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Abstract—We prove that under mild positivity assumptions,
the entropy rate of a continuous-state hidden Markov chain,
observed when passing a finite-state Markov chain through a
discrete-time continuous-output channel, is analytic as a function
of the transition probabilities of the underlying Markov chain.
We further prove that the entropy rate of a continuous-state
hidden Markov chain, observed when passing a mixing finite-
type constrained Markov chain through a discrete-time Gaussian
channel, is smooth as a function of the transition probabilities
of the underlying Markov chain.

I. MAIN RESULTS

Consider a discrete-time channel with a finite input alphabet
Y and the continuous output alphabet Z = R. Assume that
the input process is a Y-valued first order stationary Markov
chain Y with transition probability matrix Π = (πij)|Y|×|Y|
and stationary vector π = (πi)|Y| (here we assume Y is first
order only for simplicity; an usual “blocking” approach can be
used to reduce higher order case to first order case). Assume
that the channel is memoryless in the sense that at each time,
the distribution of the output z ∈ Z , given the input y ∈ Y , is
independent of the past and future inputs and outputs, and is
distributed according to probability density function q(z|y).

The corresponding output process of this channel is a
continuous-state hidden Markov chain, which will be denoted
by Z throughout the paper. The entropy rate H(Z) is defined
as

H(Z) = lim
n→∞

1
n + 1

H(Z0
−n),

when the limit exists, where

H(Z0
−n) = −

∫
Zn+1

p(z0
−n) log p(z0

−n)dz0
−n,

here z0
−n := (z−n, z−n+1, · · · , z0) denotes an instance of

Z0
−n := (Z−n, Z−n+1, · · · , Z0), and p(z0

−n) denotes the
probability density of z0

−n. It is well-known (e.g., see page
60 of [3]) that if H(Z0

−n) is finite for all n, H(Z) is well-
defined and can be written as

H(Z) = lim
n→∞Hn(Z),

where

Hn(Z) = −
∫
Zn+1

p(z0
−n) log p(z0|z−1

−n)dz0
−n, (1)

here p(z0|z−1
−n) denotes the conditional density of z0 given

z−1
−n. Since the channel considered in this paper is memoryless,

and Y,Z are stationary, we have

H(Z0
−n|Y 0

−n) = (n + 1)H(Z0|Y0),

where H(Z0|Y0) can be computed as

H(Z0|Y0) = −
∑
i∈Y

πi

∫
z∈Z

q(z|i) log q(z|i)dz.

It then follows from

H(Z0
−n|Y 0

−n) ≤ H(Z0
−n) ≤ H(Y 0

−n) + H(Z0
−n|Y 0

−n)

that if ∫
z∈Z

q(z|i) log q(z|i)dz

is finite for all i, H(Z) is well-defined and finite.
The following theorem states that under positivity assump-

tions, H(Z) is analytic as a function of Π.
Theorem 1.1: Consider a discrete-time memoryless

continuous-output channel as above. Assume that Π is
analytically parameterized by �ε = (ε1, ε2, · · · , εm) ∈ Ω,
where Ω denotes an open and bounded subset of R

m, and
assume that q(z|y) > 0 for all (y, z) ∈ (Y,Z), and the
integral ∫

z∈Z
q(z|i) log q(z|i)dz

is finite for all i. If Π is strictly positive at �ε0, then H(Z) is
analytic around �ε0.

Our next result deals with a discrete-time memoryless
Gaussian channel, a special type of discrete-time memory-
less continuous-output channel. We shall relax the positivity
assumptions in Theorem 1.1, and we assume that the input
Markov chain is supported on a mixing finite-type constraint.
The consideration of such channels mainly comes from prac-
tice: Gaussian channels are of great importance in a variety
of scenarios in real applications, and often (particularly in
magnetic recording) input sequences are required to satisfy
certain constraints in order to eliminate the most damaging
error events [8] and the constraints are often mixing finite-
type constraints.

