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ABSTRACT

In this paper, robust transceiver design based on minimum-

mean-square-error (MMSE) criterion for dual-hop amplify-

and-forward MIMO relay systems is investigated. The chan-

nel estimation errors are modeled as Gaussian random vari-

ables, and then the effect are incorporated into the robust

transceiver based on the Bayesian framework. An iterative

algorithm is proposed to jointly design the precoder at the

source, the forward matrix at the relay and the equalizer at

the destination, and the joint design problem can be efficiently

solved by quadratic matrix programming (QMP).

1. INTRODUCTION

Recently, amplify-and-forward (AF) MIMO relay systems

have gained more and more attention from both academic

and industrial communities, due to its great potential to im-

prove the wireless channel reliability [1], [2] . For practical

applications, AF MIMO relay systems are to be adopted in

future communication protocols, such as Winner Project,

LTE and IMT-Advanced [2], to enhance the coverage of base

stations.

For transceiver design, joint LMMSE transceiver with

perfect channel state information (CSI) has been investigated

in [3] and an iterative algorithm has been proposed. Un-

fortunately, in practice, CSI is generally obtained through

estimation and perfect CSI is very difficult to achieve. Robust

transceiver design, which could mitigate such performance

degradation by taking the channel estimation errors into ac-

count, is therefore of great importance and highly desirable

for practical applications.

In this paper, we consider robust linear transceiver design

for AF MIMO relay systems under imperfect CSI at both the

relay and destination. The precoder at the source, the for-

ward matrix at the relay and the equalizer at the destination

are jointly designed based on minimum-mean-square-error

(MMSE) criterion. With the channel estimation errors being
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Fig. 1. Amplify-and-forward MIMO relay diagram.

modeled as Gaussian random variables, robustness is incor-

porated into the optimization objective function by taking

expectation with respect to the channel estimation errors.

The joint design problem can efficiently solved by quadratic

matrix programming (QMP) [7]. Simulation results show

that the proposed robust algorithm performs better than the

transceiver design without taking channel estimation errors

into account.

The following notations are used throughout this paper.

Boldface lowercase letters denote vectors, while boldface up-

percase letters denote matrices. The notations ZT, ZH and Z∗

denote the transpose, Hermitian and conjugate of the matrix

Z, respectively, and Tr(Z) is the trace of the matrix Z. The

symbol IM denotes the M ×M identity matrix, while 0M×N

denotes the M ×N all zero matrix. The symbol E{.} repre-

sents the expectation operation. The operation vec(Z) stacks

the columns of the matrix Z into a single vector. The symbol

⊗ denotes the Kronecker product.

2. SYSTEM MODEL

In this paper, a dual-hop amplify-and-forward (AF) coopera-
tive communication system is considered. In the considered
system, there is one source with NS antennas, one relay with
MR receive antennas and NR transmit antennas, and one des-
tination with MD antennas, as shown in Fig. 1. At the first
hop, the source transmits data to the relay. The received sig-
nal, x, at the relay is

x = HsrPs+ n1 (1)

where s is the N×1 data vector transmitted by the source with

the covariance matrix Rs = E{ssH} = IN , P is the precoder
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matrix with a transmit power constraint, Tr(PPH) ≤ Ps,

with Ps is the maximum transmit power at the source. The

matrix Hsr is the MIMO channel matrix between the source

and the relay. Symbol n1 is the additive Gaussian noise with

covariance matrix Rn1 .
At the relay, the received signal x is multiplied by a for-

ward matrix F, under a power constraint Tr(FRxF
H) ≤

Pr, where Rx = E{xxH} and Pr is the maximum transmit
power. Then the resultant signal is transmitted to the destina-
tion. The received signal y at the destination can be written
as

y = HrdFHsrPs+HrdFn1 + n2, (2)

where Hrd is the MIMO channel matrix between the relay

and the destination, and n2 is the additive Gaussian noise vec-

tor at the second hop with covariance matrix Rn2 . In order to

guarantee the transmitted data s can be recovered at the desti-

nation, it is assumed that NS , MR, NR, and MD are greater

than or equal to N .

