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Abstract—Semi-blind joint CFO, channel estimation and data
detection for OFDM systems over doubly selective channels
(DSCs) is investigated in this work. A joint iterative algorithm
is developed based on the maximum a posteriori expectation-
maximization (MAP-EM) algorithm. In addition, a novel algo-
rithm is also proposed to obtain the initial estimates of CFO
and channels. Simulation results show that the performance of
the proposed CFO and channel estimators approaches to that of
the estimators with full training at high SNRs. Moreover, after
convergence, the performance of data detection is close to the
ideal case with perfect CFO and channel state information.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been widely recognized as an efficient transmission technique
for wireless communications. Recently, there is an increasing
demand for OFDM systems operating in high mobility en-
vironment, such as Digital Multimedia Broadcasting (DMB),
DVB-H (Digital Video Broadcast-Handheld), Media Forward
Link Only (MediaFLO) and Wireless Metropolitan Area Net-
works (WiMAX) [1]–[3]. For broadband OFDM systems, high
speed movement of mobile terminals causes Doppler spread
and results in multi-path time-varying channels [4], i.e., doubly
selective channels (DSCs). Due to DSCs, the number of chan-
nel parameters in one OFDM symbol significantly increases,
which makes the channel estimation difficult. Meanwhile, this
doubly-selectivity in the channel destroys the orthogonality
among subcarriers and induces intercarrier interference (ICI)
in OFDM systems, which also complicates the data detection.
Moreover, OFDM systems are known to be sensitive to carrier
frequency offset (CFO), and frequency synchronization is
always a critical part in the design of OFDM receivers.
Therefore, CFO, channel estimation and data detection for
OFDM systems over DSCs are very challenging.

Over DSCs, a frequency synchronization method exploiting
cyclic prefix (CP) has been introduced in [5]. However, the
acquisition range of the proposed CFO estimator is only half
of the subcarrier spacing thus limiting its applicability to large
CFOs. Furthermore, channel estimation and data detection are
not considered in [5]. On the other hand, training sequence
based CFO and channel estimators have been proposed in
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[6], [7]. Unfortunately, a whole OFDM symbol is required
for training, which decreases the transmission efficiency.

In this paper, the problem of joint CFO, channel estimation
and data detection for OFDM systems over DSCs is addressed.
By taking into account the statistics of the parameters to be
estimated, a semi-blind maximum a posteriori expectation-
maximization (MAP-EM) algorithm is proposed. Using lim-
ited number of pilot subcarriers, the MAP-EM algorithm
iteratively estimates the CFO, channel and recovers the un-
known data. The tentatively recovered data is then exploited
to aid the CFO and channel estimations in the next iteration
until convergence. In addition to the MAP-EM algorithm,
efficient initial CFO and channel estimators are also derived.
Simulation results show that, with the efficient initialization
developed in this paper, the performance of the proposed CFO
and channel estimators approaches to that of the estimators
with full training at high SNRs. Moreover, after convergence,
the performance of data detection is close to the ideal case
with perfect CFO and channel state information (CSI).

Notation: Boldface uppercase and lowercase letters will be
used for matrices and vectors. Superscripts H and T denotes
Hermitian and transpose respectively. The symbol IN denotes
an N ×N identity matrix, with el denoting the lth column of
IN . diag{x} stands for the diagonal matrix with vector x on
its diagonal. The symbol ⊗ denotes the Kronecker product
and � denotes the Hadamard product. E{·} denotes the
expectation. Tr{X} and |X| are the trace and the determinant
of a square matrix X respectively. <{·} and ={·} are the real
and imaginary parts respectively. The matrix F is the FFT
matrix with [F]m,n = 1√

N
e−j2πmn/N .

II. SYSTEM MODEL

In an OFDM system, the source data in frequency domain
x is modulated onto N parallel subcarriers to obtain the
time domain signal s. In general, the elements of x can be
categorized into two sub-vectors xp and xd, where xp contains
pilot and xd contains data. Assuming pilots and data occupy
different subcarriers, the time domain signal s can be written
as

s = FHp xp + FHd xd (1)

where Fp collects those rows of F corresponding to pilot
subcarriers, while Fd collects those rows of F corresponding
to data subcarriers.
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A cyclic prefix (CP) with length longer than the delay
spread of the channel, is inserted at the beginning of each
OFDM symbol to prevent intersymbol interference (ISI). The
signal is then transmitted through a multi-path time-varying
channel which has L independent taps with average power
of the lth tap denoted by σ2

l . The auto-correlation of the lth

channel tap follows the classical Jakes’ model [6] given by
E{hl(mTs)hl(nTs)} = σ2

l J0(2πfD(m − n)Ts), where J0(·)
represents the zero-order Bessel function of the first kind, fD
represents the maximum Doppler shift, and Ts is the sample
interval.

