of the applied PV and NV were the 

same. Therefore, the increase of the NV caused increase of the electrostatic stress on the jet, and the 

increased stress stretched the jet into thinner fibers effectively. It appears that the voltage effect on fiber 

diameter could be different, depending on the polarity of the solution and the electrical properties of the 

polymer. This may also provide an explanation for the seemingly contradictory results reported by 

different electrospinning groups as some of the researchers found that the fiber diameter increased with 

voltage [20, 31-33] while other found that the fiber diameter decreased with increasing voltage [28, 34-

38], although the effect of voltage was not as strong as that of the polymer solution concentration. 

Electrospinning of polymer fibers requires the formation of a jet of solution from the pendent droplet 

suspended at the needle tip, but no jet could be ejected when the applied electrospinning voltage was 

insufficient (< |-5| kV). At about ±10kV, the fibers were usually electrospun intermittently, accompanied 

by some polymer solution droplets. The droplets falling on the collector would become polymer blocks, 

which certainly damaged the fibrous structure consisting of ultrafine fibers. At very high voltages (> |-25| 
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kV), the trajectory of the polymer solution jet became very unstable. The jet was easily attracted by 

nearby objects such as the syringe pump and some electrical wires. Therefore, it was difficult to produce a 

large mesh of fibers on the fiber collector using such high applied voltages. 

 

3.4. Effect of working distance 

To investigate the effect of working distance, these electrospinning parameters were fixed: (1) applied 

voltage = 15 kV (or -15 kV for NV-electrospinning), (2) solution feeding rate = 5 ml/h, (3) needle inner 

diameter = 0.8 mm, (4) PHBV solution concentration = 8 %w/v. Figure 4(A-B) and figure 4(C-D) show 

the PV- and NV-electrospun PHBV fibers at different working distances, respectively. The relationship 

between the working distance and the average fiber diameter is shown in figure 4(E). As the working 

distance was increased from 15 cm to 25 cm, the average fiber diameter was reduced without formation of 

beaded fibers or polymer blocks, no matter PV- or NV-electrospinning was employed. Yördem et al. also 

found that the fiber diameter decreased with increasing working distance, though they only performed the 

PV-electrospinning [39]. It can also been seen in figure 4(E) that when large-diameter PHBV fibers were 

required, it was better to employ PV-electrospinning in addition to decreasing the working distance. 

However, when small-diameter PHBV fibers were required, NV-electrospinning was preferred in addition 

to increasing the working distance. This result demonstrated the difference between the PHBV fibers 

obtained from the two different techniques (i.e. PV-electrospinning and NV-electrospinning), even though 

the working distance was still the dominant factor that influenced the fiber diameter. Further increase in 

working distance to 30 cm or above resulted in the formation of beaded fibers and / or polymer blocks 

because longer working distances allowed longer time for the jet to contract, thus giving more opportunity 

for the remaining solution to form beads. If the working distance was further increased dramatically (>> 

30 cm), the electrostatic field strength became very low and hence no fibers could be formed. 

 

3.5. Effect of polymer solution concentration 

 12



To assess the effect of polymer solution concentration, electrospinning took place at a solution feeding 

rate of 1 ml/h, an applied voltage of 15 kV (or -15 kV for NV-electrospinning), a needle inner diameter of 

0.4 mm and a working distance of 15 cm.  The only parameter that was changed was the PHBV solution 

concentration. No matter PV- or NV-electrospinning was employed, beaded fibers were formed at the 

PHBV solution concentration of 5 %w/v or below because low polymer solution concentration often 

caused incomplete evaporation of solvent during the fiber formation process. As a result, it was difficult 

to stretch the “wet” fiber by the electric force and contraction of extra solution along the “wet” fiber 

occurred easily. The extra solution became the beads eventually. In contrast, when the solution 

concentration was above 25 %w/v, due to rapid solidification of the pendent droplet suspended at the 

needle tip, clogging easily occurred at the tip of the electrospinning needle, no matter the solution was 

electrospun using a PV or NV. Ultrafine fibers without beads could be fabricated by electrospinning when 

the solution concentration was within the medium range (8 %w/v to 25 %w/v) [figures 5(A-D)]. Within 

this range of solution concentration, the average fiber diameter generally increased with increasing 

polymer solution concentration [figure 5(E)] because the solvent would finally be evaporated from the jet 

and the jet would become a fiber eventually. It is worth noting that the selection of an appropriate 

electrospinning technique (i.e. PV-electrospinning or NV-electrospinning) may help reduce the PHBV 

fiber diameter. When small-diameter PHBV fibers are required, NV-electrospinning is preferred because 

the average diameter of the NV-electrospun PHBV fibers was generally lower than that of the PV-

electrospun PHBV fibers, even though the polymer solution concentration and other processing 

parameters were kept constant. This result is especially valid at a low PHBV solution concentration (e.g. 