It is assumed that both the relay and destination have the

estimated channel state information (CSI). When channel es-

timation errors are considered, we have Hsr = H̄sr +ΔHsr

and Hrd = H̄rd + ΔHrd, where H̄sr and H̄rd are the

estimated CSI, while ΔHsr and ΔHrd are the correspond-

ing channel estimation errors whose elements are zero mean

Gaussian random variables. In general, the MR ×NS matrix

ΔHsr can be written as ΔHsr = Σ
1
2
srHW,srΨ

1
2
sr [5], where

the elements of the MR ×NS matrix HW,sr are independent

and identically distributed (i.i.d.) Gaussian random variables

with zero mean and unit variance. The MR×MR matrix Σsr

and NS ×NS matrix ΨT
sr are the row and column covariance

matrices of ΔHsr, respectively. The matrix ΔHsr is said to

have a matrix-variate complex Gaussian distribution, which

can be written as ΔHsr ∼ CNMR,NS (0MR×NS ,Σsr ⊗ΨT
sr)

[6]. Similarly, for the estimation error in the second hop, we

have ΔHrd ∼ CNMD,NR(0MD×NR ,Σrd ⊗ΨT
rd), where the

MD × MD matrix Σrd and NR × NR matrix ΨT
rd are the

row and column covariance matrices of ΔHrd, respectively.

It is assumed that Hsr and Hrd are estimated independently,

so the channel estimation errors, ΔHsr and ΔHrd, are inde-

pendent.

3. PROBLEM FORMULATION

At the destination, a linear equalizer G is adopted to detect
the transmitted data s. The problem is how to design the linear
precoder matrix P at the source, the linear forward matrix F
at the relay and the linear equalizer G at the destination to
minimize the mean square errors (MSE) of the received data
at the destination:

MSE(G,F,P)

= E{‖(GHrdFHsrP− IN )s+GHrdFn1 +Gn2‖2} (3)

where the expectation is taken with respect to s, ΔHsr,
ΔHrd, n1 and n2. Since s, n1 and n2 are independent, the

MSE expression (3) can be written as

MSE(G,F,P)

= EΔHrd,ΔHsr{Tr((HrdFHsrP)(HrdFHsrP)H)}
+ EΔHrd{Tr((GHrdF)Rn1(GHrdF)

H)}+Tr(GRn2G
H)

+ Tr(IN )− Tr(GH̄rdFH̄srP)− Tr((GH̄rdFH̄srP)H) (4)

Because ΔHsr and ΔHrd are independent, the first term of
MSE is

EΔHsr,ΔHrd{Tr
(
(GHrdFHsrP)(GHrdFHsrP)H

)
}

= Tr(GEΔHrd

{
HrdFEΔHsr{HsrPPHHH

sr}FHHH
rd

}
GH).

(5)

For the inner expectation, due to the fact that the distribution
of ΔHsr is matrix-variate complex Gaussian with zero mean,
the following equation holds [6]

EΔHrd{HsrPPHHH
sr} = Tr(PPHΨsr)Σsr + H̄srPPHH̄H

sr

� ΠP. (6)

Applying (6) and the corresponding result for ΔHrd to (5),
the first term of MSE in (4) becomes

Tr
(
GEΔHrd

{
HrdFEΔHsr{HsrPPHHH

sr}FHHH
rd

}
GH

)

= Tr(G(Tr(FΠPF
HΨrd)Σrd + H̄rdFΠPF

HH̄H
rd)G

H). (7)

With similar calculations applied to the second term of MSE,
the total MSE in (4) can be shown to be

MSE(G,F,P) = Tr
(
G(H̄rdFRxF

HH̄H
rd +K)GH

)
+Tr(IN )

− Tr
(
PHH̄H

srF
HH̄H

rdG
H
)
− Tr

(
GH̄rdFH̄srP

)
, (8)

where Rx = ΠP + Rn1 and K = Tr(FRxF
HΨrd)Σrd +

Rn2 . Notice that the matrix Rx is the autocorrelation ma-
trix of the receive signal x at the relay. Finally, the joint
transceiver design can be formulated as the following opti-
mization problem

min
G,F,P

MSE(G,F,P)

s.t. Tr(PPH) ≤ Ps, Tr(FRxF
H) ≤ Pr. (9)

4. THE PROPOSED SOLUTION

In this section, we derive an iterative algorithm to solve for

P, F and G. In the following, it is shown that given any two

variables of P, F and G, the remaining one can be efficiently

solved. Therefore, the proposed algorithm computes P, F
and G iteratively, starting with initial values.