At the receiver side, assuming perfect timing synchroniza-
tion is achieved, after discarding the CP, the received signal
y = [y(0), y(1), · · · , y(N − 1)]T can be written as

y = Φ(ε)H(FHp xp + FHd xd) + w (2)

where Φ(ε) = diag{1, ej2πε/N , · · · , ej2π(N−1)ε/N} repre-
sents the effect of CFO ε, w = [w(0), w(1), · · · , w(N − 1)]T

is the additive white Gaussian noise vector with zero-mean
and covariance σ2

wIN , and the matrix H is defined as

H =


h0(0) 0 hL−1(0) · · · h1(0)
h1(1) h0(1) 0 hL−1(1) · · ·
· · · · · · · · · · · ·

0 hL−1(N − 1) · · · h0(N − 1)


(3)

where for notation simplicity, hl(n) is used to denote hl(nTs).
Notice that, over DSCs, the channel varies sample by sample,
and therefore the number of unknown channel parameter is
N × L.

Reversing the position of channel and data, the following
equality holds

Hs = D[s]h (4)

where D[s] = [diag{Ξ0s}, ..., diag{ΞL−1s}] with Ξl =
[el+1, · · · , eN , e1, · · · , el] and the channel vector h is defined
as h = [hT0 , · · · ,hTL−1]T with hl = [hl(0), · · · , hl(N − 1)]T

being the channel coefficients of the lth tap for the whole
OFDM symbol. Since each channel tap is independent Gaus-
sian distributed, the probability density function (pdf) of h
follows

p(h) =
1

(π)NL|Rh|
exp(−hHR−1

h h) (5)

where the covariance matrix is Rh = RL ⊗ J with
RL = diag{σ2

0 , · · · , σ2
L−1} and the (k,m)th entry of J being

[J]k,m = J0(2πfD(m− k)Ts). The equality given by (4) will
be used in the derivation of our proposed algorithm.

III. SEMI-BLIND CFO, CHANNEL ESTIMATION AND DATA
DETECTION

First, notice that (ε,h,xd) are the unknown parameters that
should be estimated. Because the noise is Gaussian distributed,
based on (2), the likelihood function for (ε,h,xd) is given by

p(y|h, ε,xd) =
1

(πσ2
w)N

exp(− 1
σ2
w

‖y −Φ(ε)H(FHp xp + FHd xd)‖2).
(6)

Here we exploit the fact that H is completely characterized by
h and therefore conditioning on H is equivalent to condition-
ing on h. The joint maximum likelihood (ML) CFO, channel
estimation and data detection problem over DSC based on (6)
is an ill-posed one. A direct ML solution based on (6) is not
available.

To overcome the problem discussed above, we propose an
iterative joint CFO, channel estimation and data detection
method based on MAP-EM algorithm [8]. For the derivation,
the received signal y is referred as incomplete data and we
take (y,xd) as the complete data. The MAP-EM algorithm al-
ternates between the E-step and the M-step until convergence,
and these two steps at the ith iteration are [8]:
E-step: Compute
Q(ε,h|ε̂i−1, ĥi−1) = E{log p(ε,h|y,xd)|y, ε̂i−1, ĥi−1};
M-step: Solve (ε̂i, ĥi) = arg maxQ(ε,h|ε̂i−1, ĥi−1).
The expectation in the E-step is with respect to the conditional
pdf p(xd|y, ε̂i−1, ĥi−1). The symbol ε̂i−1 and ĥi−1 are the
(i−1)th estimate of the CFO and channel respectively. Notice
that a data estimator will be obtained as a byproduct of the
E-step [9]. The derivations of E-step and M-step are detailed
as follows.

E-step:
Using Bayes’ rules, we have

p(ε,h|y,xd) =
p(y|ε,h,xd)p(h)p(ε)

p(y|xd)
(7)

where the pdf p(y|ε,h,xd) and p(h) are specified in (6) and
(5) respectively. The prior pdf of the CFO is represented by
p(ε), and if there is no prior information on CFO, we can set
p(ε) = constant. Notice that p(y|xd) is generally not available,
however, it is independent of ε and h. Putting (5) and (6) into
(7), and dropping those terms independent of ε and h, we have

log p(ε,h|y,xd) ∝2<{yHΦ(ε)H(FHp xp + FHd xd)}
−(FHp xp + FHd xd)HHHH(FHp xp + FHd xd)

−σ2
whHR−1

h h + σ2
w log p(ε).

