
Title A new regularized QRD recursive least M-estimate algorithm:
Performance analysis and applications

Author(s) Chan, SC; Chu, YJ; Zhang, ZG

Citation 1St International Conference On Green Circuits And Systems,
Icgcs 2010, 2010, p. 190-195

Issued Date 2010

URL http://hdl.handle.net/10722/126116

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37951220?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A New Regularized QRD Recursive Least M-estimate 
Algorithm: Performance Analysis and Applications 

s. C. Chan, Y. J. Chu, and Z. G. Zhang 
Department of Electrical and Electronic Engineering 

The University of Hong Kong, Pokfulam Road, Hong Kong 
{scchan; yjchu; zgzhang}@eee.hku.hk 

Abstract-This paper proposes a new regularized QR 
decomposition based recursive least M-estimate (R-QRRLM) 
adaptive filtering algorithm and studies its mean and mean 
square convergence performance and application to acoustic 
echo cancellation (AEC). The proposed algorithm extends the 
conventional RLM algorithm by imposing a weighted Ll 
regularization term on the coefficients to reduce the variance of 
the estimator. Moreover, a QRD-based algorithm is employed 
for efficient recursive implementation and improved numerical 
property. The mean convergence analysis shows that a bias 
solution to the classical Wiener solution will be introduced due 
to the regularization. The steady-state excess mean square error 
(EMSE) is derived and it suggests that the variance will decrease 
while the bias will increase with the regularization parameter. 
Therefore, regularization can help to trade bias for variance. In 
this study, the regularization parameter can be adaptively 
selected and the resultant variable regularization parameter 
QRRLM (VR-QRRLM) algorithm can obtain both high 
immunity to input variation and low steady-state EMSE values. 
The theoretical results are in good agreement with simulation 
results. Computer simulation results on AEC show that the R
QRRLM and VR-QRRLM algorithms considerably outperform 
the traditional RLS algorithm when the input signal level is low 
or during double talk. 

I. INTRODUCTION 

The recursive least-squares (RLS) algorithm is an effective 
adaptive filtering algorithm which has been widely applied in 
system identification, interference cancellation and many other 
applications [1]. The traditional RLS method estimates the 
regression coefficients of a linear model in a least-squares (LS) 
sense by minimizing the sum of squared residual errors. Since 
the LS estimation implicitly assumes that the additive noise is 
Gaussian distributed, its performance will be considerably 
degraded in impulsive noise environment. To address this 
problem, a recursive least M-estimate (RLM) algorithm was 
proposed in [2,11] and it employs an M-estimation function 
instead of the conventional quadratic LS function so that the 
adverse effect of the impulsive noise or outliers can be 
effectively suppressed. Furthermore, to lower the 
computational complexity and to improve the numerical 
stability of the RLM algorithm in finite wordlength 
implementation, a QR decomposition (QRD)-based RLM 
(QRRLM) algorithm was developed in [2]. 

One possible problem with the RLS-like algorithms is that 
the covariance matrix may become poorly conditioned or even 
singular. This may occur when the excitation is not persistence, 
say when input signal level is weak or during a long period of 
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silence. The mean squares error (MSE) of the RLS algorithm 
may increase dramatically or even suffering from instability. 
For example, in the adaptive echo cancellation (AEC) problem, 
the level of the excitation signal, which is usually a speech or 
audio signal, may vary significantly over time and may not be 
long enough to reliably estimate the coefficients of an acoustic 
channel with long impulse response. As a result, most RLS
type algorithms will suffer from large variance in the channel 
estimate. To address this ill-conditional problem, a commonly 
used technique is to introduce some kind of regularization into 
the algorithm [15]. 

Regularization techniques have attracted much interest 
recently as a tool for reducing the variance for estimation with 
small number of data samples and automatic model selection. 
It has been applied to a wide variety of areas such as audio 
signal processing [3], model selection [4], basis pursuit 
denoising [5], sparse signal recovery and compressed sensing 
[6-8], etc. In [14], a RLS-based algorithm for adaptive 
beamforming with a quadratic norm constraint was introduced 
It employs an approximate expansion of the diagonal loaded 
covariance matrix to update the beamformer and determine the 
loading factor by solving a quadratic equation. Since the 
QRD-based RLS algorithm is more robust in terms of fmite 
wordlength effect and hardware implementation using the 
CORDIC algorithm, it is highly desirable to develop a QRD
based regularized RLS algorithm. In a recent contribution [8], 
the authors have introduced a recursive QRD-based RLM 
algorithm for reweighted L, regularization. 