Design of G : When the precoder P at the source and
the forward matrix F at the relay are fixed, the optimiza-
tion problem (9) is an unconstrained convex optimization
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problem for G. The optimal equalizer G must satisfy
∂MSE(G,F,P)/∂G∗ = 0 which gives

G = (H̄rdFH̄srP)H(H̄rdFRxF
HH̄H

rd +K)−1. (10)

Design of F : When P and G are fixed, the optimization

problem (9) becomes

minF MSE(G,F,P) s.t. Tr(FRxF
H) ≤ Pr. (11)

Generally speaking, the optimization problem (11) is a
quadratic matrix programming (QMP) problem with the vari-

able FR
1/2
x and only one constraint. We can formulate it

into a semi-definite programming (SDP) problem to solve for
F. However, because there is only one constraint, in the fol-
lowing, we introduce another algorithm to compute F based
on Karush-Kuhn-Tucker (KKT) conditions, and has a much
lower complexity. The corresponding KKT conditions of (11)
are given as follows

F = (H̄H
rdG

HGH̄rd +ΨrdTr(GΣrdG
H) + λINR)

−1

× H̄H
rdG

HPHH̄H
srR

−1
x . (12a)

λ(Tr(FRxF
H)− Pr) = 0 (12b)

λ ≥ 0, Tr(FRxF
H) ≤ Pr. (12c)

Obviously from (12a), in order to compute the optimal F,

the Lagrangian multiplier λ should be calculated first. How-

ever, there is no closed-form solution of λ simultaneously sat-

isfying (12b) and (12c). Below we propose a low complexity

method to solve (12b) and (12c). First, notice that in order

to have (12b) satisfied, either λ = 0 or Tr(FRxF
H) = Pr

must hold. If λ = 0 also makes (12c) satisfied, λ = 0 is a

solution to (12b) and (12c). Since given G and P, the op-

timization problem (11) is a convex quadratic programming

problem of F, which has only one solution for F, λ = 0 is the

only solution to (12b) and (12c) in this case.
On other hand, if λ = 0 does not make (12c) satisfied, we

have to solve Tr(FRxF
H) = Pr. It can be proved that when

G and P are fixed, the function f(λ) = Tr(FRxF
H) is a

decreasing function of λ which satisfies

0 ≤ λ ≤
√

Tr(H̄H
rdG

HPHH̄H
srR

−1
x H̄srPGH̄rd)/Pr. (13)

Due to space limitation, the proof is not presented here.

Based on this result, λ can be efficiently computed by a

one-dimension search, such as bisection search or golden

search. Since Tr(FRxF
H) = Pr is a stronger condition than

Tr(FRxF
H) ≤ Pr, (12c) is satisfied automatically in this

case. In summary, we take λ = 0, if f(0) ≤ Pr, and solve

f(λ) = Pr otherwise.
Design of P : When F and G are fixed, after a lengthy

and tedious derivation, it can be shown that the optimization
problem (9) is equivalent to the following QMP problem [4]

min
P

Tr(PHA0P) + 2R(Tr(BH
0 P)) + c0

s.t. Tr(PHA1P) + 2R(Tr(BH
1 P)) + c1 ≤ 0

Tr(PHA2P) + 2R(Tr(BH
2 P)) + c2 ≤ 0, (14)

where the parameters are defined as follows

A0 = ΨsrTr(FΣsrF
HM) + H̄H

srF
HMFH̄sr,

M � ΨrdTr(GΣrdG
H) + H̄H

rdG
HGH̄rd,

B0 = −(GH̄rdFH̄sr)
H, c0 = Tr(G(R1 +Rn2)G

H) + Tr(IN ),

R1 � Tr(FRn1F
HΨrd)Σrd + H̄rdFRn1F

HH̄H
rd,

A1 = INS , B1 = 0NS ,N , c1 = −Ps,

A2 = ΨsrTr(FΣsrF
H) + H̄H

srF
HFH̄sr,

B2 = 0NS ,N , c2 = Tr(FRn1F
H)− Pr. (15)

It is known that QMP problems can be transformed into
semi-definite programming (SDP) problems which can be ef-
ficiently solved by interior point polynomial algorithms [4].
Based on the properties of Kronecker product and the follow-
ing definition

Ωi �
[

IN ⊗Ai vec(Bi)
vecH(Bi) ci

]
, i = 0, 1, 2, (16)

the optimization problem (14) is equivalent to

min
X

Tr(Ω0X)

s.t. Tr(Ω1X) ≤ 0, Tr(Ω2X) ≤ 0

X = [vecT(P) 1]T[vecH(P) 1] (17)

If the constraint Rank(X) = 1 is relaxed (it is a well-known
semi-definite relaxation (SDR) [7], [8]), we have the follow-
ing SDP relaxation problem

min
Z

Tr(Ω0Z)

s.t. Tr(Ω1Z) ≤ 0, Tr(Ω2Z) ≤ 0

[Z]NNs+1,NNs+1 = 1, Z � 0, (18)

where Z is a Hermitian matrix. Because the QMP problem

(14) is a convex quadratic programming problem, the relax-

ation gap of SDR is zero. In other words, the optimization

problems (17) and (18) have the same optimal solution [4],

[9].

