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Abstract—In recent literature, an increasing radii algorithm
(IRA) is introduced to decode the signals in multiple-input
multiple-output (MIMO) systems. It is developed from the idea of
sphere decoder (SD) and can achieve near-maximum likelihood
(ML) decoding performance with relatively lower complexity
than the SD by taking the noise statistics into consideration.
In this paper, an improved IRA (IIRA) is proposed to further
reduce the complexity. Apart from the noise statistics, channel
information is taken into consideration as well. Additionally, a
radii update scheme is introduced which enables the search space
of the proposed algorithm to be further pruned. As a result, the
proposed algorithm achieves a performance close to that of the
IRA but with substantial computational savings. The effectiveness
of the proposed decoder is verified by simulations.

Index Terms—MIMO, sphere decoder, radii, complexity

I. INTRODUCTION

MIMO communications have attracted a lot of research
interests due to its capability of improving channel capacity
without extra bandwidth, and a number of decoding algo-
rithms have been proposed in the literature. Among them, the
maximum likelihood decoder (MLD) is optimal in terms of
decoding performance. Under the assumption that the noise
is Gaussian distributed, which is usually the case in cellular
systems, the ML decoding is equivalent to solving the integer
least square (LS) problem. It requires a search over the
whole m-dimensional constellation space which is known to
be NP-complete [1]. Here m denotes the number of inputs
in the MIMO system. The decoding complexity increases
exponentially with m and linearly with the constellation size,
thus limiting its application in real systems.

Sphere decoder (SD) is one of the methods developed to
reduce the ML decoding complexity by reducing the search
space [1], [2], [3], [4]. In the SD, the search space is con-
structed as a hyper-sphere centered at the received signal with
adjustable radius. Among all the lattice points being found in
the search space of the SD, the one with the minimum distance
to the center is the optimal solution. This decoder guarantees
to find the exact ML solution with expected complexity of
O(m3).

Although the SD could significantly reduce the complexity
without performance loss from the MLD, its complexity is
still rather high for practical application, especially under low
signal-noise-ratio (SNR) region and/or in high-order MIMO
systems. Different attempts have been tried to further reduce

the complexity by shrinking the search space. Update of sphere
radius is one of them, which was proposed in [5], [6]. Though
the solution found remains optimal, the complexity reduction
is quite limited. Tree pruning is another intuitive approach
proposed in [7], [8]. Unfortunately, it necessitates performance
degradation as a trade-off. Recently, ordering is introduced to
the tree pruning approach [9], [10]. Though reduction on the
complexity could be achieved at lower performance degrada-
tion, the performance gap to ML is still not insignificant.

In [11], an increasing radii algorithm (IRA), which is
another modification of the SD, was proposed to achieve
near ML decoding. It considers the decoding problem from
a statistical point of view. By taking the noise statistics into
consideration, the search space is pruned to a subset that
contains the ML solution with high probability. It offers sub-
stantial computational savings over the SD while maintaining
the performance fairly close to the MLD.

In this paper, an improved decoding algorithm based on
the idea of IRA is proposed. It takes not only the noise
statistics but also the channel information into account when
pruning the search space. In addition, an update scheme of
radii is introduced to further shrink the search space once
a lattice point is found. After analyzing the performance
and complexity, it is observed that the proposed decoder
could achieve similar performance to the IRA with substantial
complexity reduction. In other words, the proposed decoder
offers near-ML decoding performance with low complexity.
This is verified by computer simulations.

The paper is organized as follows. Section II gives a brief
introduction on the system model, sphere decoder, as well as
the IRA. Section III presents the proposed decoding algorithm
and its performance analysis. Simulation results are shown in
Section IV, while conclusions are drawn in Section V.