In this paper, the performance analysis and application of a 
new time-recursive regularized QRD-based RLM algorithm 
are proposed. The regularized RLM employs M-estimation in 
combating impulsive outliers and a weighted L2 regularization 
term on its coefficients in order to reduce the estimation 
variance and improves the numerical stability over the 
conventional RLS algorithm. In addition, an efficient QRD 
implementation of the regularized RLM, which improves the 
numerical stability and lead to efficient hardware 
implementation using the CORDIC algorithm, is proposed. 
The resulting algorithm is called the regularized QRRLM (R
QRRLM) algorithm. Furthermore, the regularization 
parameters of the R-QRRLM algorithm can be adaptively 
determined, resulting in a variable regularization parameter 
QRRLM (VR-QRRLM) algorithm. The mean and mean 
square convergence analysis of the R-QRRLM algorithm for 
Gaussian inputs and additive noise is then carried out by using 
the Price theorem and the generalized Abelian integral 



functions [9]. Extension to the contaminated Gaussian noise 
case can be carried out using the approach recently introduced 
in [9]. The R-QRRLM algorithm is applied to an adaptive 
echo cancellation problem to demonstrate its effectiveness in 
contaminated-Gaussian noise environments and improved 
performance under low signal input level. 

The paper is organized as follows. In Section II, the R
QRRLM and VR-QRRLM algorithms are proposed. In 
Section III, the performance analysis is derived. Experimental 
results for verifying the theoretical analysis and comparing the 
algorithm's performance with RLS algorithm in AEC are 
presented in Section IV. Finally, conclusions are drawn in 
Section V. 

II. REGULARIZED QRRLM ALGORITHM 

A. QRRLM Algorithm 
The conventional RLS algorithm is based on the LS 

criterion and hence its performance will deteriorate 
considerably when the desired or the input signal is corrupted 
by impulsive noise. Robust statistics based on M-estimation 
[10] is an effective method to reduce the hostile effects of 
impulsive noise on the estimates. Specifically, for the system 
identification problem, where W* = [WI'···' wL r is the 
length-L impulse response to be identified and 
X(n)=[x(n), ... ,x(n-L+l)f is the input signal, the RLM 
algorithm aims to minimize the following cost function: 

J pen) = I;=oA,,-i(n)p(e(i» 
= I;=o A,,-i (n)p(d(i) -wT (n)X(i» 
= I;=o A,,-i (n)p(W *T X(i)+1/(i)-WT (n)X(i», (1) 

where W(n)=[wl(n),,·· ,w L(n)f is the adaptive filter with 

length L, d(i) = W *T XCi) + 1/(i) is the desired signal and 
1/(i) is the additive zero mean white Gaussian noise; pO is 
an M-estimate function such as the following modified Huber 
(MH) function or other appropriate functions { e2/2 O:S;lel<q, p(e)= 

lel-q+q2 / 2 lel�q,' (2) 

where q is a threshold parameter used to control the 
suppression of outliers and adaptation speed. It can be 
recursively updated using the following adaptive threshold 
selection (ATS) method introduced in [11 ,12]. 

a2(n) = Aqa2(n-l)+cl (1-Aq)median[A e(n)] , 
q = 2.576a2(n) , 

(3) 

where the forgetting factor A(1 is a positive real number close 

to but smaller than one, A e(n)={e2(n),. . .  ,e2(n-Nw+l)}, 
c1 = 1.483(1 + 5/(Nw -1» is a finite sample correction factor, 
and Nw is the length of the data set. A,,-i(n) in (1) serves the 
purpose of an exponential window which pays less emphasis 
to errors at distant past. For example, it can be chosen as 
An-i , where A is a constant forgetting factor or adaptively in 
variable forgetting (VFF) algorithms. By setting the first 
partial derivatives of J pen) , with respect to W(n) , to zero, it 
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was shown in [10] that the optimal weight vector satisfy the 
M-estimate normal equation: 

