
Title Parallel chemical reaction optimization for the quadratic
assignment problem

Author(s) Xu, J; Lam, AYS; Li, VOK

Citation

The 2010 World Congress in Computer Science, Computer
Engineering, and Applied Computing (Worldcomp 2010), Las
Vegas, NV., 12-15 July 2010. In Conference Proceedings, 2010, p.
125-131, paper GEM4520

Issued Date 2010

URL http://hdl.handle.net/10722/126106

Rights Creative Commons: Attribution 3.0 Hong Kong License



Parallel Chemical Reaction Optimization for the Quadratic
Assignment Problem

Jin Xu, Albert Y.S. Lam, and Victor O.K. Li
Department of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam Road, Hong Kong, China

Abstract— Chemical Reaction Optimization (CRO), a re-
cently proposed metaheuristic, has demonstrated its capa-
bility in solving NP-hard optimization problems. CRO is
a population-based evolutionary technique inspired by the
interactions between molecules in a chemical reaction. In
this paper, we present a parallel version of CRO (named
PCRO) with a synchronous communication strategy. PCRO
is applied to solve the Quadratic Assignment Problem
(QAP), which is considered one of the great challenges
in combinatorial optimization. Simulation results show that
compared with the sequential CRO, our proposed PCRO can
not only reduce the computation time but also improve the
quality of the solution for instances of QAP with large sizes.

Keywords: Parallel metaheuristics, chemical reaction optimiza-
tion, quadratic assignment problem.

1. Introduction
Metaheuristics are powerful optimization techniques that

have been gaining attention in recent years. The merits of
metaheuristic methods are mainly two-fold. Firstly, these
techniques have the capability to solve a wide range of
problems with little or no knowledge of the search space.
Thus, they are easily adjusted to fit the problem. Secondly,
most optimization problems are intractable and NP-hard,
which means that the optimal solution can not be found in
polynomial time. Metaheuristics randomly search for possi-
ble solutions by following certain evolutionary rules. Most of
the time, they can reach the optimal or near-optimal solutions
in a reasonable running time. Some of these algorithms are
nature-inspired, like Genetic Algorithm (GA) [1], Simulated
Annealing (SA) [2], Ant Colony Optimization (ACO) [3],
and Chemical Reaction Optimization [4]. Others are not
nature-inspired, and examples are Tabu Search (TS) [5] and
Threshold Accepting (TA) [6].

CRO mimics the interactions of molecules in a chemical
reaction. According to the No Free Lunch theorem, "for
any algorithm, any elevated performance over one class of
problem is exactly paid for in performance over another
class" [7]. Therefore, CRO has equal performance as other
metaheuristics on the average and may outperform others in
some type of problems (while it may perform worse in other
types). As a new metaheuristic approach, CRO is still being
improved. However, it has already shown its competitiveness

1 2 3 4

Task

1
2

3

4

1 2 3 4

Task

1
2

3

4

Fig. 1: Parallel Computing

with other existing methods in the Quadratic Assignment
Problem (QAP), Resource-Constrained Project Scheduling
Problem (RCPSP), Channel Assignment Problem (CAP)
[4], Grid Scheduling Problem (GSP) [8], and Population
Transition Problem [9].

With the continuous improvement of CPU speed and
the advancement of multicore CPU, computer performance
has been greatly boosted. Meanwhile, the network is also
significantly improved and popularized all over the world.
Therefore, more computing resources are readily available
with the help of network, which accordingly makes the par-
allel and distributed computing a trend in the future (see Fig.
1). Grid computing and cloud computing are two kinds of
such frameworks targeting at fully utilizing the idle resources
in order to improve the system performance. On the other
hand, though metaheuristics can tackle intricate problems
and find satisfactory solutions, the CPU requirement is still
quite demanding (i.e. computation time is high) especially
for problems of large sizes. This often makes the algorithms
impractical in the scenarios where solutions have to be
quickly obtained for decision making, such as in dynamic
scheduling [10]. Thus, it is necessary and important for us
to parallelize algorithms to reduce computation time.