Let X be a finite alphabet, and let Xn denote the set of
words over X of length n. Let X ∗ = ∪nXn. A finite-type
constraint S over X is a subset of X ∗ defined by a finite
list F of forbidden words [7], [8]; in other words, S is the
set of words over X that do not contain any element in F
as a contiguous subsequence. We define Sn = S ∩ Xn. The

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1468978-1-4244-7892-7/10/$26.00 ©2010 IEEE ISIT 2010



constraint S is said to be mixing if there exists N such that,
for any u, v ∈ S and any n ≥ N , there is a w ∈ Sn such that
uwv ∈ S.

The maximal length of a forbidden list F is the length
of the longest word in F . In general, there can be many
forbidden lists F which define the same finite type constraint
S. However, we may always choose a list with smallest
maximal length. The (topological) order of S is defined to be
m̂ = m̂(S) where m̂+1 is the smallest maximal length of any
forbidden list that defines S (the order of the trivial constraint
X ∗ is taken to be 0). For example, one checks that the order
of the (d, k)-RLL constraint [7], which is a commonly seen
mixing finite-type constraint, is k when k < ∞, and is d when
k = ∞.

For a stationary stochastic process X over X , the set of
allowed words with respect to X is defined as

A(X) = {w0
−n : n ≥ 0, P (X0

−n = w0
−n) > 0}.

For any m-th order Markov process X , we say X is supported
on a constraint S if S = A(X); note that in this case, the con-
straint S is necessarily of finite-type with order m̂ ≤ m. Also,
X is mixing if and only if S is mixing (recall that a Markov
chain is mixing if its transition probability matrix (obtained
by appropriately enlarging the state space) is irreducible and
aperiodic).

Now, consider a discrete-time memoryless Gaussian chan-
nel, which is a special case of the generic channel model
described in the beginning of this paper. More specifically, for
any input y ∈ Y , the channel is characterized by the transition
probability density function

q(z|y) =
1√

2πσy

e−(z−y)2/(2σ2
y), (2)

where σy > 0, and z ∈ Z denotes a possible output of the
channel.

The following theorem states that under certain assump-
tions, H(Z) is smooth (infinitely differentiable) as a function
of the transition probabilities of Y . More specifically, we state
our second result of this paper as follows.

Theorem 1.2: Consider a discrete-time memoryless Gaus-
sian channel as above. Assume that Π is analytically param-
eterized by �ε = (ε1, ε2, · · · , εm) ∈ Ω, where Ω denotes an
open and bounded subset of R

m, and assume that at �ε0 ∈ Ω,
the input Markov chain Y is supported on a mixing finite-type
constraint S, i.e., A(X) = S, then H(Z) is smooth around
�ε0.

II. A COMPLEX HILBERT METRIC

In this section, we briefly review the classical Hilbert metric
and review a new complex Hilbert metric, which we will use
to prove Theorem 1.1.

Let W be the standard simplex in |Y|-dimensional real
Euclidean space,

W = {w = (w1, w2, · · · , w|Y|) ∈ R
|Y| : wi ≥ 0,

∑
i

wi = 1},

and let W ◦ denote its interior, consisting of the vectors with
positive coordinates. For any two vectors v, w ∈ W ◦, the
Hilbert metric [9] is defined as

dH(w, v) = max
i,j

log
(

wi/wj

vi/vj

)
. (3)

For a |Y|×|Y| strictly positive matrix T = (tij), the mapping
fT induced by T on W is defined by

fT (w) =
wT

(wT1)
, (4)

where 1 is the all 1 column vector. It is well known that fT

is a contraction mapping under the Hilbert metric [9]. The
contraction coefficient of T , which is also called the Birkhoff
coefficient, is given by

τ(T ) = sup
v �=w

dH(vT, wT )
dH(v, w)

=
1 − √

φ(T )
1 +

√
φ(T )

, (5)

where φ(T ) = mini,j,k,l
tiktjl

tjktil
.

Let Ŵ denote the complex version of W ,

Ŵ = {w = (w1, w2, · · · , w|Y|) ∈ C
|Y| :

∑
i

wi = 1}.