Rxp(n)W(n) = Pxp(n) , (4) 
where Rxp(n) = I;=oA,,_i(n)q(e(i»X(i)XT (i) and Pxp(n) 
= I;=o A,,-i (n)q(e(i»d(i)X(i) are the M-estimate 
autocorrelation matrix of X(n) and the M-estimate cross
correlation vector of den) and X(n), respectively, and p'(e) 
=dP(e)/de=q(e)e. In order to prevent the values of R xp(n) 
and Pxp(n) from continuously decreasing when a series of 
impulses is present in the underlying signals, A,,-i(n) can be 
updated as follows [11]  {A le(n)l<q 
A,,_i(n)=Ae(n)A,,_i_l(n-l) , Ae(n) = 1 le(n)l�q· 
Applying the iterative reweighted LS approach, the following 
RLM algorithm can be obtained: 

pen) =A�l(n)( I -K(n)XT (n»P(n-l) , 
K(n) = q(e(n»P(n -1)X(n) , 

Ae(n) + q(e(n»XT (n)P(n -1)X(n) 
Wen) = wen -1) + [den) -wT (n -1)X(n)]K(n) . 

(5) 

Eq. (5) can be efficiently implemented using a QR-based 
implementation [2] and it is summarized in Table I. It is 
mathematically equivalent to but has higher numerical 
stability than the RLM algorithm above. 

TABLE I. THE QRRLM ALGORITHM 

Initialization: 
R(O) =.[81, 0 is a small positive constant; 
U(O) =0 ; w(O)=O; 

Recursion: 
Given R(n -I) , U(n -I), w(n -I) , X(n) and d(n) , 
compute at time n: 
(i). [R(n) U(n)] = Q(n)[ ..p:; R(n -I) ..p:; U(n - 1) ] , 

o c(n) �q(e(n»XT (n) �q(e(n»d(n) 
where Q(n) is calculated by Givens rotation and A. is 
the forgetting factor. 
(ii). w(n) = rl(n)U(n) (back-substitution). 

B. R-QRRLM and VR-QRRLM 
In some applications, the adaptive filter is not persistently 

excited say when the input signal level is very low. Then, the 
autocorrelation matrix Rxp(n) may be ill-conditioned. As a 
result, a large estimation variance will result. To address the 
problem, a regularization term on the adaptive filter 
coefficients can be imposed on the objective function at time 
n to form: 

W(n) = arg mwin [Jp (n) + .u II DW(n) II�] (6) 

where II · lip represents Lp- norm and D is a weighting matrix 
which can be used to approximate different regularization 
methods such as LI norm or the smoothly clipped absolute 
deviation (SCAD) as shown in [8]. The regularization 
parameter .u can be determined adaptively as 



(n) = (I - A,)L 
(J'� I Tr(Rxp(n)) , where TrO is the trace Jl W*T W* 

operator. If the variable regularization parameter p(n) is 
used, the algorithm is modified to the variable regularization 
parameter QRRLM (VR-QRRLM) algorithm, which has 
improved performance than R-QRRLM with a fixed 
regularization parameter [13]. Due to page limitation, the 
derivation of p(n) is omitted here and it will be reported 
elsewhere. 

Unlike the cost function in (1), the regularized problem
estimation function in (6) cannot be solved simply by the 
recursive QRD in Table I due to the regularization term. A 
possible method to overcome this difficulty is to append the 

n 

E[RE,X(n)RE�(n)] = E[LA,n-I {X(I)XT (1)+r(l)rT (l)}RE�X(n)] = I 
1=1 

and by the averaging principle, R"Elx(n) is assumed to be 

independent of X(/)XT (I) and r(/)rT (I) , we have 
n 

E[LAn- /(X(/)XT (I) + r(l)rT (/»lE[R"E�x(n)] 
1=1 

= ��--1? (Rxx + � D2). E[R"E�x(n)] = I. 

Therefore, E[R"E�x(n)] = g�� (Rxx + � D2)-1 . For large n, 

lim E[R"E1x(n)]= R"Elx = (l-A)(Rxx + p D2)-I . 
n� " L vector JjiiEI randomly or sequentially to the previous QRD, 

where EI is the I-th row of the regularization matrix D [8]. If 
the vector is applied sequentially, then 1 = (n mod L) + 1 .  D is 
the identity matrix for Lz regularization or the generalized 
inverse of diag{lwI(n-I) I"",lw L(n-I) I} for LI 
regularization. More precisely, at each time instant, the 
algorithm (i) in Table I is executed once for the vector 

A. Mean Convergence Analysis 

�q(e(n»[X(n),d(n)] and again for the vector 

�q(e(n»[JjiiEI' O] . That is, R(n) and U(n) are updated 

twice by appending �q(e(n»[X(n),d(n)] and 

�q(e(n»[JjiiEI' O] respectively in the QRD operation. No 
forgetting, i.e. the forgetting factor is equal to one, is imposed 
in the second regularization update. We now study the 
convergence behaviors of the R-QRRLM algorithm for 
Gaussian input and additive Gaussian noise. The results for 
contaminated Gaussian noise can be similarly derived by 
means of the approach introduced in [9]. 