15 %w/v), as shown in figure 5(E). 

 

3.6. Effect of the concentration of conductivity-enhancing surfactant 

The following parameters were fixed in the experiments: (1) applied voltage = 15 kV (or -15 kV for NV-

electrospinning), (2) solution feeding rate = 1 ml/h, (3) needle inner diameter = 0.5 mm, (4) working 

distance = 15 cm, and (5) PHBV solution concentration = 15 %w/v. The effect of the concentration of 
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conductivity-enhancing surfactant (i.e. BTEAC) on fiber diameter was investigated by changing the 

BTEAC concentration from 0 to 2 wt%. Figure 6(A-B) and figure 6(C-D) show the PV- and NV-

electrospun PHBV fibers at different BTEAC concentrations, respectively. The relationship between the 

concentration of BTEAC and the average fiber diameter is shown in figure 6(E). Without BTEAC, PHBV 

fibers normally exhibited diameters above 2 µm, no matter PV- or NV-electrospinning was employed. 

When a small amount of BTEAC (1 wt%) was dissolved in the PHBV solution for electrospinning, the 

average fiber diameter decreased drastically to a few hundred nanometers in both PV- and NV-

electrospinning. Further decrease in average fiber diameter was observed when the BTEAC concentration 

became 2 wt%. However, PHBV solutions having more than 2 wt% of BTEAC could not be used for 

either PV- or NV-electrospinning because the jet became very unstable, resulting in no fiber formation. 

These results implied that the electric force tended to stretch the jet into thinner fiber when the 

conductivity of the polymer solution, and hence the polymer jet, increased. When BTEAC was dissolved 

in the PHBV solution for electrospinning, the diameters of the NV-electrospun fibers were generally finer 

than that of the PV-electrospun fibers. BTEAC is an anionic surfactant that may superimpose the negative 

charges on the polymer jet during NV-electrospinning but partly neutralize the positive charges during 

PV-electrospinning. Therefore, the electric force under respective voltages should stretch the polymer jet 

into finer fibers during NV-electrospinning more easily than PV-electrospinning.  

 

3.7. Structures of the PV- and NV-electrospun fibrous membranes 

The FTIR spectra of the four groups of fibrous membranes (i.e. PVEfm, PVEfm-B, NVEfm, and NVEfm-

B) are shown in figure 7. The spectra of these fibrous membranes exhibited several common peaks due to 

the matrix polymer PHBV. These absorption peaks were the stretching vibration of C=O at 1728 cm-1 

(Peak 1), the asymmetrical bending of CH3 at 1462 cm-1 (Peak 2), the CH2 bending at 1454 cm-1 (Peak 3), 

the symmetrical bending vibration of CH3 at 1382 cm -1 (Peak 4), the CH2 twisting at 1295 cm-1 (Peak 5), 

the C-O stretching at 1289 cm-1 (Peak 6), the asymmetrical vibration of C-O-C at 1231 cm-1 (Peak 7), the 

CH2 twisting at 1189 cm-1 (Peak 8), the C-H bending at 1134 cm-1 (Peak 9), the combined vibration 
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modes including C-C and C-O at 1103 cm-1 (Peak 10), and the stretching vibration of C-O at 1059 cm-1 

(Peak 11). Compared with the spectrum of PVEfm, no additional peak or missing peak was found in the 

spectrum of NVEfm. The same result was found when a comparison between the spectra of PVEfm-B 

and NVEfm-B was made, implying that the chemical structure was not affected by the polarity of the 

applied electrospinning voltage. Compared with the spectrum of PVEfm, no additional or missing peak 

was found in the spectrum of PVEfm-B. Similarly, no additional or missing peak was observed when the 

spectra of NVEfm and NVEfm-B were compared. BTEAC may have totally evaporated with the solvent 

in air during the electrospinning process. 