Let Ŵ+ = {v ∈ Ŵ : 	(vi/vj) > 0 for all i, j}. For v, w ∈
Ŵ+, let

d̂H(v, w) = max
i,j

∣∣∣∣log
(

wi/wj

vi/vj

)∣∣∣∣ , (6)

where log is taken as the principal branch of the complex
log(·) function (i.e., the branch whose branch cut is the
negative real axis). Since the principal branch of log is additive
on the right-half plane, d̂H is a metric on Ŵ+, which we call
a complex Hilbert metric.

Let M denote the set of all stochastic matrices with dimen-
sion |Y| × |Y|, i.e.,

M = {Π = (πij) ∈ R
|Y|×|Y| : πij ≥ 0,

|Y|∑
j=1

πij = 1}.

Let M̂ denote the complex version of M , defined as

M̂ = {Π = (πij) ∈ C
|Y|×|Y| :

|Y|∑
j=1

πij = 1}.

For a given positive Π and a small δ1 > 0, let M̂Π(δ1) denote

the δ1-neighborhood around Π within M̂ . For an element Π̂ ∈
M̂Π(δ1), similar to (4), Π̂ will induce a mapping fΠ̂ on Ŵ .

For a small δ2 > 0, let Ŵ ◦
H(δ2) denote the δ2-neighborhood

of W ◦ within Ŵ+ under the complex Hilbert metric, i.e.,

Ŵ ◦
H(δ2) = {v = (v1, v2, · · · , v|Y|) ∈ Ŵ+ : ∃u ∈ W ◦, d̂H(v, u) ≤ δ2}.
The main theorem in [5] says:

Theorem 2.1: For sufficiently small δ1, δ2 > 0, there exists
0 < ρ1 < 0 such that for any Π̂ ∈ M̂Π(δ1), fΠ̂ is a ρ1-

contraction mapping on Ŵ ◦
H(δ2) under the complex Hilbert

metric in (6).
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III. OUTLINE OF THE PROOF OF THEOREM 1.1

In this section, we consider a discrete-time memoryless
continuous-output channel as in Theorem 1.1, which was
described in the beginning of Section I.

For each z ∈ Z , define Π(z) as a |Y|× |Y| matrix with the
entries

Π(z)ij = πij(�ε)q(z|j), for all i, j, (7)

here we suppressed the dependence of Π(z) on �ε for notational
simplicity. By (4), Π(z) will induce a mapping f�ε

z := fΠ(z)

from W to W . For any fixed n and z0
−n, define

x�ε
i = x�ε

i (z
i
−n) = p(yi = · |zi, zi−1, · · · , z−n), (8)

(here · represent the states of the Markov chain Y ,) then
similar to Blackwell [1], {x�ε

i} satisfies the random dynamical
system

x�ε
i+1 = f�ε

zi+1
(x�ε

i ), (9)

starting with
x�ε
−n−1 = π(�ε). (10)

And obviously we have

p�ε(z0|z−n) = x�ε
−1Π(z0)1, (11)

and

p�ε(z0
−n) = π(�ε)Π(z−n)Π(z−n+1) · · ·Π(z0)1. (12)

Apparently x�ε
i , p�ε(z0|z−n) and p�ε(z0

−n) all depend on the
real vector �ε ∈ Ω. In what follows, we shall show that they
can be “complexified”. For r > 0, let C

m
�ε0

(r) denote a r-ball
around �ε0 in C

m. For any �ε ∈ C
m
�ε0

(r), one checks that for r
small enough, the following system of equations with respect
to π(�ε)

π(�ε)Π = π(�ε),
∑

y

π(�ε)y = 1

has a unique solution π(�ε), which is analytic on C
m
�ε0

(r)
as a function of �ε. Then through (10) and (9), x�ε

i can be
analytically extended to C

m
�ε0

(r); furthermore, through (11) and

(12), p�ε(z0|z−n) and p�ε(z0
−n) can be analytically extended to

C
m
�ε0

(r). Eventually, H�ε
n(Z) can be analytically extended to

C
m
�ε0

(r) as well.
For any z ∈ Z , by the definition of Π(z), one checks that

for any u, v ∈ Ŵ , we have

d̂H(uΠ(z), vΠ(z)) = d̂H(uΠ, vΠ). (13)

Then immediately by Theorem 2.1, we have the following
lemma, which, roughly speaking, says that if we perturb �ε0 “a
bit” to �ε, f�ε

z is a contraction mapping on a complex neighbor-
hood of W ◦, and the contraction coefficient is uniform over
all the values of z.