III. PERFORMANCE ANALYSIS OF R-QRRLM 
The above QR implementation of the regularized RLM 

algorithm can be written as the following equivalent update: 

W(n+ 1) = W(n) _ R-1 [ X(n)lf/(e(n» E,X 
A, + XT (n)R"E\X(n) 

+ 
r(n)lf/(er(n» ] . 

A,+ rT (n)R"E�xr(n) (7) 

For simplicity, we shall assume the case with fixed forgetting 
factor. The following assumptions are made: 
(A I )  {X(n)} is zero-mean Gaussian distributed with 
covariance matrix Rxx; 
(A2) {'1(n)} is white Gaussian-distributed with zero-mean and 
is uncorrelated with {X(n)}; 
(A3) the weight error vector {w(n) } is independent of {X(n)} 
and { '1(n)}; 
(A4) P(n) = Rx1(n) "" R"E�x (n) "" E[R"E�x (n)]=R"E�x' where 

RE,x (n) =ARE,x (n-I)+[X(n)XT (n)+r(n)rT (n)] and 

r(n)= Jjidk , dk is the k-th column of �A(n-l) . Since: 
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First of all, we subtract the optimal solution of the R
QRRLM algorithm W(oo) , which will be derived in the 
process of the analysis, from (7) and take the expectation over 
{v,X,'I1o} on its both sides. This gives 

E[v(n+I)]=E[v(n)]-R"E�x (� +L{), (8) 
where v(n)=W(oo)-W(n) , E[·] denotes the expectation 
over {v(n-I),X(n),'I1o(n)}, which is more clearly written 
here as E{v,x,1/o} [.] ; by dropping the time index of X, e, and '110' 
� and L{ are, respectively, 

4 = E{V,X,I/o{ A,+
;r�tx

X
] 

- E {E [ XIf/(e) Iv]} - E [A] - {v} {X,I/o} A, + XT RE�XX 
- {v} 

L; -E [ rlf/(er) ] 
- {v,r,l/o} 1 TR-I 

/I,+r E,Xr 

= Jji � E {E [ 
dklf/(er) Iv]} 

L L..J {v} {r,l/o} A+ IIliT R-1 d 
' 

k=1 f""k E,X k 

(9) 

(10) 

where er = _JjiwT (n)dk = -Jjidk,kwk(n) . Eq. (9) is 
obtained from the independence assumption of l1(n) , w(n) 
and X(n) in (A3). The details for evaluating 

A = E{X,I/o} [XIf/(e)/(A+ XT R"E�xX)lv] is given as [13] 
A "" Avr(O';)' UN I 2U1(A)i]T A1I2UT v'(n) , (11) 

where Rxx =UAUT and rlRExr] =UA UT are 

respectively the eigen-decomposition of R xx and 

with 
.!. Lx=UN v'=AW+v 

AW = W* -W(oo) , E{x ,I/)If/'(e) I v]= Avr(O';); I(A) is a 

diagonal matrix with its (i,l)-th entry given by: 

I (A) - r exp( -pA,) dP 
I - (2P�-1 + I)II�=1 (2PX;1 + 1)112 ' (12) 



where 2; is the i-th eigenvalue of A and A(n) is the time
variable forgetting factor. Here A(n) is a constant. Similarly, 

L' - Jii D'-( ) I-Y IJI n , (13) 
where ij(n) = [1f/(-Jjid1,lwl (n», ... ,If/( JjidL, LwL(n»f 
If/(-Jjidk,kwk(n» = Ev [If/(-Jjidk,k (Wopt,k -vk(n»] with 

wopt,k being the k-th element of W(oo) , and 

Substituting (9) to (13) into (8), the following relation 
between E[v(n+l)] and E[v(n)] is obtained 