 

3.8. Wettability of the PV- and NV-electrospun fibrous membranes 

Water contact angles of the flat solvent-cast PHBV film and the four groups of electrospun fibrous PHBV 

membranes (viz. PVEfm, PVEfm-B, NVEfm, and NVEfm-B) were measured and are shown in table 2. 

The contact angle of the PVEfm was similar to that of the NVEfm, provided that the membranes were 

electrospun at the same processing condition except the voltage polarity. However, the contact angle of 

either the PV- or NV-electrospun fibrous PHBV membrane was significantly higher than that of the 

solvent-cast PHBV film, suggesting that the hydrophobicity may increase with surface roughness which 

dramatically increases the number of contacting points between the water droplet and the material surface 

such that the boundary between them is not truly a solid-liquid interface. This result is in agreement with 

the water contact angle measurement results obtained by Ito et al. [40] and Sombatmankhong et al. [41], 

although they only investigated PV-electrospinning. Ito et al. reported that the water contact angle of the 

fibrous PHBV membrane (about 110°) was higher than that of the PHBV solvent-cast film (about 81°) 

while Sombatmankhong et al. also showed that the water contact angles of the electrospun fibrous PHBV, 

PHB and PHB/PHBV membranes ranged between 116° and 122°, which were higher than that of the 

corresponding solvent-cast film (68° – 75°). However, the water droplets completely spread out on both 

PVEfm-B and NVEfm-B and no contact angle could be measured. As PVEfm-B and NVEfm-B exhibited 

fiber diameters in a submicron scale while PVEfm and NVEfm exhibited fiber diameters of a few 
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microns, the results suggest that the reduction in fiber diameter improves the wettability of the 

membranes. 

 

3.9. Thermal analysis of the PV- and NV-electrospun fibrous membranes 

Thermal properties of the solvent-cast PHBV films and the four groups of electrospun fibrous membranes 

(viz. PVEfm, PVEfm-B, NVEfm, and NVEfm-B) were investigated using DSC, and their typical 

thermograms are shown in figure 8. The numerical values corresponding to thermal transition and 

crystallinity are listed in table 3. The curve in figure 8(B) is the thermogram of solvent-cast PHBV film in 

a larger scale than that in figure 8(A), which clearly illustrates the thermal behaviour of PHBV in the 

solvent-cast film state. As shown in figure 8(B), two melting peaks at approximately 171.3°C and 

151.7°C are observed, though the shoulder peak at 151.7°C cannot be easily seen in figure 8(A). The 

multiple melting peaks can be attributed to the melting transition of recrystallized PHBV crystallite 

during the heating process [42]. The crystallinity of electrospun fibrous PHBV membranes was much 

greater than that of solvent-cast PHBV films. The entanglement of PHBV molecules to each other during 

crystallization should be the reason for the relatively low crystallinity of PHBV solvent-cast films. 

Although entanglement of PHBV molecules still occurred in electrospun fibers, the molecule 

entanglement was at the micron / submicron scale and the molecular entanglement was oriented along the 

fiber direction due to the spatial confinement, resulting in higher crystallinity. All groups of electrospun 

PHBV fibrous membranes exhibited similar crystallinity, suggesting that the orientation of polymer 

molecules wound not be significantly influenced by the polarity of the applied electrospinning voltage or 

the addition of surfactant. 

 

3.10. Tensile properties of the PV- and NV-electrospun fibrous membranes 

The tensile properties (σUTS, E, and ε) of the four groups of electrospun PHBV fibrous membranes (viz. 

PVEfm, PVEfm-B, NVEfm, and NVEfm-B) were also evaluated in order to determine the effect of 

applied voltage polarity and surfactant addition. The stress-strain curves for these four groups of fibrous 
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membranes are shown in figure 9. The ultimate tensile strength and stiffness of the four groups of fibrous 

membranes were found to be similar. When developing electrospun fibrous membranes for tissue 

engineering scaffold applications, the mechanical property of the membranes should be one of the major 

considerations because a reliable fibrous scaffold should be strong enough for handling, sterilization, and 

supporting cell attachment as well as the subsequent cellular activities. In our unpublished studies, both 

PVEfm and PVEfm-B were found to be robust enough for routine culture of osteoblasts. The present 

study showed that the tensile strength and stiffness of NVEfm and NVEfm-B were similar to that of 

PVEfm and PVEfm-B, implying that NV-electrospinning could also be employed for developing 

scaffolds for tissue engineering applications. Interestingly, the elongation at break could be significantly 

increased when the fiber diameters were reduced to the submicron level by the addition of surfactant, 

especially for PV-electrospinning. As PVEfm-B and NVEfm-B had fiber diameters of a few hundred 

nanometers only while PVEfm and NVEfm exhibited fiber diameters of a few microns, fibers with 

smaller diameters would be desirable if a tough fibrous membrane is required. 