Summary and Convergence Analysis: Initialize P and

F which satisfy Tr(PPH) = Ps and Tr(FRxF
H) = Pr. For

simplicity, we can take P ∝ I and F ∝ I. Then the proposed

iterative algorithm proceeds between (10), (12a) and (18), un-

til ‖MSEi − MSEi−1‖ ≤ t where MSEi is the MSE (8) in

the ith iteration, and t is a threshold. Since for any two of the

P, F and G fixed, the optimization problem (9) is a convex

problem for the remaining variable, the proposed algorithm

is an alternative projection algorithm which is guaranteed to

converges.

5. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will investigate the performance of the pro-

posed algorithm and for the purpose of comparison, the algo-

rithm based on the estimated channel only (without taking
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the channel errors into account) [3] is also simulated. In order

to solve the SDP problem, the matlab toolbox CVX is used

[10]. In the following, we consider an AF MIMO relay sys-

tem where the source, relay and destination are equipped with

same number of antennas, i.e., NS = MR = NR = MD = 4.

The estimated channels Hsr and Hrd are randomly generated

as

H̄sr =

⎡
⎢⎢⎣

1.02 + .82i −.01 − 0.61i .12 − .26i .02 + .64i
.08 + .90i .70 − 1.22i .06 + .19i .46 + .62i

1.43 − 1.23i .71 − .70i −.23 + .81i .03 + .25i
.43 − .71i 1.56 − .23i .29 + 1.30i −.63 + .73i

⎤
⎥⎥⎦ ,

H̄rd =

⎡
⎢⎢⎣

1.01 − 1.22i .36 − .29i .08 + .50i −.01 + .37i
.89 − 1.23i 1.05 − .06i .32 − .21i .45 + .73i
−.50 + .23i −.45 − .14i −.55 + .42i 1.01 + .23i
−1.00 + .38i −.54 + .31i −.00 + 0.62i .82 + 1.32i

⎤
⎥⎥⎦ .

Here the channel estimation algorithm in [5] is adopted, the
correlation matrices of channel estimation errors are in the
form [5].

Ψsr = RT,sr, Σsr = σ2
e(IMR + σ2

eR
−1
R,sr)

−1,

Ψrd = RT,rd, Σrd = σ2
e(IMD + σ2

eR
−1
R,rd)

−1,

where σ2
e denotes the estimation error variance [5]. The

matrices RT,sr and RR,sr are the transmit and receive cor-

relation matrices in the first hop, respectively, and similar

definitions apply to RT,rd and RR,rd for the second hop. The

widely used exponential model [5] is chosen for the transmit

and receive channel correlation matrices, i.e., (RT,rd)i,j =
(RT,sr)i,j = α|i−j|, (RR,rd)i,j = (RR,sr)i,j = β|i−j|

where α and β are the correlation coefficients.

We define the signal-to-noise ratio for the source-relay

link (SNRsr) as Es/N1 = Ps/Tr(Rn1
), and is fixed as

Es/N1 = 30dB. At the source, four independent data streams

are transmitted. For each data stream, 105 independent QPSK

symbols are transmitted. The SNR for the relay-destination

link (SNRrd) is defined as Er/N2 = Pr/Tr(Rn2
). Each

point in the following figure is an average of 1000 indepen-

dent realization of estimation errors.

Fig. 2 shows the bit-error-rate (BER) performance of the

proposed algorithm and the algorithm based on estimated

channels only with different σ2
e , when α = 0.5 and β = 0.4.

It can be seen that when the channel estimation errors de-

creases, the performances of both algorithms improve and

they coincide at σ2
e = 0. Furthermore, the performance of the

proposed algorithm is always better than that of the algorithm

based on estimated channels only.

6. CONCLUSIONS

In this paper, based on the Bayesian framework, robust linear

transceiver design for dual-hop AF MIMO relay systems has

been considered. The precoder matrix at the source, the lin-

ear forward matrix at the relay and the linear equalizer at the

destination have been jointly designed based on minimum-

mean-square-error (MMSE) criterion. An iterative algorithm

is proposed, and at each step, the design problem can be for-

mulated as a QMP problem which can be efficiently solved.
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Fig. 2. The BERs for the proposed iterative algorithm and the

algorithm based on estimated channels only for different σ2
e ,

when α = 0.5 and β = 0.4.

Simulation results showed that the performance of the pro-

posed robust algorithm is always better than that of the algo-

rithm based on estimated channels only.
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