E[v(n+ 1)] '" ( I  -A (n)R"ElxUAI/2iJl(A)iJT A1I2UT). E[v(n)] '" , 
- R"E�x[A",(n)UA1I 2iJI(A)iJT Al/2UT L1W + � D'ip(n)] . (14) 
We first assume that the algorithm converge to determine the 
optimal solution. Then, we shall show that the algorithm is 
convergent for A. sufficiently close to 1. If the algorithm 
converges, then we have from (14) the following: 

AIf/(oo )UAII2iJI(A)iJT AI/2UT L1W = -!f:D'ij(n) , (15) 
Using W* = R}/xrxd, the optimal solution to R-QRRLM 
algorithm can be derived from (15) after some m: 
r = UAlI2 jjI-l(Ji.)iF KI12UT • (ull!12 iJI(Ji.)iJT A1I2UT +_f.l_D'2)W(oo) · 

xd A!y(oo)L 
(16) 

Since REX '" Rxx +(fl/ L)D2 = Rxx and 

riRxxLi = 1 +(fl / L)LiD2 Li . If (J1 / L) II D2 112 is 

sufficiently small, then iJ '" 1 and I(A) '" Erf(A)' 1 where 

Erf(/) = r exp(-ftA) d'f3. Consequently, (16) is reduced to 
(2ft + 1)(LI2)+1 

(R + fl D')W(oo) '" r . (17) xx AIf/(oo)Erf(A)L Xd 

To achieve a given regularization or diagonal loading Yk at 
the k-th diagonal, we can set 
dk = AIf/(oo)Erf(A)(A+ pd;aiE.X,k)YkLi fl . 

To study the convergence rate, we shall focus on the terms 
in the curved bracket in (14). Let V(n) = iJT A1I 2UT v(n) : 
E[V(n+ 1)] = ( I  -A",(n)k1 I(A»E[V(n)]-iJT A1I2UT R"E�x . 

[AIf/(n)UAII2iJI(A)iJT AI/2UT L1W + !f:D'ij(n)] . (18) 
Therefore, the mean weight error vector will converge if 
I 1-4(n)l;-IIi(A) 1< 1 . It can be shown that for A 
sufficiently close to 1,  we have 

l;-II;(A) = �ln(1 + 2/(l;A» < �ln(1 + 2) = 0.549. (19) 
Since I �(n) 1< 1 ,  I 4 (n)1;-IIi (A) 1< 1 and hence the mean 
error weight vector of the algorithm is convergent. 

B. Mean Square Convergenc Analysis 
Post-multiplying v(n) by its transpose and taking 

expectation, one gets 
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E(n + 1) = E(n) 
-R'Elx {A", (n)UAII2iJI(A)iJT A1I2UT Zv'v(n)+ J1 D'W(n)E[vT 

(n)]} 
, r L 

-{A", (n)Zw' (n)UAII2iJI(A)iJT A1I2UT + J1 E[v(n)]iiiT (n )D'}R'E1x 
r L '  

+ 2C«(T;)UA-I12iJk1iF (Lr;Zv'v'(n -1)Lx 0 1"(A»iJk1ijT A-1/2UT 

+ B",(a;)UA-1/2iJA-1iF I'(A)iJk1iF A-1I 2UT 

+ f RE�x[a(n)UAII2iJI(Ji.)iJT AI/2UT (E[v(n)]+ dW)WT (n)D']RE�X 

+ If RE� [a(n)D'W(n)(E[vT (n)]+ dWT)UAII2iJJ(Ji.)fJT AII2UT ]RE�X 

(20) 
where a; =a�o +V,T Rxxv' , d�; E[1f/2(e)]=c",(a;) , 

1f/2(a;)=B",(a;) ; Ew,(n)= E[v(n)(vT(n)+L1WT)] = 

Evv(n)+E[v(n)L1WT] with ilW =W* -W(oo) and Evv(n) 
= E[v(n)vT (n)]; I"(A) is a matrix with its (iJ)-th entry 
given by: 