(8)
The function Q(ε,h|ε̂i−1, ĥi−1) to be maximized is then
computed as

Q(ε,h|ε̂i−1, ĥi−1)

= 2<{yHΦ(ε)H(FHp xp + FHd E{xd|y, ε̂i−1, ĥi−1})}
− 2<{xHp FpHHHFHd E{xd|y, ε̂i−1, ĥi−1}}
− Tr{HHHFHd E{xdxHd |y, ε̂i−1, ĥi−1}Fd}
− xHp FpHHHFHp xp − σ2

whHR−1
h h + σ2

w log p(ε)

(9)

where E{xd|y, ε̂i−1, ĥi−1} is the conditional mean of xd and
E{xdxHd |y, ε̂i−1, ĥi−1} is its conditional correlation matrix.

Notice that

E{xd|y, ε̂i−1, ĥi−1} =
∑

x̃d∈CNd

p(x̃d|y, ε̂i−1, ĥi−1)x̃d

≈ x̂id (10)

where x̂id = arg maxx̃d∈CNd p(x̃d|y, ε̂i−1, ĥi−1) and the ap-
proximation is accurate at high signal-to-noise ratio (SNR).
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Here x̂id is in fact the MAP estimate of the data [9] which
has a prohibitively high computational complexity. In order
to reduce the complexity, the MAP estimator is replaced by
x̂id = demod(x̄id), where demod(·) represents the operation
of constellation mapping and x̄id is the MMSE estimate of xd
given ε̂i−1 and ĥi−1 as

x̄id =(σ2
wΛ−1

d + FdHH
i−1Hi−1FHd )−1

Fd(HH
i−1Φ

H(ε̂i−1)y −HH
i−1Hi−1FHp xp)

(11)

where Λd is a diagonal matrix whose elements depend on the
average power of xd. Similarly, we have

E{xdxHd |y, ε̂i−1, ĥi−1} ≈ x̂id(x̂
i
d)
H . (12)

Substituting (11) and (12) into (9), it follows

Q(ε,h|ε̂i−1, ĥi−1)

= 2<{yHΦ(ε)H(FHp xp + FHd x̂id)}
− 2<{xHp FpHHHFHd x̂id}
− Tr{HHHFHd x̂id(x̂

i
d)
HFd} − xHp FpHHHFHp xp

− σ2
whHR−1

h h + σ2
w log p(ε).

(13)

M-step:
In the M-step, we maximize Q(ε,h|ε̂i−1, ĥi−1) in (13) with

respect to ε and h. However, notice that H depends on h in a
nonlinear way, direct maximization of (13) with respect to h is
difficult. In the following we derive an alternative expression
for Q(ε,h|ε̂i−1, ĥi−1) from which a closed-form solution of
h can be obtained.

We first rewrite (13) as

Q(ε,h|ε̂i−1, ĥi−1) = 2<{yHΦ(ε)Hŝi} − (ŝi)HHHHŝi

− σ2
whHR−1

h h + σ2
w log p(ε)

(14)
with ŝi = FHp xp+FHd x̂id. Due to the fact that Hŝi = D[ŝi]h,
we have

Q(ε,h|ε̂i−1, ĥi−1) = 2<{yHΦ(ε)D[ŝi]h} − hHDH [ŝi]D[ŝi]h

− σ2
whHR−1

h h + σ2
w log p(ε).

(15)
By setting the first derivative of Q(ε,h|ε̂i−1, ĥi−1) in (15)
with respect to h to zero, h minimizing the function above
for any ε follows as

ĥi = (DH [ŝi]D[ŝi] + σ2
wR−1

h )−1DH [ŝi]ΦH(ε)y. (16)

Notice that the inverse of Rh is required but does not exist.
Using matrix inverse lemma, we have

ĥi = RhDH [ŝi](D[ŝi]RhDH [ŝi] + σ2
wIN )−1ΦH(ε)y (17)

where the inverse of Rh is avoided.
Putting (17) into (15), we have

Q(ε|ε̂i−1) = yHΦ(ε)D[ŝi]RhDH [ŝi](D[ŝi]RhDH [ŝi]

+ σ2
wIN )−1ΦH(ε)y + σ2

w log p(ε).
(18)

The ith estimate of the CFO ε̂i can be obtained by one-
dimension search.

In summary, the proposed MAP-EM algorithm iterates
among the following equations until | ε̂i − ε̂i−1 |< Kε and
‖ĥi − ĥi−1‖ < Kh. For i = 1, 2, · · ·

x̂id = demod(x̄id);
ε̂i = arg maxQ(ε|ε̂i−1);
ĥi = RhDH [ŝi](D[ŝi]RhDH [ŝi] + σ2

wIN )−1ΦH(ε̂i)y
where x̄id and Q(ε|ε̂i−1) are defined in (11) and (18) respec-
tively, and Kε and Kh are predefined thresholds to terminate
the algorithm.

