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Department of Computer Science

The University of Hong Kong
{scho,clwang,fcmlau}@cs.hku.hk

Abstract

We propose a lightweight process migration mechanism
and an adaptive memory prefetching scheme called AM-
PoM (Adaptive Memory Prefetching in openMosix), whose
goal is to reduce the migration freeze time in openMosix
while ensuring the execution efficiency of migrants. To
minimize the freeze time, our system transfers only a few
pages to the destination node during process migration. Af-
ter the migration, AMPoM analyzes the spatial locality
of memory access and iteratively prefetches memory pages
from remote to hide the latency of inter-node page faults.
AMPoM adopts a unique algorithm to decide which and
how many pages to prefetch. It tends to prefetch more ag-
gressively when a sequential access pattern is developed,
when the paging rate of the process is high or when the
network is busy. This advanced strategy makes AMPoM
highly adaptive to different application behaviors and sys-
tem dynamics. The HPC Challenge benchmark results
show that AMPoM can avoid 98% of migration freeze time
while preventing 85-99% of page fault requests after the
migration. Compared to openMosix which does not have
remote page fault, AMPoM induces a modest overhead of
0-5% additional runtime. When the working set of a mi-
grant is small, AMPoM outperforms openMosix consider-
ably due to the reduced amount of data transfer. These re-
sults indicate that by exploiting memory access locality and
prefetching, process migration can be a lightweight opera-
tion with little software overhead in remote paging.

1 Introduction

Process migration is the act of transferring a run-
ning process from one machine to another. It en-
ables dynamic load balancing, improved locality of
data access and inter-process communication, fault re-
silience, and facilitates system administration when
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nodes are taken offline for maintenance [14]. Because
of these advantages, there had been active research
on process migration during ’80s and ’90s, which
includes DEMOS/MP [17], Amoeba [21], V [22], to
name a few. Despite these efforts, process migra-
tion has not been widely used, mainly due to the
complexity of implementing the migration support in
commodity operating systems which were designed
for stand-alone operations. Research focus was then
shifted to process checkpointing (e.g., [7]), which of-
fers a compromise between ease of implementation
and versatility. With recent advances of comput-
ing technologies, however, process migration is again
gaining popularity. There are three main factors that
have led to this change.

1. Cluster, grid, and mobile computing. HPC clus-
ters having thousands of compute nodes with
changing loads; globally-scattered computing re-
sources in grids having intermittent availabil-
ity; mobile users roaming around, each interact-
ing with multiple, mobile applications—all these
factors have made modern distributed systems
much larger in size and more dynamic than ever
before, and this trend is continuing. Traditional
mechanisms to place and re-place tasks (e.g.,
queueing systems and checkpointing) lack the
flexibility to cope with such changes. It is de-
sirable to have a more capable load distribution
mechanism that can better utilize these resources.
Process migration appears to be a promising al-
ternative.

2. From server-based to decentralized architec-
tures. Due to the factor above, server-based archi-
tectures with limited scalability have been gradu-
ally replaced by decentralized or peer-to-peer ar-
chitectures. Process migration per se does not re-
quire server coordination (unlike checkpointing,
for example, which needs a file server) and is
more suitable to highly scalable environments.



3. The widening gap between CPU and wide-area
network speeds. The gap between the speeds of
CPUs and wide-area networks have been widen-
ing over the past decades. On the other hand,
while the size of program code has been quite
stable, the size of data programs process has in-
creased dramatically due to the new demands
in computational sciences, yet these data might
be scattered over geographic regions (as in Data-
Grid [2], for example). It is increasingly expensive
to copy data from or communicate with distant
processes. Process migration, which emphasizes
the mobility of the process itself, seems to be a
promising approach to bridge the gap.

However, process migration can be an expensive
operation if the entire address space (or all dirty
pages) of a process is transferred to the destination
node before its execution is resumed. For exam-
ple, openMosix [1], an open-source distributed sys-
tem that supports process migration, adopts this ap-
proach; and it can take tens of seconds to migrate a
500MB large process through a commodity network
(see Section 5 for details). The long migration latency
can lead to rather conservative designs of upper-level
scheduling policies. For instance, [10] migrates a pro-
cess only if its lifetime exceeds a certain threshold.
Besides, it is also not cost-worthy to migrate the en-
tire process if we are not sure how long computing
resources will be available at the destination node; a
wrong or suboptimal migration decision would re-
quire the process being migrated again, inducing even
longer “freeze time” in which no computation can
be done. Several studies (e.g., [16][19]) have pro-
posed postponing the transfer of memory pages until
they are accessed by migrants. While this approach
keeps freeze time minimal, migrants are often exe-
cuted in suboptimal performance because of the time-
consuming inter-node page faults. As a result, process
migration has appeared beneficial to a narrow range
of compute-intensive applications. To solve these is-
sues, it is necessary to achieve a better trade-off be-
tween the conflicting goals of low freeze time and high
execution efficiency of migrants.