L 

Ii,j = r pexp(-pJ.)(2PX;-1 + 1)-1 (2pXjl + 1)-1 n (2pX;1 + 1)-I12dP 
k=1 

and I'(A) is a diagonal matrix with its (i,l}-th entry given by: 
L 

[I'(A)1;,; = r pexp(-pA)(2PX;-1 +1)-ITI(2PXil +1)-I12dP. Due 
k=1 

to page limitation, the evaluation of the expectation, which is 
based on the Price's theorem, is omitted and interested 
readers are referred to [13]. Also due to page limitation, we 
fIrst analyze the steady state EMSE of the algorithm below. 
It can be shown in [13] that the algorithm is also convergent 
in the mean squares sense. Therefore, at the steady state and 
using the transformation V(n) = iJT A1I2UT v(n) , we have 

[EVV(oo)l;,i '" (1-2a(oo)1;-II;(A) + 2C(a;)1;-2 I; (A»[Evv(oo)l;,; 
2�2 "� 2 2�2 + 2C(ae )A;- I; ( A)L1WL,; + B",(ae )A;- [rIll,; + [r2];,i' (21) 

where Lr;L1W = ilWL , r1 = iJT I'(A)iJ and r2 = iJT A1I2UT 
r(oo)UA1I2iJ +2C(a;)k1iJT A-1L1WLL1W[ o/"(A»A-1UA-1; 

and r(oo) = fl R"E\D'ij(oo)ijT (oo)D'R"Elx L ' , 

+ Jji R"Elx[a(oo)UAI/2iJl(A)iJT A1I 2UT ilWijT (oo)D']R"Elx L ' , 

+ Jji R-1 [a(oo)D'ip(n)L1WTUAI/2iJI(A)iJT A1I 2UT]R-1 . L U U 
Assume the regularization is mild, then we have iJ '" 1 and 
the 4th term on the right hand side of (21) can be 
approximated as 2C(0';)A-1(Zvv(n) 0 I*(A»A-I. Consequently, 
we have 

2 �-2 
';:I' 

B",(ae)A.; [rdi,i + [r2l;.; [-vv(oo)l;,i '" 2a(oo)1;-IIi(A)-2C(a;)1;-2I;'(A) 
. 

The steady-state excess mean squares error (EMSE) is 

(22) 

J. = tr(Evv(oo)Rxx) = tr(Evv(n)iJT A-1/2UT RxxUA-1I 2iJ) 



=tr(Evv(n)) = ± B!Jf�0";)�2 [Fd;, ;+[�2] ;, ;" _ .  (23) 
;=1 2a(oo)A;-II ;(A)-2C(O";)A;-2 I; (A) 

If A TS is used, it can be shown that S (0"2) = B (0"2) / 0"2 
" e  If' e e , 

A",(O";) and C",(O";) are nearly constant [9] and hence we 
have 

L 2 - 2 
J = " S!JfO"e (oo)A;- [Fd;, ; + [F2] ;, ; (24) * L...J "'-I /'"OJ ...... 2" ...... • 

;=1 2A!JfA;- I; (A) -2C!JfA;- I; (A) 
Since 0"; (00) = O"�o + E[(v(oo)+ AW)T Rxx(v(oo)+ AW)] = O"�o 
+AWTRxxAW+E[Evv(oo)Rxx]=O"�o +AWTRxxAW+J. , 
one gets from (24) after some manipulation: 

1 2 "'-_ 

J. = "2O"min'I'RLS +¢JRW (25) 
(l-t ¢RLs) 

where � �-2[rd· 
¢.u.s = s'" � -- 1 -- ,.� 2 .. --;=1 A,p-Ai I; (A) -CflA,- I; (A) 

and 

tPRW '" ± � I 
�r2];,i 

� 2 • 
� 

The results for the 
;=1 AflA,- I; (A) -CflA,- I; (A) 

contaminated Gaussian noise follows from the approach 
introduced in [9] and the details can be found in [13]. 

IV. EXPERIMENTAL RESULTS 

Computer simulation of a system identification problem is 
used to evaluate the mean and mean square convergence 
analysis in section III. In addition, we shall consider the 
application of the R-QRRLM algorithm in an acoustic echo 
canceller to illustrate the usefulness of the M-estimate 
algorithm and regularization, respectively in suppressing the 
double talk and reducing the variance of the estimate at low 
signal level. All the simulation results were averaged over 200 
runs. 