Basically, there are two major benefits from using par-
allel metaheuristics. One is that the execution time for
the algorithm will be greatly reduced if we employ more
machines or processors cooperatively in solving the problem.
Moreover, the quality of the solution can also be improved,
provided that the parallel structure is well designed. For the
classical metaheuristics, such as GA, SA and PSO, several
parallel versions (named PGA, PSA and PPSO) [11][12][13]
have already been developed and they have shown their



capability in solving large scale problems. Although most
popular metaheuristics have their own parallel versions, it is
important to notice that due to their intrinsic and different
characteristics, their parallel designs are significantly differ-
ent. For example, GA is a population-based algorithm and
the population can be divided into different parts and each
of them evolves semi-independently, allowing individuals
to exchange between subpopulations. On the other hand,
SA manipulates a single solution in each iteration, and
its parallel design is rather limited and relatively simple.
Though CRO is also a population-based algorithm, it is
different from GA in that the number of solutions varies
as it evolves. Thus, in order to test whether CRO is suitable
for parallel implementation, in this paper, we develop the
preliminary parallel version of CRO.

The remaining of the article is organized as follows.
The basic concept and framework of CRO are described in
Section II. In Section III, we address our parallel model for
CRO. The experimental results are reported and analyzed
when solving the Quadratic Assignment Problem in Section
IV. Finally, some concluding remarks and topics for future
investigation are given in Section V.

2. Chemical Reaction Optimization
In a chemical reaction, a set of chemical substances

transform to another with the goal of reaching the minimum
state of free energy. From the microscopic point of view,
a molecule is the smallest indivisible unit in a chemical
reaction that has unique chemical properties. Chemical re-
actions can be thought of making or breaking chemical
bonds to form or dissociate molecules respectively, and
thus, new molecules are generated. This can happen either
spontaneously without requiring external energy, or non-
spontaneously where the reactions are stimulated by external
energy.

CRO mimics the process of a chemical reaction through
a sequence of intermediate reactions, and the resultant
molecules (i.e. the products in a chemical reaction) tend to
stay at the most stable state with the lowest free energy. We
will describe how to apply the chemical reaction concept to
optimization in the following:

The chemical reaction is designed to happen in a closed
container, starting with a certain number of molecules.
The molecular structure of each molecule is viewed as a
possible solution of the optimization problem. There are
two kinds of molecular energies: potential energy (PE)
and kinetic energy (KE). The former corresponds to the
objective function value, while the latter is used to control
the acceptance of new solutions with worse values. Let ω
and f be a molecular structure (solution) and the objective
function value respectively, then PEω = f(ω). Consider that
ω attempts to change to ω’ in a collision. We replace ω
with ω’ if PEω′ ≤ PEω . Otherwise, we also accept the
change when PEω′ ≤ PEω + KEω . Therefore, KE can be

considered as the ability of the molecule to escape from local
optimums. Energy transformation plays an important role in
the process of reaction. Moreover, a central energy buffer
is also employed to adjust the energy distribution under the
conservation of energy. These allow the algorithm to search
in different regions of the solution space.

There are four types of elementary reactions in CRO:
on-wall ineffective collision, decomposition, inter-molecular
ineffective collision, and synthesis. The former two
reactions happen when molecules collide on the wall of
the container, while the latter two involve only molecules
that interact with each other. Moreover, only one molecule
involves the on-wall ineffective collision and decomposition
reactions, while more than one molecules are needed in
the inter-molecular ineffective collision and synthesis. For
the two ineffective collisions (i.e. the on-wall ineffective
collision and the inter-molecular ineffective collision), the
number of molecules remain the same before and after the
reactions, and only the neighborhoods of original solution
are explored. For the decomposition and synthesis, the
former combines all the molecules into one, while the latter
splits one molecule into several. These two elementary
reactions produce new solutions significantly different from
the original ones, and different regions of the solution space
can be searched.

Algorithm 1 Pseudocode for the basic CRO
1. Initialize population with random solutions, and set

the parameters.
2. Compute the fitness value of each molecule as PE.
3. While stopping criterion not met
4. Choose one reaction from the four elementary

collisions according to certain rules.
5. Randomly select the molecule(s) for reaction.
6. Generate the new molecule(s).
7. If the new solution acceptance rules satisfied
8. Substitute new molecule(s) for original one(s).
9. Update the KE for the new molecule(s), and the

central energy buffer.
10. Else
11. Keep the original molecule(s).
12. End While
13. Output the solution with the minimum PE in the

population, and its fitness value.