Remark 1: In case there is no prior information of CFO and
all the subcarriers are training, the E-step is not necessary and
we can set ŝi = s in (17) and (18). The resultant channel and
CFO estimators are equivalent to those proposed in [6].

IV. INITIALIZATION

A good initialization is essential to EM algorithm, and
therefore, the problem now becomes how to obtain the initial
estimates of CFO and channel. Notice that the received signal
is y(n) = ej2πεn/N

∑L−1
l=0 hl(n)s(n − l) + w(n). Since each

tap of the channel is independent identically distributed, when
L is large enough, with the central limit theory, the undistorted
signal (i.e.,

∑L−1
l=0 hl(n)s(n− l)) is approximately Gaussian,

and accordingly p(y|ε) is approximately Gaussian.
Now we compute the mean and covariance matrix of y

given ε. Since the channel is zero-mean, E{y|ε} = 0. After
lengthy but straightforward manipulations (omitted due to
limited space), the covariance matrix can be given by

E{yyH |ε} = Φ(ε)(D[FHp xp]RhDH [FHp xp]

+ J� (FHd ΛdFd) + σ2
wIN )ΦH(ε).

(19)

Therefore, based on the approximate Gaussian distribution
p(y|ε), according to (19) and the fact that E{y|ε} = 0, the
initial CFO estimator follows ML criteria as

ε̂0 = arg min
ε

yHΦ(ε)(D[FHp xp]RhDH [FHp xp]

+ J� (FHd ΛdFd) + σ2
wIN )−1ΦH(ε)y.

(20)

After CFO estimation, initial channel estimation is now
considered. The system model in (2) can be rewritten as

y = Φ(ε)D[FHp xp]h + Φ(ε)HFdxd + w. (21)

By treating xd as interference, the MMSE channel estimate is
then given by

ĥ0 = RhDH [FHp xp](D[FHp xp]RhDH [FHp xp]

+ J� (FHd ΛdFd) + σ2
wIN )−1ΦH(ε̂0)y.

(22)

Remark 2: In the extreme case that all data are training, s
becomes known and p(y|ε) is definitely Gaussian. The initial
CFO and channel estimators in (20) and (22) reduce to those
proposed in [6].

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algo-
rithm for joint CFO, channel estimation and data detection is
demonstrated by Monte Carlo simulations, where each point
is obtained by averaging over M = 104 runs. Each OFDM
symbol has 128 subcarriers (N=128) and the length of CP is 8.
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Carrier frequency is fc = 2 GHz, the sample interval Ts = 2µs
and the speed of vehicle is v = 219 km/hr, which results in the
normalized maximal Doppler shift NfDTs = 0.1. The channel
has six taps (L = 6) with an exponential power delay profile,
which is generated according to Jakes’ model. The CFO
is assumed to follow a uniform distribution on the interval
[−0.5, 0.5]. We set thresholds Kε = 0.001 and Kh = 0.01.
The pilot structure in [10] is adopted. More specifically, ten
pilot clusters are used with each cluster occupying three pilots,
where only one non-zero pilot is transmitted in the middle of
the cluster. This means that roughly 23.4% of the subcarriers
are occupied by pilots. The non-zero pilots are generated
following complex Gaussian distribution and the data are
chosen from 16 QAM constellation.

In Fig. 1, the MSEs of CFO and channel estimates versus
the number of iterations are depicted for different SNRs. It can
be seen that the performance of CFO and channel estimation
improves significantly in the first iteration. Furthermore, the
MSEs converge to stable values quickly and there is no
observable improvement after about five iterations.

Fig. 2 shows the MSE of the channel estimate as a function
of SNR. The proposed initial channel estimator is labeled as
‘Iter=0’. The channel estimator derived for full training [6] is
also shown for comparison. As can be seen, though the density
of pilots is low (only 23.4% of the subcarriers are occupied by
pilots), as the number of iteration increases, the performance
of the proposed channel estimator improves continually. After
five iterations, it performs almost the same as that with full
training at high SNRs. Similar results are also observed for
CFO estimation and the figure is not presented here due to
space limitation.

Fig. 3 shows the BER performance of the proposed algo-
rithm as a function of SNR. For comparison, the ideal case
which assumes perfect CFO and CSI is also depicted. It is
clear that, after convergence, the BER performance is close to
the ideal case.

VI. CONCLUSIONS

Semi-blind CFO, channel estimation and data detection
for OFDM systems over DSCs was developed based on the
MAP-EM algorithm. For initialization, an approximate ML
CFO estimator and a MMSE channel estimator were derived.
Simulation results demonstrated that the proposed MAP-EM
algorithm converges in a few iterations and moreover, at high
SNRs, the performance of CFO and channel estimators ap-
proaches to that of the estimators with full training. Moreover,
after convergence, the BER performance is close to the ideal
case with perfect CFO and channel state information.
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