A. Performance of Mean and Mean Square Convergence Analysis 
In evaluating the convergence performance analysis, the 

randomly generated system impulse response is W* = 
[0.3886,0.1632, - 0.8294, - 0.9247, - 0.6148] . For the mean 
convergence, the norm of the mean weight-error vector is 
used as the performance measure: II v(n) 112= 

L .1. K (') 2 101og( l:;=I[Kl:j=IV/ (n)] ) , where v;(J)(n) is the i-th 

component of the weight-error vector with respect to (wrt) the 
Wiener solution, v * (n) = w(n)-w * ,  or the optimal solution 
W(oo) in (17), v(n)=w(n)-W(oo) , at time n in the j-th 
independent run. K is the total number of independent runs, 
which is set to 5000 in this experiment. Fig. 1 plots the 
learning curves of II v(n) 112 for the L2 R-QRRLS algorithm. 
For page limitation, the results of LI regularization are not 
presented. II v* 112 denotes the error norm wrt to the Wiener 

solution while II VOO 112 denotes that to the optimal solution 
W(oo) . The settings are as follows: forgetting factor A =0.98, 
regularization parameter 11 =0.005, 0.05 and SNR=lO dB. It 
can be seen from the two II v* 112 curves that the bias wrt the 

Wiener solution increases with 11 . Since II VOO 112 converge to 
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a lower value than the II v* 112 , it suggests that the algorithm 
converges to the optimal solution W(oo) rather than to the 
Wiener solution. Simulations with different forgetting factors 
give similar results and are not presented here for page 
limitation. The steady-state EMSE of the simulation and the 
theoretical analysis are compared in Tables II and III for both 
white Gaussian input and first order autoregressive input 
x(n) = 0.9x(n -1) + g(n) , where g(n) is a zero-mean and 
white Gaussian noise. In the simulation, we set A =0.995, 
0.99, 0.98, 11 IL=O.OOOl, 0.001 and SNR=O dB, 10 dB. The 
results how that the analysis slightly underestimates the 
steady-state EMSE because of the independent assumption 
used. 

B. Performance of R-QRRLM in AEC 
In this experiment, the performance of the proposed R

QRRLM and VR-QRRLM algorithms are compared with the 
RLS algorithm in the adaptive echo cancellation problem. 
The AEC system has a similar structure with that of the 
system identification except that the additive noise is replaced 
by the near-end source signal which is to be retained. The 
impulse response is shown in Fig. 2(a) and its length is 100. 
The input signal is a segment of music as shown in Fig. 2(b). 
It is assumed that there is a double talk between 3000 to 
3100-th samples where the algorithm has almost converged in 
order to visualized the adverse effect of the double talk. The 
SNR is 10 dB. The forgetting factor A for the RLS algorithm 
is chosen to be 0.997, resulting in an exponential data 
window as long as 3 times of the impulse response. For page 
limitation, the impulse response is assumed to be time
invariant and only L2 regularization is tested. In cases of time
varying impulse response, LI regularization can be easily 
imposed to improve the performance [8]. The forgetting 
factor and regularization parameter for the R-QRRLM 
algorithm are: A =0.997, 11 IL=O.l 10.001, and the parameters 
for estimating the noise variance in (3) are Au =0.9 and 
N w = 200 . The performances of various algorithms are 
shown in Fig. 2( c). It can be seen that the RLS algorithm is 
very sensitive to the level of the input signal and the double 
talk which resembles a long series of impulsive noise. For the 
R-QRRLM algorithm, if a small regularization parameter, say 
11 = 0.001 , is used, it converges to a lower EMSE value; on 
the other hand, if 11 is increased to a comparatively large 
value, i.e. 11 = 0.1 , the algorithm becomes much less 
sensitive to the input signal power variation but converges to 
a higher EMSE value. The VR-QRRLM algorithm, however, 
adaptively selects the regularization parameters and obtains 
both high immunity to input variation and low steady-state 
EMSE values. In addition, algorithms using M-estimation 
show the robustness in impulsive noise environment if 
parameters are appropriately selected. 