II. SYSTEM MODEL AND EXISTING DECODERS

A. System Model

Consider a discrete-time block-fading MIMO system with
m transmit and m receive antennae. The received signal vector
x ∈ Cm is given by

x = Hs̃ + n, (1)

where H ∈ Cm×m is the channel matrix with independent
identically distributed (i.i.d.) Gaussian elements of variance
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σ2
h and it is assumed to be known at the receiver; n ∈ Cm

is the noise vector, whose elements are also i.i.d. Gaussian
random variables with zero mean and variance σ2

v ; s̃ ∈ Sm

denotes the transmitted signal vector. Here S represents the
signal constellation with average power σ2

s . Under Gaussian
noise, the MLD is equivalent to LS decoder which is to
find the lattice point closest to the received signal in m-
dimensional constellation space. Mathematically, it is to solve
the minimization problem:

mins∈S
m‖x−Hs‖2. (2)

Apparently, this decoder requires a search over the whole
m-dimensional space, i.e., Sm and the complexity increases
exponentially with m, thus limits its application in real systems
when m is large.

B. Sphere Decoder

Sphere decoder (SD) is one decoder which could find the
ML solution without searching over the whole m-dimensional
space. Its complexity is significantly reduced since it only
searches the lattice points within a hyper-sphere DSD of radius
d centering at the received signal x, which is represented as

DSD : ‖x−Hs‖2 6 d2. (3)

With proper d, the search space of the SD could be limited to
a subset of the ML search space.

Generally, QR factorization is firstly performed on the
channel matrix H to simplify the search process. After QR
factorization, the channel matrix is written as H = QR where
Q is a unitary matrix with Q′Q = I and R is an upper
triangular matrix with positive diagonals. Here the superscript
(·)′ denotes the conjugate transpose of a matrix. Then (3) could
be rewritten as

DSD : ‖x−QRs‖2 =‖Q′x−Rs‖2 6 d2. (4)

Defining y = Q′x, the hyper-sphere is transformed as:

DSD : ‖y −Rs‖2 6 d2. (5)

In the SD, the key step is to find all the lattice points
within the hyper-sphere DSD. It is equivalent to find the points
satisfying the condition of ‖y−Rs‖2 6 d2. More specifically,
the following conditions should be satisfied simultaneously:

m∑
j=i

yj − m∑
k=j

Rjksk

2

6 d2, i = 1, 2, · · · ,m. (6)

where yj and sk are the j th and k th elements of y and
s, respectively, while Rjk denotes the (j, k) th entry of R.
The decoding process is performed in the following way. It
starts from finding the candidates of sm using the inequality
in (6) with i = m. For each candidate of sm, the candidates
of sm−1 are obtained by solving the inequality in (6) with
i = m − 1. This process continues until the candidates of s1
are found by solving the inequality in (6) with i = 1 using
the predetermined candidates for s2, · · · , sm. Each candidate

group {s1 · · · sm} forms one lattice point found in this hyper-
sphere. With all the lattice points found by successively
solving (6), the one minimizing ‖x − Hs‖2 is selected as
the ML solution.

C. Increasing Radii Algorithm

The increasing radii algorithm (IRA) proposed in [11] is
a modification of the SD. In the IRA, the search space is
statistically pruned to a subset that contains the ML solution
with high probability, thereby further reducing the decoder’s
complexity. Here the search space DIRA is defined as

DIRA :
m∑
j=i

yj − m∑
k=j

Rjksk

2

6 r2i,IRA, i = 1, 2, · · · ,m.

(7)
where a set of radii ri,IRA is designed by taking the statistics
of noise into consideration, given by

r2i,IRA = [δ logm+ (m− i+ 1)] · σ2
v , i = 1, 2, · · · ,m. (8)

In (8), δ is an adjustable parameter to control the probability
of excluding the ML solution in DIRA and is provided in a
lookup table in [11]. Once the search space is defined as (7),
the decoding process of the IRA is similar to the SD, except
that the universal sphere-radius d in (6) is replaced by a set
of radii ri,IRA in (7).