The biocompatibility of PV-electrospun PHBV fibers has been evaluated. Cytotoxicity tests were 

conducted using mouse fibroblast L929 cell line through cell culture. As shown in figure 10, the viability 

of the L929 cells cultured with an extraction medium containing the PV-electrospun PHBV fibers was 

comparable to that of the cells cultured with the medium from the control, implying no or negligible 

cytotoxicity of these fibrous membranes. The mouse fibroblast L929 cell line is commonly used for 

cytotoxicity evaluation, which is a convenient, sensitive, and standardized biomaterial evaluation method 

to determine whether the biomaterial is cytotoxic or whether it releases substantial amounts of harmful 

substances that significantly affect the normal cell function. It is used to determine whether the material, 

no matter it is intended as a permanent implant or a temporary scaffold, is cytotoxic before other 

biological evaluations can be made. Neamnark et al. made hexanoyl chitosan fibrous scaffolds by 

electrospinning and cytotoxicity evaluation of the scaffolds was conducted also using mouse fibroblasts 

(L929). Because of the high viability of L929 cells, they concluded that the materials were non-cytotoxic 

and did not release harmful substances [43]. Similarly, Skotak et al. conducted cytotoxicity tests using 
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L929 cells on electrospun L-lactide modified chitosan fibers and showed that the developed material was 

a promising material for tissue engineering purposes [44]. Jin et al. fabricated photocrosslinked chitosan-

based nanofibers and the subsequent cell culture experiments using mouse fibroblasts (L929) showed that 

the cells exhibited their characteristic spindle morphology. The comparable amounts of viable cells 

seeded with the extraction medium and seeded with the culture medium of the control after preset culture 

time hence indicated a non-cytotoxic response of the samples tested [45]. Further biological assessment of 

the PV-electrospun PHBV fibers was conducted through cell culture studies using a human osteoblast-

like cell line (SaOS-2), which is a non-transformed cell line. SaOS-2 can not only exhibit various 

osteoblastic features and replicate very rapidly in vitro but also demonstrate a complete series of cellular 

events for forming bone tissue. The SaOS-2 cells were found to attach, spread, proliferate and express 

alkaline phosphatase (ALP) activity on the PV-electrospun PHBV fibrous membranes. After one week 

cell culture, the cells expanded and spread randomly in all directions on PHBV fibers [figure 11(A)]. 

After two week cell culture, the cells not only expanded and spread on the fibers but also formed 

numerous filopodia [figure 11(B)], which facilitated cell attachment and migration. These cellular events 

are important because cell attachment is the first cellular event during the whole tissue regeneration 

process. Without cell attachment, the cells alone cannot become tissues. Sombatmankhong et al. also 

found that SaOS-2 cells adhered well on their PHBV fibrous scaffolds [41]. The biological evaluation of 

NV-electrospun fibers is currently conducted. No or negligible cytotoxicity and desirable cell responses 

are expected. 

 

4. Conclusions 

The current study investigated PV-electrospinning and NV-electrospinning and fibrous membranes of 

PHBV with different ranges of fiber diameters were successfully produced. In both PV-electrospinning 

and NV-electrospinning, it was found that the fiber diameter generally increased with increasing solution 

concentration and increasing inner diameter but decreased with increasing working distance while the 

solution feeding rate did not significantly affect the fiber diameter. However, the fiber diameter increased 