V. CONCLUSTION 

A QR decomposition based regularized RLM algorithm 
and its mean and mean square convergence performance 
analysis are presented. The mean convergence analysis 
suggests that the algorithm solves the desired regularized 
solution of the Wiener solution with an additional bias. The 



mean square convergence analysis gives the steady-state 
EMSE and suggests that the variance of estimation will 
decrease while the bias will increase with the regularization 
parameter. The theoretical results are in good agreement with 
those by computer simulation. Results for the AEC show that 
the R-QRRLM and VR-QRRLM algorithms outperform the 
traditional RLS algorithm at low input signal level or during 
double talk. 
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TABLE II. STEADy-STATE EMSE FOR WHITE GAUSSIAN INPUT 

L 

5 

25 

50 

L 

5 

25 

50 

= ·30 

;;;; ... , 

. ", 

·60 

·70 

SNR=OdB SNR= 10 dB 
,.LI L 0.0001 0.001 0.0001 0.001 

A 0.995 0.99 0.98 0.995 0.99 0.98 0.995 0.99 0.98 0.995 0.99 0.98 
Simulation -15.91 -12.85 -9.69 -15.91 -12.79 -9.60 -25.80 -22.71 -19.71 -25.75 -22.66 -19.66 

Analysis -15.84 -12.89 -9.94 -15.84 -12.86 -9.91 -25.75 -22.79 -19.84 -25.69 -22.64 -19.62 
Simulation -9.10 -6. II -2.90 -9.00 -6.10 -2.80 -18.99 -15.90 -12.76 -18.98 -15.90 -12.72 

Analysis -9.20 -6.42 -3.74 -9.24 -6.42 -3.82 -19.21 -16.42 -13.82 -19.21 -16.41 -13.78 
Simulation -6.01 -2.98 0.46 -6.00 -2.79 0.47 -16.02 -12.89 -9.90 -16.00 -12.85 -9.57 

Analysis -6.45 -3.92 -1.62 -6.46 -3.88 -1.61 -16.49 -13.89 -11.50 -16.48 -13.88 -11.50 

TABLE III. STEADY -STATE EMSE FOR FIRST-ORDER AR INPUT 

SNR=OdB 

filL 
A 0.995 

Simulation -14.10 
Analysis -13.91 

Simulation -6.73 
Analysis -6.82 

Simulation -7.88 
Analysis -8.10 

' . 

0.0001 
0.99 

-10.90 
-11.06 
-3.62 
-4.05 
-4.64 
-5.50 

-_···i'·"n1",-O,05 

_ •••.• I'"(m? Il-O.O!'i 

---R'-1
I,:

11-0.005 

0.98 
-8.02 
-7.90 
-0.40 
-1.41 
-1.37 
-3.20 

-'(<0 ,,-0.005 

.. \ .... 
'-,-�..-.----....................... ,---", .... -.-.. --........ ,--......... --.. -... . 

100 ISO 200 250 300 350 �oo 
Iltl'llT!Otl llumbf'I' 

0.001 
0.995 0.99 0.98 0.995 
-13.80 -10.50 -7.60 -23.80 
-13.90 -10.70 -7.81 -23.80 
-6.69 -3.60 -0.32 -16.65 
-6.80 -4.04 -1.40 -16.83 
-7.85 -4.60 -1.33 -18.00 
-8.10 -5.50 -3.17 -18.12 j 'E: : : 1 4� 10 W � � H � ro � � 100 

Sample 
(·l 

l
l
� 

-so 1000 2000 3000 4000 SOOO 6000 
Sample 

(bl 

0.0001 
0.99 

-20.80 
-20.73 
-13.58 
-14.05 
-14.74 
-15.54 

., 

·10 

·20 

SNR= 10 dB 

0.98 
-17.90 
-17.81 
-10.40 
-11.41 
-11.38 
-13.20 

1000 

0.995 
-23.50 
-23.60 
-16.59 
-16.79 
-17.80 
-18.l1 

0.001 
0.99 0.98 

-20.50 -17.50 
-20.70 -17.80 
-13.52 -10.37 
-14.00 -11.33 
-14.69 -11.01 
-15.49 -12.99 

'·'·'·'RI.5;).=O.997, 
----- R·QRRBI;A=O.997,../I...=O,1 

•••••. R·QRJU.M;A=O.997,II./I...=O,OOI 
- YR- RRL.\I: 1.;0.997 

i\ 
. \ 

1\ 
I \ 

2000 - 4000 5000 
Itl.'rulionnulIlber (C) 

Figure I. Convergence curves for IIvll2 with 
different regularization parameters. 

Figure 2. Performance comparison of various algorithms for the AEC problem in experiment 3. (a) 
impulse response of length 100. (b) the input music signal. (c) the learning curves of EMSE in 10 dB for 
various algorithms. 
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