Lemma 3.1: For sufficiently small r, δ > 0, there exists 0 <
ρ1 < 1 such that for any �ε ∈ C

m
�ε0

(r) and any z ∈ Z , f�ε
z is a

ρ1-contraction mapping on Ŵ ◦
H(δ) under the complex Hilbert

metric in (6).
The following lemma, roughly speaking, says that if we

perturb �ε0 “a bit” to �ε, the image of any point in W under
f�ε

z , for any z ∈ Z , does not change much.

Lemma 3.2: Consider any �ε0 ∈ Ω with πij(�ε0) > 0 for
all i, j. For any δ > 0, there exists r > 0 such that for any
�ε ∈ C

m
�ε0

(r), any z ∈ Z and any x ∈ W , we have

d̂H(f�ε
z (x), f�ε0

z (x)) ≤ δ.

For δ > 0, let CR+ [δ] denote the “relative” δ-neighborhood
of R

+ := {x ∈ R : x > 0} within C, i.e.,

CR+ [δ] = {z ∈ C : |z − x| ≤ δx, for some x > 0}.
The following lemma, which is implied by the proof of Lemma
1.3 in [5], allows us to connect the complex Hilbert metric and
the Euclidean metric.

Lemma 3.3: 1) For any δ > 0, there exists ξ > 0 such
that for any x̂ ∈ Ŵ+, x ∈ W ◦ with d̂H(x̂, x) ≤ ξ, we
have x̂i ∈ CR+ [δ] for all i.

2) For any ζ > 0 and any δ > 0, there exists ξ > 0 such
that for any x̂, ŷ ∈ Ŵ+ with |x̂−x|, |ŷ−y| ≤ ζ for some

x, y ∈ W ◦, and d̂H(x̂, ŷ) ≤ ξ, we have |x̂ − ŷ| ≤ δ.
We are now ready for the following lemma.
Lemma 3.4: 1) For any δ > 0, there exists r > 0 such that

for any �ε ∈ C
m
�ε0

(r) and for all z0
−n ∈ Zn+1,

p�ε(z0|z−1
−n) ∈ CR+ [δ].

2) For sufficiently small r > 0, there exist 0 < ρ1 < 1
and a positive constant L1 such that for any two Z-valued
sequences {a0

−n1
} and {b0

−n2
} with a0

−n = b0
−n and for all

�ε ∈ C
m
�ε0

(r), we have

|p�ε(a0|a−1
−n1

) − p�ε(b0|b−1
−n2

)| ≤ L1ρ
n
1p�ε0(a0).

The proof of Lemma 3.4 can be roughly described as
follows. As before, we complexify the real random dynamical
system corresponding to (9). Lemma 3.1 and Lemma 3.2
can guarantee the complex orbit will be exponentially close
to the original real orbit under the complex Hilbert metric,
thus implying the complex orbit will be close to W under
the Euclidan metric and further, with (11), establishing part
1). For part 2), again by Lemma 3.1, we can show that the
complex orbits, starting from possibly different initial points,
get exponentially close under the complex Hilbert metric, then
with (11) and Lemma 3.3, we can establish part 2).

We will need the following lemma for the proof of Theo-
rem 1.1 as well, which can be easily proved.

Lemma 3.5: For any δ > 0, there exists r > 0 such that for
all z0

−n and for all �ε ∈ C
m
�ε0

(r), we have

|p�ε(z0
−n)| ≤ (1 + δ)np�ε0(z0

−n).