 18



with increasing PV but decreased with increasing NV. The addition of BTEAC drastically reduced fiber 

diameters to the submicron range. Both PV- and NV-electrospun PHBV fibrous membranes exhibited 

similar chemical structures. The PHBV solvent-cast film exhibited much lower water contact angle than 

the electrospun PHBV fibrous membranes. Polarity of the applied voltage did not significantly affect the 

water contact angle of electrospun fibrous membranes. The PHBV solvent-cast film exhibited lower 

crystallinity than electrospun fibrous PHBV membranes but the melting peaks of fibrous membranes were 

not significantly affected by the polarity of the applied voltage or the addition of BTEAC. No matter 

whether BTEAC was added, both PV- and NV-electrospun fibrous PHBV membranes exhibited similar 

ultimate tensile strength and stiffness, although the addition of BTEAC significantly improved the 

elongation at break. These findings should be very useful for developing fibrous tissue engineering 

scaffolds using either or both PV-electrospinning and NV-electrospinning. 
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Table 1 Studies on negative voltage electrospinning 

Polymer Major finding  Reference 

PAN The diameter distribution of the fibers electrospun using 
NVs was narrower than that of PVs. 

 Kalayci et al. [3] 

PEG The NV-electrospun fibers had diameters ranging from 
approximately 100 to 400 nm but fibers could not be 
electrospun using PV. 

 Casper et al. [5] 

PA-6 The diameter of NV-electrospun fibers was larger than 
that of PV-electrospun fibers. 

 Mit-uppatham et al. 
[6] 

PAN and 
PS 

Multilayered structures consisting of PV-electrospun 
PAN fibers and NV-electrospun PS fibers were made. 

 Schreuder-Gibson et 
al. [7] 

PVA Fiber deposition rate of PV-electrospinning was higher 
than that of NV-electrospinning. 

 Stanger et al. [8] 

PEO The diameter of NV-electrospun fibers was larger than 
that of PV-electrospun fibers. 

 Yang et al. [9] 

PV: positive voltage; NV: negative voltage; PAN: polyacrylonitrile; PEG: poly(ethylene glycol); 
PA-6: polyamide-6; PS: polystyrene; PVA: poly(vinyl alcohol);  PEO: polyethylene oxide 
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Table 2 Water contact angles of PHBV solvent-cast film and electrospun fibrous membranes 

Material  Contact angle (°) 

PHBV solvent-cast flat film  68.4 ± 5.2 

PV-electrospun PHBV fibrous membrane from PHBV 
solutions without BTEAC (PVEfm) 

 104.2 ± 3.1 

PV-electrospun PHBV fibrous membrane from PHBV 
solutions with BTEAC (PVEfm-B) 

 Not measurable. 

NV-electrospun PHBV fibrous membrane from PHBV 
solutions without BTEAC (NVEfm) 

 104.8 ± 2.9 

NV-electrospun PHBV fibrous membrane from PHBV 
solutions with BTEAC (NVEfm-B) 

 Not measurable. 
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Table 3 Thermal properties and apparent crystallinity of PHBV solvent-cast film and 
electrospun fibrous membranes 

Material  Tm (°C) ∆Hf (J/g) Xc (%) 

PHBV solvent-cast film  171.3 (151.7)a 37.2 25.5 

PV-electrospun PHBV fibrous membrane 
from PHBV solutions without BTEAC 
(PVEfm) 

 165.8 68.4 46.8 

PV-electrospun PHBV fibrous membrane 
from PHBV solutions with BTEAC 
(PVEfm-B) 

 163.5 67.0 45.9 

NV-electrospun PHBV fibrous membrane 
from PHBV solutions without BTEAC 
(NVEfm) 

 167.9 75.5 51.7 

NV-electrospun PHBV fibrous membrane 
from PHBV solutions with BTEAC 
(NVEfm-B) 

 163.0 57.4 39.3 

Tm: apparent melting peak temperature;  ∆Hf: apparent enthalpy of fusion; Xc: crystallinity index;  
a Shoulder peak of melting transition 
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membrane from PHBV solutions without BTEAC (NVEfm), and NV-electrospun fibrous 

membranes from PHBV solutions with BTEAC (NVEfm-B)  

Figure 8  DSC thermograms: (A) PHBV solvent-cast film and the four groups of electrospun fibrous 
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Figure 10 Morphology of L929 cells: (A) after cell culture with an extraction medium containing PV-

electrospun PHBV fibers, (B) after cell culture with the culture medium of the control 