In this paper, we propose a lightweight process
migration mechanism and an adaptive data prefetch-
ing algorithm called AMPoM (adaptive memory
prefetching in openMosix), whose goal is to reduce
migration freeze time in openMosix while ensuring
execution efficiency of migrants. To minimize the
freeze time, we transfer a minimal portion of the ad-
dress space (the currently-accessed code, stack, and
data pages) to the destination node during process
migration. After the process is migrated, AMPoM
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Figure 1. System design

analyzes the spatial locality of its memory references
and iteratively prefetches memory pages from remote
to hide the round-trip latency caused by page faults.
AMPoM adopts a unique strategy to decide which
and how many pages to prefetch. Specifically, it tends
to prefetch more aggressively when a sequential ac-
cess pattern is developed, when the paging rate of the
process is high or when the network is busy. This
advanced strategy makes AMPoM highly adaptive to
different application behaviors and system dynam-
ics. We have implemented AMPoM in openMosix and
evaluated its performance using the HPC Challenge
benchmark [13]. The results indicate that AMPoM can
reduce the migration freeze time significantly, while
maintaining the execution efficiency of migrants un-
der all tested scenarios.

The rest of this paper is organized as follow. Section
2 describes the modified design of openMosix. Sec-
tion 3 presents the AMPoM algorithm. Section 4 pro-
vides the implementation details. Section 5 presents
the evaluation methodology and the experimental re-
sults. Section 6 discusses the related work. Finally, we
conclude this paper and outline several future work
in Section 7.

2 System design

Our primary design objective is to support
lightweight process migration in openMosix while en-
suring execution efficiency of migrants. To accomplish
this, we modified the process migration support in
openMosix in order to minimize data transfer during
migrations. In addition, we introduced two modules
in the openMosix kernel, namely the remote paging sup-
port and the AMPoM algorithm. Figure 1 illustrates the
overall system design; the details of each core module
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are described below.

2.1 Process migration support

In openMosix, all dirty pages in the address space
are transferred to the destination node during mi-
gration. Because the dirty pages usually dominate
the address space, the freeze time in this approach
would grow almost linearly with the size of the ad-
dress space. To shorten the freeze time, we adopt a
variant of the Freeze Free Algorithm (FFA) proposed
by Roush et al. [19] to decide which pages to trans-
fer during migration. The original FFA migrates only
three pages (the current data (heap), code, and stack
pages) during the migration time, then resumes the
execution of the migrant. After that, the original node
of the process would push the remaining stack pages
to the migrant, and flush all dirty pages to a file server.
When the migrant encounters page faults, it would
fetch the missing pages from the file server. In our de-
sign, we migrate the same three pages and the master
page table (MPT) during migration, while keeping all
remaining pages in the original node. When the mi-
grant encounters page faults, it would fetch the miss-
ing pages directly from the original node, without go-
ing through a file server. Figure 2 illustrates the differ-
ence between openMosix, FFA, and our approach.

2.2 Remote paging support

The remote paging support provides a mechanism
to request pages that are stored in the original node of
the process. It incorporates two page tables, namely
the MPT and the home page table (HPT). When a pro-
cess is migrated, its page table in the Linux kernel will
be transferred to the destination node, which will be-
come the MPT of the migrant. At the same time, the
original page table will become the HPT, and the orig-

inal process instance will be switched to a “deputy”
process which only answers remote paging requests
and executes system calls on behalf of the migrant
[1]. When a page is transferred to the migrant (either
during migration or through subsequent page faults),
its copy in the original node will be deleted and the
HPT will be updated accordingly. When a page is cre-
ated by a migrant, only the MPT needs to be updated.
When a page is unmapped, however, there would be
two possibilities: if the page is stored in the original
node, both the MPT and the HPT will be updated, oth-
erwise only the MPT will be updated.

2.3 AMPoM and zone partitioning

One important difference between FFA and our ap-
proach is that we exploit data prefetching to request
memory pages from remote before they are accessed
by the migrant, so as to avoid the stalls caused by the
round-trip latency in remote page faults. Specifically,
the proposed AMPoM algorithm dynamically identi-
fies the current dependent zone of the migrant, which
contains pages that are likely to be accessed in near fu-
ture. If some of these pages are not stored locally, AM-
PoM would use the remote paging support to fetch
and prefetch the missing pages from the original node.
We will discuss the internals of AMPoM in Section 3.

2.4 Resource discovery and monitoring
daemon

The resource discovery and monitoring daemon is
a modified version of the oM infoD (information dae-
mon) in the original openMosix. It discovers CPU and
network resources available in the system and moni-
tors their current utilization. It also provides these in-
formation to our AMPoM algorithm for decision mak-
ing.



3 Design of the AMPoM algorithm

Conceptually, AMPoM is a conservative prefetching
scheme [6] which tries to prefetch just enough pages for
the process to execute in a short period of time ahead.
It adopts Algorithm 1 to determine the current depen-
dent zone and perform prefetching for the migrant.
We present the operations of the algorithm in the fol-
lowing sub-sections.