We are now ready for the proof of Theorem 1.1.
Proof of Theorem 1.1:

We only need to prove that there is a r > 0 such that the
H�ε

n(Z), as n → ∞, uniformly converges on C
m
�ε0

(r). Note that

|H�ε
n+1(Z)−H�ε

n(Z)| =

∣∣∣∣∣
∫
Z0

−n−1

p�ε(z0
−n−1) log p�ε(z0|z−1

−n−1)dz0
−n−1

−
∫
Z0

−n

p�ε(z0
−n) log p�ε(z0|z−1

−n)dz0
−n

∣∣∣∣∣
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=

∣∣∣∣∣
∫
Z0

−n−1

p�ε(z0
−n−1)(log f�ε(z0|z−1

−n−1) − log p�ε(z0|z−1
−n))dz0

−n−1

∣∣∣∣∣ .

Note that for sufficiently small δ′1 > 0, by the mean value
theorem, there exists a positive constant L′

1 such that for any
α, β ∈ CR+ [δ′1]

| log α − log β| ≤ L′
1 max

( |α − β|
|α| ,

|α − β|
|β|

)
.

Now fix �ε ∈ C
m
�ε0

(r), then by Lemma 3.4, either we have,
for some 0 < ρ1 < 1 and some δ1 with (1 + δ1)ρ1 < 1,

|p�ε(z0
−n−1)(log p�ε(z0|z−1

−n−1) − log p�ε(z0|z−1
−n))|

≤ L′
1

∣∣∣∣∣p�ε(z0
−n−1)

p�ε(z0|z−1
−n−1) − p�ε(z0|z−1

−n)
p�ε(z0|z−1

−n−1)

∣∣∣∣∣
≤ L′

1|p�ε(z−1
−n−1)|L1ρ

n
1p�ε0(z0) ≤ L′

1L1ρ
n
1 (1+δ1)np�ε0(z−1

−n−1)p
�ε0(z0),

or we have, for some 0 < ρ1 < 1 and some δ1 with (1 +
δ1)ρ1 < 1,

|p�ε(z0
−n−1)(log p�ε(z0|z−1

−n−1) − log p�ε(z0|z−1
−n))|

≤ L′
1

∣∣∣∣∣p�ε(z0
−n−1)

p�ε(z0|z−1
−n−1) − p�ε(z0|z−1

−n))
p�ε(z0|z−1

−n)

∣∣∣∣∣
≤ L′

1|p�ε(z−1
−n)p�ε(z−n−1|z0

−n)|L1ρ
n
1p�ε0(z0)

≤ L′
1L1ρ

n
1 (1 + δ1)np�ε0(z0)p�ε0(z−n−1)p�ε0(z−1

−n).

Combining all the inequalities above gives us some L > 0
and some 0 < ρ < 1 such that for all �ε ∈ C

m
�ε0

(r),

|H�ε
n+1(Z) − H�ε

n(Z)| ≤
∫
Z0

−n−1

|p�ε(z0
−n−1)

(log p�ε(z0|z−1
−n−1) − log p�ε(z0|z−1

−n))|dz0
−n−1 ≤ Lρn,

which implies the analyticity of H�ε(Z) around �ε0.

Remark 3.6: Consider a discrete-time memoryless discrete-
output (with a possibly infinite output alphabet) channel with
channel transition probability q(z|y). With essentially the same
proof, we can show that if q(z|y) > 0 for all (y, z) ∈ (Y,Z),
and ∑

z∈Z
q(z|i) log q(z|i)

is finite for all i, and the transition probability matrix Π of
the input Markov chain Y , analytically parameterized by �ε,
is strictly positive at �ε0, then for the corresponding output
discrete hidden Markov chain Z, H(Z) is analytic around �ε0.
More precisely, all the lemmas above still hold, and one only
has to replace the integral sign

∫
in the main proof with a

summation sign
∑

.
In the case when the channel only has a finite output

alphabet, analyticity of H(Z) is already proven by the main
result of [4]. The flow of the proof of Theorem 1.1, in fact,
mainly follows from that of the proof of the main result of [4].
However, in the proof of Theorem 1.1, based on equality (13),
we used the new complex Hilbert metric in a critical way ((13)

does not hold for the Euclidean metric, which was employed
in the proof of the main result in [4]), and we have to deal
with some technical details differently.

IV. SKETCH OF PROOF OF THEOREM 1.2

In this section, we consider a discrete-time memoryless
Gaussian channel as in Theorem 1.2, which was described
in Section I. For simplicity, we assume both the order of the
constraint S and the order of the input Markov chain Y are
1; the higher order case can reduced to order 1 case by the
usual “blocking” technique.