Figure 11. Morphology of SaOS-2 cells seeded on electrospun PHBV fibers after different cell culture 
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 Figure 1. Electrospun PHBV fibers obtained using different needle diameters: (A) at 0.4 mm inner 
diameter by PV-electrospinning, (B) at 0.7 mm inner diameter by PV-electrospinning, (C) at 0.4 mm 
inner diameter by NV-electrospinning, (D) at 0.7 mm inner diameter by NV-electrospinning, and (E) 
relationship between needle inner diameter and average fiber diameter for electrospun PHBV fibers.  
(■ denotes PV-electrospinning; ● denotes NV-electrospinning; * denotes p < 0.05)     
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Figure 2. Electrospun PHBV fibers obtained using different solution feeding rates: (A) at 1 ml/h by 
PV-electrospinning, (B) at 7 ml/h by PV-electrospinning, (C) at 1 ml/h by NV-electrospinning, (D) at 
7 ml/h by NV-electrospinning, and (E) relationship between solution feeding rate and average fiber 
diameter for electrospun PHBV fibers. (■ denotes PV-electrospinning; ● denotes NV-electrospinning) 
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Figure 3. Electrospun PHBV fibers obtained using different applied voltages: (A) at 15 kV by PV-
electrospinning, (B) at 25 kV by PV-electrospinning, (C) at -15 kV by NV-electrospinning, (D) at -25 
kV by NV-electrospinning, and (E) relationship between applied voltage and average fiber diameter 
for electrospun PHBV fibers. (■ denotes PV-electrospinning; ● denotes NV-electrospinning; * denotes 
p < 0.05)   
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Figure 4. Electrospun PHBV fibers obtained using different working distances: (A) at 15 cm by PV-
electrospinning, (B) at 25 cm by PV-electrospinning, (C) at 15 cm by NV-electrospinning, (D) at 25 
cm by NV-electrospinning, and (E) relationship between working distance and average fiber diameter 
for electrospun PHBV fibers. (■ denotes PV-electrospinning; ● denotes NV-electrospinning; * denotes 
p < 0.05)   
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Figure 5. Electrospun PHBV fibers obtained using different solution concentrations: (A) at 15 %w/v 
by PV-electrospinning, (B) at 25 %w/v by PV-electrospinning, (C) at 15 %w/v by NV-electrospinning, 
(D) at 25 %w/v by NV-electrospinning, and (E) relationship between solution concentration and 
average fiber diameter for electrospun PHBV fibers. (■ denotes PV-electrospinning; ● denotes NV-
electrospinning; * denotes p < 0.05)   
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Figure 6. Electrospun PHBV fibers obtained using different BTEAC concentrations: (A) at 0 wt% 
by PV-electrospinning, (B) at 2 wt% by PV-electrospinning, (C) at 0 wt% by NV-electrospinning, 
(D) at 2 wt% by NV-electrospinning, and (E) relationship between BTEAC concentration and 
average fiber diameter for electrospun PHBV fibers. (■ denotes PV-electrospinning; ● denotes NV-
electrospinning; * denotes p < 0.05; ** denotes p < 0.01) 



 
 
 

 
 
 
Figure 7. FTIR spectra of the four groups of fibrous PHBV membranes: PV-electrospun fibrous 
membrane from PHBV solutions without BTEAC (PVEfm), PV-electrospun fibrous membranes from 
PHBV solutions with BTEAC (PVEfm-B), NV-electrospun fibrous membrane from PHBV solutions 
without BTEAC (NVEfm), and NV-electrospun fibrous membranes from PHBV solutions with BTEAC 
(NVEfm-B) 
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Figure 8. DSC thermograms: (A) PHBV solvent-cast film and the four groups of electrospun fibrous 
membranes, (B) the thermogram for PHBV solvent-cast film showing the shoulder peak 
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Figure 9. Stress-strain curves for the four groups of fibrous PHBV membranes: PV-electrospun fibrous 
membranes from PHBV solutions without BTEAC (PVEfm), PV-electrospun fibrous membranes from 
PHBV solutions with BTEAC (PVEfm-B), NV-electrospun fibrous membranes from PHBV solutions 
without BTEAC (NVEfm), and NV-electrospun fibrous membranes from PHBV solutions with BTEAC 
(NVEfm-B) 
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Figure 10. Morphology of L929 cells: (A) after cell culture with an extraction medium containing PV-
electrospun PHBV fibers, (B) after cell culture with the culture medium of the control 
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Figure 11. Morphology of SaOS-2 cells seeded on electrospun PHBV fibers after different cell culture 
times: (A) 1 week, (B) 2 weeks 
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