The canonical CRO follows the pseudocode presented in
Algorithm 1. Similar to other metaheuristics, the progress
of CRO can also be divided into three stages: initialization,
iterations, and the final output stage. We set the system
parameters, including the population size, the initial KE
of molecules, MoleColl and KE loss rate (defined next),
and generate initial solutions randomly in the initialization
step. Then, the algorithm enters iterations until a stopping
criterion is met. We report the best solution in the final



stage. In Step 4, an elementary collision is selected. We
use MoleColl ∈ [0, 1] to decide whether the collision is
inter-molecular or not. To do this, a random value t is
generated in the interval [0, 1]. If t is larger than MoleColl,
it will be a unimolecular collision. Otherwise, an inter-
molecular collision will take place. α and β are two thresh-
olds used to define the decomposition and synthesis criteria,
respectively. For unimolecular collisions, α represents the
maximum number of hits for a molecule without finding
an improved solution. In other words, if a molecule can
not find a better solution with the number of hits larger
than α, decomposition will take place, otherwise the on-wall
ineffective collision happens. For inter-molecular collisions,
when both molecules do not have sufficient KE, i.e. KEω1 ≤
β and KEω2 ≤ β, the synthesis reaction will be activated.
Otherwise the inter-molecular ineffective collision occurs.
Steps 7 to 11 illustrate that, if the energy conditions are not
satisfied, the corresponding reaction will not be triggered,
and the molecules will remain exactly the same for the next
iteration. Otherwise, the reaction will take place, and the
molecules and their corresponding energies will be updated.
Note that the total number of molecules at a particular
moment is changeable through decomposition and synthesis.

3. Parallel Chemical Reaction Optimiza-
tion

CRO is a population-based metaheuristic involving a
pool of molecules. Each molecule can be considered as
an independent unit, which includes the molecular struc-
ture (solution), PE (fitness value), and KE. Each tank of
molecules is handled by a processor and multiple tanks can
be manipulated simultaneously in parallel. The molecules
can be exchanged among the processors from time to time.

The main goal of this paper is to investigate the
possibility of parallelizing CRO. We create a parallel
version for CRO, called PCRO (Parallel Chemical Reaction
Optimization), which can be efficiently executed on a
parallel platform. The difference between the design for
PCRO and PGA (Parallel Genetic Algorithm) are mainly
three-fold. Firstly, in PCRO, it is the molecules (solutions)
with associated attributes that are swapped during the
communication interval, while in PGA, only individuals
(solutions) can be exchanged. Moreover, energy in each
buffer can also be transferred, and this influences the
degree of intensification and diversification of the search.
Secondly, the number of molecules controlled by each
processor vary in the evolutionary process due to synthesis
and decomposition, whereas for the PGA, the number
of individuals in each subpopulation generally remains
the same. Thirdly, CRO generates new solutions through
four elementary reactions. However, new solutions are
produced in GA mainly via crossover and mutation.

Fig. 2: Molecules’ migration among containers

Algorithm 2 Pseudocode for Ψ
For the processor of the central node
1. Receives molecules from all of the other processors.
2. Chooses the best one from all the molecules.
3. Sends a copy of best molecule to other processors.
4. Removes all the molecules except the best one.
5. Updates the central energy buffer.

For other processors
1. Sends a copy of best molecule to central node.
2. Receives the molecule from central node.
3. Randomly substitutes one molecule.
4. Updates the central energy buffer.

Algorithm 3 Pseudocode for PCRO
1. Builds the parallel platform, and sets the update rate.
2. For each processor, initializes its molecules, and

sets the system parameters.
3. Do in parallel in each processor :{
4. While stopping criterion not met
5. While update rate not met
6. Chooses one reaction from the four elementary

collisions according to certain rules.
7. Randomly selects the molecule(s) for reaction.
8. Generates the new molecule(s).
9. If the new solution acceptance rules satisfied
10. Substitutes new molecule(s) for original one(s).
11. Updates the KE for the new molecule(s), and

the central energy buffer.
12. Else
13. Keeps the original molecule(s).
14. End While
15. Ψ // communication
16. End While
17. } // End of parallel code
18. Outputs the best solution and its fitness value from

all of the processors.

In our parallel CRO model, all molecules are divided
into small groups and distributed to different processors



(containers). Processors communicate with each other in a
synchronized way, in which the molecules are redistributed
among the processors with a certain frequency. The network
topology of the processors are assumed fully connected,
which is also the case in our experiment. Assume that one of
the processors is the central node. In each communication,
the molecule with the minimum PE (best fitness value) in
each container is copied to the central node. Then, we deliver
the best of such solutions to each container, and it randomly
substitutes one of the molecules in that container (see Fig.
2). To maintain the conservation of energy in each container,
the central energy buffer will be updated after exchanging
molecules. The pseudocode for this communication mecha-
nism (named as Ψ) is shown in Algorithm 2. We also give
the whole PCRO in Algorithm 3.