III. IMPROVED INCREASING RADII ALGORITHM

In the IRA, only the statistics of noise is taken into
consideration for the radii design. In this paper, an improved
algorithm which also takes channel information into account
to the radii design and involves a radii update scheme is
proposed. It can reduce the complexity of decoding with un-
noticeable performance degradation from the IRA, since extra
information about the channel is exploited. In the following,
the proposed algorithm will be introduced and its performance
will be analyzed.

A. The Proposed Algorithm

Since the proposed algorithm expliots channel informa-
tion for radii design, the statistics of the channel matrix
will be discussed first. As mentioned in Section II.A., el-
ements in the channel matrix H are Gaussian i.i.d.. Af-
ter QR factorization, the diagonals of R are also indepen-
dent. From [9], we further know that square of the nor-
malized diagonal element R2

ii/σ
2
h follows Gamma distribu-

tion as
(
R2
ii/σ

2
h

)
∼ G(m − i + 1). Here G(k) stands

for the standard Gamma distribution Gamma(k, θ) with
θ = 1. According to the properties of Gamma distribution,
E
[
(R2

ii/σ
2
h)
]

= (m− i+ 1). Due to the independence among
diagonal elements Rii, the summations

∑m
k=i

(
R2
kk/σ

2
h

)
and∑i−1

k=1

(
R2
kk/σ

2
h

)
also follow the independent Gamma dis-

tributions
∑m
k=i

(
R2
kk/σ

2
h

)
∼ G

(
1
2 (m− i+ 1)(m− i+ 2)

)
,∑i−1

k=1

(
R2
kk/σ

2
h

)
∼ G

(
1
2 (i− 1)(2m− i+ 2)

)
, respectively.
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It follows that

E

[
m∑
k=i

(
R2
kk

σ2
h

)]
=

m∑
k=i

E
[
R2
kk

σ2
h

]
=

1
2

(m− i+1)(m− i+2),

(9)

E

[
i−1∑
k=1

(
R2
kk

σ2
h

)]
=

i−1∑
k=1

E
[
R2
kk

σ2
h

]
=

1
2

(i− 1)(2m− i+ 2).

(10)
for i = 1, 2, · · · ,m. Defining

p(i) =

m∑
k=i

(
R2
kk

σ2
h

)
m∑
k=1

(
R2
kk

σ2
h

) =

m∑
k=i

(
R2
kk

σ2
h

)
i−1∑
k=1

(
R2
kk

σ2
h

)
+

m∑
k=i

(
R2
kk

σ2
h

) (11)

According to the properties of Gamma distribution,
p(i) follows Beta distribution as p(i) ∼ Beta(α, β) where
α = 1

2 (m− i+ 1)(m− i+ 2) and β = 1
2 (i− 1)(2m− i+ 2)

[12]. Its expectation is given by

E [p(i)] =
(m− i+ 1)(m− i+ 2)

m(m+ 1)
, i = 1, 2, · · · ,m. (12)

With this channel statistics, now we propose an algorithm
called improved IRA (IIRA), where the search space is chosen
similarly to that of the IRA, but the initial radii are chosen
differently as follows:

D0
IIRA :

m∑
j=i

yj − m∑
k=j

Rjksk

2

6 r2i,IIRA,0, (13)

r2i,IIRA,0 =
[
δ logm+

(m− i+ 1) + p(i) ·m
2

]
· σ2

v ,

i = 1, 2, · · · ,m.
(14)

Obviously, the radii are chosen based not only on the statistics
of noise but also the channel information. It is adaptive to the
channel condition related R matrix and the coefficient p(i)
could be regarded as a channel adaptive factor.

Since p(i) follows Beta distribution with the expectation of
(m− i+ 2)(m− i+ 1)/ [m(m+ 1)], the expectations of the
initial radii in the IIRA could be easily proved to be smaller
than the respective radii in the IRA as follows:

E
[
r2i,IIRA,0

]
=
[
δ logm+

2m− i+ 3
2(m+ 1)

· (m− i+ 1)
]
· σ2

v

6 [δ logm+ (m− i+ 1)] · σ2
v = r2i,IRA,

i = 1, 2, · · · ,m.
(15)

It implies that the search space of the IIRA would be sta-
tistically smaller than that of the IRA, thus resulting in a
complexity reduction from the IRA.