Assume that e is the smallest positive integer such that at
�ε0, Πe is strictly positive. For the Markov chain Y , define
Ỹ = {Ỹi : i ∈ Y} to be a “blocked” process taking values in
Ỹ = Ye by

Ỹi = (Yei, Yei−1, · · · , Yei−e+1);

correspondingly, for the hidden Markov chain Z, define Z̃ =
{Z̃i : i ∈ Z} to be a “blocked” process taking values in
Z̃ = Ze by

Z̃i = (Zei, Zei−1, · · · , Zei−e+1).

It follows that Hn(Z̃)/e will converge to H(Z) as n goes to
∞, thus to prove the smoothness of H(Z), it suffices to prove
that Hn(Z̃) and all its derivatives uniformly converge within
a real neighborhood of �ε0.

For each z̃ ∈ Z̃ , define Π(z̃) by

Π(z̃) = Π(z̃1)Π(z̃2) · · ·Π(z̃e). (14)

Similarly as in Section III, Π(z̃) will induce a mapping fz̃ :=
fΠ(z̃) from W to W . For any fixed n and z̃0

−n, define

x̃i = x̃i(z̃i
−n) = p(ỹi = · |z̃i, z̃i−1, · · · , z̃−n), (15)

(here · represent the states of the Markov chain Ỹ ,) then {x̃�ε
i}

satisfies the random dynamical system

x̃i+1 = fz̃i+1(x̃i), (16)

starting with

x̃−n−1 = π(�ε). (17)

Again similarly, we have

p(z̃0|z̃−n) = x̃−1Π(z̃0)1, (18)

and

p(z̃0
−n) = π(�ε)Π(z̃−n)Π(z̃−n+1) · · ·Π(z̃0)1. (19)

For any fixed M > 0, 0 < α < 1, an instance (with finite
length) z̃−1

−n of the above-mentioned Z̃-process, is said to be
(M, α)-typical if the number of i (−n ≤ i ≤ −1) with |z̃i| ≤
M (here | · |∞ denotes �∞-norm of a sequence) is bigger
than αn. Let TM,α

n denote the set of all the (M,α)-typical
Z̃-sequences with length n.

The following lemma says that non-(M, α)-typical se-
quences only occur with exponentially small probability, thus
we only have to focus on (M, α)-typical sequences. The proof
uses the fact that the Gaussian channel transition function
q(z|y) (see (2)), decreases “very fast” when z goes to ∞.
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Lemma 4.1: Fix 0 < α < 1. For sufficiently large M , there
exists 0 < ρ < 1 such that∫

z̃−1
−n �∈T M,α

n

p(z̃−1
−n)dz̃−1

−n = O(ρn).

Now, define

HM,α
n (Z̃) =

∫
z̃−1
−n∈T M,α

n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n.

Note that for any zj
i , we have

min
l

∑
k

πl,k√
2πσk

e−(zj−k)2/(2σ2
k) ≤ p(zj |zj−1

i )

= xj−1Πzj
1 ≤ max

l

∑
k

πl,k√
2πσk

e−(zj−k)2/(2σ2
k).

It then follows from

p(z̃0|z̃−1
−n) log p(z̃0|z̃−1

−n)

=
0∏

i=−e+1

p(zi|zi−1
−en−e+1)

0∑
i=−e+1

log p(zi|zi−1
−en−e+1)

that |p(z0|z−1
−n) log p(z0|z−1

−n)| is upper bounded by an inte-

grable function g(z̃0), which is independent of z̃−1
−n. It then

follows from Lemma 4.1 that there exists 0 < ρ < 1 such that

|HM,α
n (Z̃) − Hn(Z̃)| =

∣∣∣∣∣
∫

z̃−1
−n �∈T M,α

n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n

∣∣∣∣∣
=

∣∣∣∣∣
∫

z̃−1
−n �∈T M,α

n ,z̃0

−p(z̃−1
−n)p(z̃0|z̃−1

−n) log p(z̃0|z̃−1
−n)dz̃0

−n

∣∣∣∣∣
≤

∣∣∣∣∣
∫

z̃−1
−n �∈T M,α

n ,z̃0

−p(z̃−1
−n)dz̃−1

−n

∫
z̃0

g(z̃0)dz̃0

∣∣∣∣∣ = O(ρn),

which implies that, like Hn(Z̃), HM,α
n (Z̃) converges to H(Z̃),

as n → ∞.