The delivery of the best molecule among processors in
each communication period will speed up the convergence
of the algorithm. Meanwhile, the energy is different in each
container, and this allows PCRO to explore a wider solution
space to avoid getting stuck in the local optimums. Thus,
these two characteristics give PCRO a good balance between
intensification and diversification.

4. Simulation Results
In this section, one of the classical NP-hard problems,

QAP [14], is used to study the behavior of the parallel
model for CRO introduced in the previous section. We will
first briefly describe QAP, and simulation background and
methodology will then be explained. Finally we discuss the
simulation results.

4.1 Quadratic Assignment Problem
QAP is a fundamental combinatorial optimization prob-

lem. Shani and Gonzalez [15] have proved that it is an NP-
hard problem, and there is no ε-approximation algorithm for
the QAP unless P=NP. Moreover, QAP is the generalization
of many other well-known NP-hard problems, including the
traveling salesman problem [16], bin packing problem [17],
and graph-partitioning problem [18].

In QAP, a set of n facilities are assigned to n locations
in such a way that each facility must be allocated to exactly
one location. We try to minimize the total cost, which is the
summation of the distance of any pair of locations multiplied
by the flow generated between them. This can be defined as
follow.

min
p∈Ω

n∑
i=1

n∑
j=1

fij × dp(i)p(j) (1)

where fij is the flow between the facilities i and j, and
p(i) and p(j) represent the locations assigned for i and j,
respectively. Thus, dp(i)p(j) is the distance between locations
p(i) and p(j). Ω is the solution space with all the permutations
of n elements, and p is a possible permutation. Usually, the

Location 1 Location 2

Location 3

Location 4

Facility 4 Facility 1

Facility 2

Facility 3

f14

f41

d12 d21or
Location 1 Location 2

Location 3

Location 4

Facility 4 Facility 1

Facility 2

Facility 3

f14

f41

d12 d21or

Fig. 3: A example for QAP

flow f ’s and distance d’s are arrayed in square matrices with
non-negative values. Therefore, QAP can be looked at as a
minimization problem with the variables of p.

For example, suppose four facilities are allocated to four
locations. p = [4, 1, 2, 3] is a possible solution, where the 4th

facility is distributed to location 1, the 1st facility is assigned
to location 2, and the 2nd and 3rd facilities to locations 3
and 4 respectively (see Fig. 3). The cost is evaluated by
computing:

f44d11 + f41d12 + f42d13 + f43d14+
f14d21 + f11d22 + f12d23 + f13d24+ (2)
f24d31 + f21d32 + f22d33 + f23d34+
f34d41 + f31d42 + f32d43 + f33d44.

Usually, the QAP instances with the size n larger than
25 are considered intractable [19]. The number of possible
solutions of size n is n! (When n=25, n! ≈ 1.55 × 1025).
However, in practice, many real world applications formu-
lated as QAP, such as image processing [20], are often
with the size of several hundreds. Compared with other
metaheuristics, CRO in [4] has already shown its good
performance in solving QAP [19]. However, we also find that
the computing time consumed by CRO grows rapidly with
the size. Reducing the computation time as well as keeping
or improving the quality of the solution are the motivations
for us to design PCRO, and thus, we adopt the large scale
benchmark instances (Wil100, Tho150, and Tai256c in QAP
library [19], which have sizes of 100, 150, 256 respectively)
to test the performance of our PCRO.

4.2 Simulation Setup
In order to test PCRO, we compare it with the sequential

CRO introduced in [4] when solving the three instances
described in the previous subsection. For fairness, we also
use the same operators for CRO in PCRO, including the
two-exchange operator for on-wall ineffective collision and
intermolecular ineffective collision, the circular shift opera-
tor for decomposition, and the distance-preserving crossover
operator for synthesis [4]. The algorithm parameters are



Table 1: Parameters for PCRO used in simulation

Parameter Value

Total population size 24
Particular for Number of processors 1, 2, 4, 8

PCRO Subpopulation size 24/ number of processors
exchange/update rate analyzed below

KELossRate 0.8
Same as MoleColl 0.2
CRO [4] InitialKE 1000000

α 1300
β 10000

shown in Table 1. CRO and PCRO are coded in C++ and
the simulation is performed on a cluster of computers with
an Intel Core Quad 2.66GHz CPU and 4G RAM connected
in a Ethernet. We realize the communication between the
processors by MPICH2 [21], which is a high-performance
and widely used implementation of the Message Passing
Interface (MPI). The software library is convenient for the
users to design a parallel computing algorithm, and shortens
the development time.