We now introduce a radii update scheme for the IIRA. Let
sλ denote the λ th lattice point found within the search space

with initial radii chosen as (14). Once the first candidate s1

is found, the radii are updated as

r2i,IIRA,1 = g(1) +
(m− i+ 1) + p(i) ·m

2
· σ2

v ,

i = 1, 2, · · · ,m.
(16)

where g(1) = min{δ logm ·σ2
v ,‖y −Rs1‖2}. After the λ th

lattice point sλ is found, the radii are re-updated as

r2i,IIRA,λ = g(λ) +
(m− i+ 1) + p(i) ·m

2
· σ2

v ,

i = 1, 2, · · · ,m.
(17)

where g(λ) = min{‖y −Rsλ‖2, g(λ − 1)}. In this radii
update scheme, when a lattice point with shorter distance to
the received signal is found, the radii would be updated to
smaller values based on this distance. Accordingly, the search
space of the IIRA would be further pruned. This is different
from the IRA, where the search space is constant during
the decoding process. Consequently, the complexity could be
further reduced by this update scheme.

B. Performance Analysis

In the IIRA, the radii are updated as (16) or (17), which
involves non-linear operation. It complicates the analysis of
the error probability. For simplicity, we start the analysis on
the IIRA without update. The effect of radii update will be
discussed later.

In [11], the probability that the transmitted signal is not
included in the search space, ε = P (s̃ 6∈ D)), for the IRA-
based decoder is derived as

ε = P (s̃ 6∈ D) =
m∑
k=1

e−r
2
m−k+1Jk−1. (18)

where r2i represent the set of radii, which cover r2i,IRA and
r2i,IIRA as special cases; and

Jk =
k−1∑
l=0

(−1)k−l+1
r
2(k−l)
m−l

(k − l)!
Jl, J0 = 1. (19)

Here Jk is a recursive function of r2i . After direct computation
on Jk, we observe that Jk could be approximated to a close
form as Jk ≈ r2k1 /k! and therefore the error probability is
approximated to a simpler expression as

ε = P (s̃ 6∈ D) ≈
m∑
k=1

e−r
2
1
r2k1
k!
. (20)

Recall that in the IRA, r21,IRA = [δ logm+m] · σ2
v . On the

other hand, it is obvious from the definition of p(i) that p(1) =
1 and then the initial radius r21,IIRA,0 is

r21,IIRA,0 =
[
δ logm+

m+ p(1) ·m
2

]
· σ2

v

= [δ logm+m] · σ2
v = r21,IRA.

(21)

Using (20) and (21), it follows that εIIRA ≈ εIRA, which means
that the probability of the transmitted signal is not included in
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Fig. 1. Symbol Error Rate for 64-QAM 12× 12 MIMO System.

the search space for both algorithms are roughly the same.
Thus we expect that the IIRA without radii update would
perform similar to that of the IRA.

Now the effect of radii update on the decoder performance is
discussed as follows. In fact, after each radii update, the search
space would be accordingly updated to a smaller one. As a
result, some points within the previous search space would be
excluded. Let ŝ denote the lattice point that has been found
to perform the latest update of g(λ) as g(λ) = ‖y −Rŝ‖2
and the radii r2i,IIRA,λ are updated as (17). Define the search
space corresponding to these radii as Dλ

IIRA. For any lattice
point s̄ being excluded from the search space in this update,
i.e., s̄ ∈ Dλ−1

IIRA but s̄ 6∈ Dλ
IIRA, at least one of the inequality

in (13) should be violated, i.e.:

∃1 6 a 6 m,

m∑
j=a

yi − m∑
k=j

Rjks̄k

2

> r2a,IIRA,λ. (22)

Since

‖y −Rs̄‖2 =
m∑
j=1

yj − m∑
k=j

Rjks̄k

2

>
m∑
j=a

yi − m∑
k=j

Rjks̄k

2

,

(23)

and

r2a,IIRA,λ = g(λ) +
(m− a+ 1) + p(a) ·m

2
· σ2

v

= ‖y −Rŝ‖2 +
(m− a+ 1) + p(a) ·m

2
· σ2

v ,

(24)

it follows that

‖y −Rs̄‖2 > r2a,IIRA,λ > ‖y −Rŝ‖2. (25)
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Fig. 2. Complexity Exponent for 64-QAM 12 × 12 MIMO.

It means that for any points s̄ being excluded, its distance to
the received signal is larger than that of the previous found
point ŝ. In other words, any excluded point s̄ cannot be the
ML solution. It indicates that the radii update scheme will not
exclude the ML solution from the search space and therefore
it will not affect the decoding performance. In summary,
we can conclude that the IIRA without radii update offers
similar decoding performance as the IRA. In addition, the
performance of the IIRA with radii update would also be
similar to that of the IRA, i.e., near-ML performance. This will
be verified by computer simulations in the following section.

IV. SIMULATION RESULTS

Computer simulations are conducted to investigate the per-
formance and complexity of the IIRA. In the following, two
examples are considered: a 64-QAM modulated 12×12 system
and a 4-QAM modulated 20 × 20 system. The performance
is measured by symbol-error-rate (SER), while the complexity
CP is defined as the number of multiplications required for
decoding, and it is presented in terms of complexity exponent
CE , which is defined as CE = log(CP )/ log(m). The SNR
is defined as SNR = σ2

s · σ2
h/m · σ2

v . In the simulations,
the noise power is set as σ2

v = 1, while the variance of the
elements in channel matrix varies according to the SNR. For
the purpose of comparison, the performance and complexity of
the IRA [11] will also be simulated. Notice that in the IIRA,
the parameter δ in the radii design is chosen same as that in
the IRA. Namely, it is chosen from the table in [11] according
to the probability that the transmitted signal is not included
in the search space, i.e., ε. In detail, the sequence of ε is set
as ε = 0.1, 0.01, 0.001 , etc.. With ε being initially setup as
ε = 0.1, the corresponding δ is chosen from the table for radii
computation. If there is no lattice point being found in this
search space, we compute a new set of radii using the value
of δ which leads to a probability ε = 0.01 and run the decoder
algorithm. This continues until the search space is not empty.
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Fig. 3. Symbol Error Rate for 4-QAM 20× 20 MIMO System.

In the example of 64-QAM modulated 12 × 12 MIMO
system, the simulation covers the SNR range from 21−27dB.
The SER performance and complexity exponent are shown
in Figs.1&2, respectively. It is clear from Fig.1. that the
performance of the IIRA is very close to that of the IRA, while
as shown in Fig.2, up to 50% of complexity could be saved at
SNR = 22− 26dB when using the IIRA. It demonstrates that
the IIRA could significantly reduce the complexity without
performance degradation compared with the IRA.

In Fig.3 and Fig.4, the results of the 4-QAM, 20×20 MIMO
are shown with SNR in the range of 9− 13dB. Similarly, the
SER performance of the two decoders is quite close and the
maximum complexity reduction of the IIRA is roughly 60%
at SNR = 10− 11dB.

V. CONCLUSIONS

In this paper, a low complexity IIRA has been proposed
to decode the signals in MIMO systems. It includes an initial
channel-adaptive radii design and a radii update scheme. Since
both noise statistics and channel information are utilized to
prune the search space to a subset of the ML search space,
where the ML solution is included with high probability, the
IIRA is able to achieve near-ML decoding performance with
much lower complexity when compared to the IRA.
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