To prove smoothness of H(Z) at �ε0, it suffices to prove
that HM,α

n (Z̃) and all its derivatives uniformly converge
on a neighborhood of �ε0. In the following, we only prove
HM,α

n (Z̃) uniformly converges on a neighborhood of �ε0. The
proof of uniform convergence of derivatives of HM,α

n (Z̃) is
very similar, however much more tedious and technical, thus
omitted due to space limit.

Sketch of Proof of Theorem 1.2:
Now,

|HM,α
n (Z̃)−HM,α

n+1 (Z̃)| =

∣∣∣∣∣
∫

z̃−1
−n∈T M,α

n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n

−
∫

z̃−1
−n−1∈T M,α

n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣
≤

∣∣∣∣∣
∫

z̃−1
−n∈T M,α

n ,z̃−1
−n−1∈T M,α

n+1 ,z̃0

−p(z̃0
−n−1)

(
log

p(z̃0|z̃−1
−n)

p(z̃0|z̃−1
−n−1)

)
dz̃0

−n−1

∣∣∣∣∣

+

∣∣∣∣∣
∫

z̃−1
−n∈T M,α

n ,z̃−1
−n−1 �∈T M,α

n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n)dz̃0
−n−1

∣∣∣∣∣
+

∣∣∣∣∣
∫

z̃−1
−n �∈T M,α

n ,z̃−1
−n−1∈T M,α

n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣ .

One checks that |p(z̃0|z̃−1
−n−1) log p(z̃0|z̃−1

−n)|,
|p(z̃−n−1|z̃−1

−n)|, |p(z̃0|z̃−1
−n−1) log p(z̃0|z̃−1

−n−1)| are upper
bounded by integrable functions g0(z̃0), g1(z̃−n−1), g2(z̃0),
respectively, which are independent of z̃−1

−n−1. Then using
Lemma 4.1, we have, for some 0 < ρ < 1, the second term
and the third term are O(ρn).

To show the first term is also O(ρn) for some 0 <
ρ < 1, we need to estimate |x̃a

i − x̃b
i | where we rewrite

x̃i(z̃i
−n), x̃i(z̃i

−n−1) as x̃a
i , x̃b

i , respectively. Note that for
|z̃i|∞ ≤ M , there is a 0 < ρ1 < 1 such that

dH(x̃a
i , x̃b

i ) ≤ ρ1dH(x̃a
i−1, x̃

b
i−1),

while otherwise trivially we have

dH(x̃a
i , x̃b

i ) ≤ dH(x̃a
i−1, x̃

b
i−1).

Then for any sequence z̃−1
−n ∈ TM,α

n , let i0 denote the smallest
index such that |z̃i0 |∞ ≤ M , then we have

dH(x̃a
−1, x̃

b
−1) ≤ ραn−1

1 dH(x̃a
i0 , x̃

b
i0),

which implies that there exists 0 < ρ2 < 1 such that |x̃a
−1 −

x̃b
−1| ≤ O(ρn

2 ). It then follows that there exists 0 < ρ3 < 1
such that |p(z̃0|z̃−1

−n)−p(z̃0|z̃−1
−n−1)| ≤ ρn

3 g3(z̃0), where g3(z̃0)
is an integrable function of z̃0. This, together with the fact
that p(z̃−n−1|z̃0

−n) is upper bounded by g4(z̃−n−1), which
is an integrable function of z̃−n−1, will prove that the first
term is O(ρn). We then establish the uniform convergence of
HM,α

n (Z) to H(Z̃) on some neighborhood of �ε0.
Remark 4.2: Unlike Theorem 1.1, the complex Hilbert met-

ric can not be applied because of the possible zero entries of
Π.
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