Since CRO and PCRO are stochastic algorithms, the
results obtained in different runs may be different. We repeat
the simulation 50 times, and record the minimum, maximum
and average values. In each simulation run, the initial
molecules (solutions) are generated randomly. Exchange
(update) rate is the parameter representing how often we
exchange the molecules between the processors (analyzed
in the next subsection).

4.3 Analysis of Results
In this section, we study the behavior of PCRO in two

ways when solving the QAP. Firstly, we adopt the same
number of evaluations (150000) as the stopping criterion
for both CRO and PCRO, and the exchange rate, speedup,
and quality of solution are analyzed. After that, we use the
average and minimum fitness values of CRO obtained from
the former simulation as the stopping criterion to test and
compare the execution time and hit rate of both CRO and
PCRO.

4.3.1 Number of function evaluations as the stopping
criterion

Fig. 4 shows the performance of using different exchange
rates for paralleling 2, 4, and 8 processors, respectively.
From observing these figures, we can come to the conclu-
sions: When the exchange rate is low (i.e. the molecules
migrate between processors in a high frequency.) the algo-
rithm performs badly. This is because the communication
will enhance the algorithm’s intensification. If the exchange
happens too often, the probability of getting stuck in the local
optimum will be very high. Meanwhile, the performance

273000

274000

275000

276000

277000

100 200 400 800 1500 3000 75000

Exchange rate

F
it

n
e
s
s
 v

a
lu

e

Max

Avg

Min

273000

274000

275000

276000

277000

100 200 400 800 1500 3000 75000

Exchange rate

F
it

n
e
s
s
 v

a
lu

e

Max

Avg

Min

(a) 2 processors

(b) 4 processors

(c) 8 processors

Fig. 4: Fitness values with different exchange rates in the
instance Wil100

of PCRO is also poor when the exchange rate is high.
Seldom communications between processors will lead the
algorithm to be too diversified to obtain a good solution.
Moreover, the more the processors, the wider the solution
space searched simultaneously. In other words, the diversifi-
cation is strengthened with the number of processors. Thus,
in order to reach a good balance between diversification and
intensification, we swap the molecules more frequently when
we have more processors. According to the average fitness
value, we choose the exchange rates of 1500, 750, 250 for
2, 4, and 8 processors, respectively.

One important measure for a parallel algorithm is speedup
[22]. This metric calculates the ratio of the computation time
of CRO and PCRO. Since both are stochastic, we should



instead compare the mean serial execution time against the
mean parallel time as the speedup, i.e.,

Speedupm =
E[T1]
E[Tm]

(3)

According to this definition, we can distinguish among:
sublinear speedup (Speedupm < m), linear speedup
(Speedupm = m), and superlinear speedup (Speedupm >
m). Moreover, there are two types of speedup: strong and
weak [22]. Strong speedup compares the execution time of
parallel algorithm against the best-so-far sequential algo-
rithm. However, due to the difficulty of finding the most
efficient algorithm, most designers do not adopt it. On the
other hand, weak speedup compares the run time of parallel
algorithm against its own sequential one, which is used by
many researchers. Thus, in this paper, we use the weak
speedup to test PCRO.

Tables 2, 3 and 4 show the results of applying PCRO in the
instances of Wil100, Tho150, and Tai256c, respectively. It
can be observed that for each instance the speedup is almost
linear when using 2 or 4 processors, and sublinear when
there are 8 processors. This is mainly due to the overhead of
communication in 8 processor scenario much more than that
in the 2 or 4 processor scenario. From comparing the average
fitness values, we can find that in most cases the quality
of the final solution generated by PCRO is better than that
of the sequential one (in bold). However, we notice that in

Table 2: Results of the instance Wil100

Number of Fitness values Average
processors Min Max Avg time(s) Speedup

1 274716 276046 275360 8.4711 N/A
2 274214 275518 274715 4.2264 2.00
4 274222 275746 274987 2.1674 3.91
8 274850 276786 275767 1.1175 7.58

Table 3: Results of the instance Tho150

Number of Fitness values (×106) Average
processors Min Max Avg time(s) Speedup

1 8.25044 8.35089 8.30671 19.2875 N/A
2 8.21229 8.32513 8.26641 9.6225 2.00
4 8.26528 8.40193 8.31295 4.8431 3.98
8 8.30217 8.46206 8.38669 2.6422 7.30

Table 4: Results of the instance Tai256c

Number of Fitness values (×107) Average
processors Min Max Avg time(s) Speedup

1 4.50920 4.53371 4.52195 55.8196 N/A
2 4.49573 4.54016 4.51117 27.9000 2.00
4 4.49847 4.54544 4.51770 14.1247 3.95
8 4.49508 4.53848 4.51520 7.2950 7.65

Wil100 and Tho150, as the number of processors increases,
the performance of PCRO becomes worse. It indicates that
PCRO should be carefully designed when more and more
processors are used.

4.3.2 Fitness values as the stopping criterion

we also repeat the simulation 50 times for each case.
We use the hit rate (the percentage of independent runs
finding the specified quality of solution) to compare the
robustness between the parallel CRO and its sequential one.
Both the minimum and average fitness values of sequential
CRO recorded in previous simulations are used as the
stopping criterion, and we also stop the simulation when the
solution is found without improvement for 50000 function
evaluations. Notice that we also re-run the sequential CRO
and use the same stopping criterion as for PCRO in this part.

We show the hit rate for each scenario in Tables 5, 6, and
7. It is obvious that the hit rate significantly increase for
PCRO when compared with sequential CRO. In other words,
PCRO has a strong robustness and is much more stable than
the sequential CRO. Particularly in Wil100 and Tho150, the
hit rate decreases with the number of processors, but are still
much higher than the sequential CRO. However in Tai256c,
the hit rate is more or less the same for the PCRO with
various number of processors. We can also see that PCRO
fits the Tai256c the best of all the three instances, where it
can almost reach 100% hit rate when the stopping criterion is
the average fitness value, and 80% hit rate for the minimum
fitness value. In general, PCRO with multiple processors can
search larger solution space than CRO during the same time,
and this can help PCRO escape from the local optimums.
Hence, Parallel CRO performs better than the sequential one
in terms of the solution quality.

Since PCRO has a much higher hit rate, which means it
searches much more of the solution space than the sequential
CRO, it is not fair to use the speedup here as a metric.
Instead, we also list the average execution time among those
with hit for each case in Tables 5, 6, and 7. It can be
observed that the run time decreases with the number of
processors though the reduction is not as much as that in
the previous section. Therefore, PCRO can not only improve
the quality of the solution, but also reduce the computing
time. We conclude that the efficiency could be consistently
improved with the number of processors, provided PCRO is
well designed.

Table 5: Execution time and hit rate for the instance Wil100

Number of Average fitness value Minimum fitness value
processors Avg_time(s) Hit rate Avg_time(s) Hit rate

1 4.0427 46% 6.7580 4%
2 2.0944 96% 3.0889 58%
4 1.5326 90% 2.2436 54%
8 1.0589 70% 1.9386 26%



Table 6: Execution time and hit rate for the instance Tho150

Number of Average fitness value Minimum fitness value
processors Avg_time(s) Hit rate Avg_time(s) Hit rate

1 8.5908 42% 20.3750 2%
2 6.4123 98% 13.0432 86%
4 5.0564 98% 9.7831 68%
8 3.7791 86% 6.1611 32%

Table 7: Execution time and hit rate for the instance Tai256c

Number of Average fitness value Minimum fitness value
processors Avg_time(s) Hit rate Avg_time(s) Hit rate

1 29.7378 36% 40.5310 2%
2 16.5766 98% 29.9550 80%
4 11.7328 98% 16.3001 78%
8 6.4766 100% 10.4179 86%

5. Conclusions
With the advancement of computers and networking, par-

allel and distributed computing becomes popular and we can
find its application in almost every field of science and tech-
nology. Thus, it is urgent for us to parallelize optimization
algorithms. We are particularly interested in CRO because
of its capability in solving difficult optimization problems
[4]. The contributions of this paper can be summarized as
follows: 1) We propose the first parallel model for CRO
(PCRO), which is designed according to the intrinsic charac-
teristics of CRO and parallelized in a synchronized manner.
2) Simulations are performed for three QAP instances with
large problem sizes. We compare PCRO with the canonical
sequential CRO. To have comprehensive comparison, two
stopping criteria are used in our simulations. The results
show that PCRO can consistently improve the quality of
solution as well as reduce the computation time with more
and more processors involved.

For future work, first of all, we plan to design and try
more molecule communication patterns, such as exchanging
central energy and kinetic energy. Secondly, taking into ac-
count the heterogeneous environment, asynchronous transfer
will be employed and the algorithm needs to be re-designed
accordingly. Thirdly, in order to extend the application of
PCRO, we need to test it on other types of problems. Finally,
we try to study the PCRO analytically.

Acknowledgment
This research is supported in part by the University

of Hong Kong Strategic Research Theme of Information
Technology.

References
[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,

MI: Univ. of Michigan Press, 1975.

[2] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by
simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, May
1983.

[3] E. Bonabeau, M. Dorigo and G. Theraulaz, "Inspiration for optimiza-
tion from social insect behavior," Nature, vol. 406, pp. 39-42, Jul. 2000.

[4] A. Y. S. Lam and V. O. K. Li, "Chemical-Reaction-Inspired meta-
heuristic for optimization," IEEE Trans. Evol. Comput., accepted for
publication.

[5] F. Glover and M. Laguna, Tabu Search. Boston, MA: Kluwer Academic
Publishers, 1997.

[6] G. Dueck and T. Scheuer, "Threshold accepting: a general purpose
optimization algorithm appearing superior to simulated annealing," J.
of Computational Physics, pp. 161-175, Sept. 1990.

[7] D. H. Wolpert and W. G. Macready, "No free lunch theorems for
search," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, Apr.
1997.

[8] J. Xu, A. Y. S. Lam, and V. O. K. Li, "Chemical reaction optimization
for the grid scheduling problem," IEEE Int’l Conf. on Commun.
(ICC2010), accepted for publication.

[9] A. Y. S. Lam, J. Xu, and V. O. K. Li, "Chemical reaction optimization
for population transition in peer-to-peer live streaming," IEEE Congress
on Evolutionary Computation (2010 IEEE World Congress on Compu-
tational Intelligence), accepted for publication.

[10] G. Manimaran and C. Siva Ram Murthy, "A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems and its
analysis," IEEE Trans. Parallel Distrib. Syst. vol. 9, no. 11, pp. 1137-
1152, Nov. 1998.

[11] Y. Fukuyama and H. Chiang, "A parallel genetic algorithm for
generation expansion planning," IEEE Tran. Power Syst., vol. 11, no.
2, pp. 955-961, May 1996.

[12] K. Krishna, K. Ganeshan, and D. J. Ram, "Distributed simulated
annealing algorithms for job shop scheduling," IEEE Trans. Syst. Man
Cybern., vol. 25, no. 7, Jul. 1995.

[13] A. W. McNabb, C. K. Monson, and K. D. Seppi, "Parallel PSO using
MapReduce," IEEE Congress on Evolutionary Computation (CEC’07),
2007.

[14] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn,
and T. Querido, "A survey for the quadratic assignment problem," Eur.
J. Operational Res., vol. 176, no. 2, pp. 657-690, Jan. 2007.

[15] S. Shani and T. Gonzalez, "P-complete approximation problems,"
Journal of the ACM, vol. 23, no. 3, pp. 555-565, Jul. 1976.

[16] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study. Princeton, NJ:
Princeton Univ. Press, 2006.

[17] S. Martello, D. Pisinger, and D. Vigo, "The three-dimensional bin
packing problem," Operational Research, vol. 48, no. 2, pp. 256-267,
Mar. 2000.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY: W. H.
Freeman & Co Ltd, 1979.

[19] R. E. Burkard, E. Cela, S. E. Karisch, and F. Rendl. (2010) QAPLIB
Home Page. [Online]. Available: http://www.seas.upenn.edu/qaplib/

[20] L. M. Gambardella, E. D. Taillard, and M. Dorigo, "Ant colonies
for the quadratic assignment problem," The Journal of the Operational
Research Society, vol. 50, no. 2, pp. 167-176, Feb. 1999.

[21] MPICH2: High-performance and Widely Portable MPI. [Online].
Available: http://www.mcs.anl.gov/research/projects/mpich2/index.php

[22] E. Alba, Parallel Metaheuristics: A New Class of Algorithms. Wiley-
Interscience, 2005, ch. 2.