3.1 Definitions and notations

AMPoM identifies the dependent zone by analyz-
ing the spatial locality of memory access in the page
level. The analysis is based on a stream of addresses of
recently-accessed memory pages recorded in a fixed-
size lookback window W of length l. Specifically, W
records a reference stream of pages R = r1, r2, ..., rl,
where ri denotes the address of the page being ac-
cessed in the i-th page fault. When a page fault oc-
curs while the lookback window is full, the first el-
ement (i.e., r1) in the window will be discarded, all
other elements will be shifted left, and the address
of the newly accessed page will be appended as the
new rl. In addition to the lookback window, AM-
PoM maintains two other arrays, T and C. T contains
the access time of each page recorded in W , there-
fore T = T1, T2, ..., Tl, where Ti is the access time of
ri recorded in W . C = C1, C2, ..., Cl, where Ci is the
current CPU utilization when ri is recorded in W .

Spatial locality is the tendency of applications to ac-
cess memory addresses near other recently accessed
addresses [5]. This definition is extended to memory
pages where spatial locality is the tendency to access
pages near other recently accessed pages. Specifically,
a stride of a page reference rp is defined as the mini-
mum absolute distance d in W between the references
to rp and rp+1. Therefore, a stride-d memory reference
is Sd = rp, rp+1, rp+2, ..., rp+d, where rp+d = (rp + 1),
ri �= (rp +1) for all p < i < p+d, d, p ≥ 1, and p+d ≤ l.
For example, the access stream {1,99,2,45,3,78,4} con-
tains three stride-2 references ({1,99,2}, {2,45,3}, and
{3,78,4}). Based on the stride construct, strided is
defined as the total number of page references in W
which exhibit stride-d references. In the above exam-
ple (which assumes l = 7), stride2 = 4 because there
are four pages (1,2,3,4) accessed in a stride-2 pattern.
It should be noted that we consider consecutive, re-
peated references to the same page a form of tempo-
ral locality, therefore they are counted as a single page
reference. In other words, rp �= rp+1 for all 1 ≤ p < l.

Algorithm 1: AMPoM’s prefetching algorithm

foreach page fault i do
if pages prefetched last time have arrived then

copy these pages to the migrant’s address
space;

end
record i in the lookback window;
calculate the current spatial locality score;
calculate the number of pages in the
dependent zone;
identify which pages are in the dependent
zone;
foreach page j in the dependent zone do

if j is not stored locally then
record j in the remote paging request;

end
end
send out the recorded paging request to the
original node;
wait for i to arrive if it is not available locally;

end

3.2 The spatial locality score

The spatial locality score S of a process is defined as
the summation of the fraction of strided references in
W [23] (Equation 1). Because programs seldom have
large d, AMPoM analyzes only up to stride-dmax refer-
ences in W , where 1 < dmax < l.

S =
dmax∑

d=1

strided

l × d
(1)

Since S is a normalized score in the range of [0, 1], it
can be used to describe how much a process exhibits
spatial locality. For example, a process only does se-
quential access to consecutive pages (e.g., consider the
access stream: {1,2,3,4...}) has S = 1. Another exam-
ple, {10,99,11,34,12,85}only has one stride-2 reference
stream {10,11,12} (3 pages), therefore stride2 = 3,
strided = 0 for all d �= 2, and S = stride2/(6 × 2) =
0.25.

3.3 Deciding the number of pages in the
dependent zone

Based on the spatial locality score, we determine
how many pages (N ) are considered as “dependent”
which should be made available in the physical mem-
ory in order to support the process to execute for a
time period of t. Our analysis is based on an intuition
that the more spatial locality a process exhibits, the



0 d2t  +t

1/r

0 d2t  +t

1/r

first prefetching request and replies

second prefetching request and replies

third prefetching request, replies omitted

Figure 3. Network latency to be hided

more pages should be considered dependent and read
ahead. Naturally, N should also grow with the pag-
ing rate of a process and the CPU power available to
the process, because if the paging rate or the available
CPU power is high, the process will be able to “con-
sume” pages faster. N is therefore defined as follow:

N =
c′

c
S × r × t (2)

r denotes the average paging rate of the process
during the period of the lookback window W , i.e.,
r = l/(Tl − T1); c denotes the percentage of CPU time
consumed by the process over the same period, which
is calculated as

∑l
i=1 Ci/l; c′ is the expected percentage

of CPU time a process can possibly consume during
the next period of t, which is assumed to be equal to
Cl. In order to prefetch the necessary pages and make
them available to the process within a time window
of the network delay (i.e., to hide the round-trip la-
tency), t should be at least equal to the round trip time
between the destination and original nodes, plus the
data transfer time of a single page and the time for the
next analysis to take place (i.e., the next page fault).
So, we define t = 2t0 + td + 1/r, where t0 is the net-
work latency between the two nodes, td is the time to
transfer a page, 1/r is the time when the next analy-
sis of dependent zone occurs. The formulation of t is
illustrated in Figure 3. Based on the above and from
Equation 2, N is formulated as follow.

N =
c′

c
S × r × (2t0 + td +

1
r
) (3)

3.4 Deciding which pages are in the de-
pendent zone

Equation 3 defines how many pages are consid-
ered as dependent pages. To determine which pages
are dependent, we first identify the prefetch pivots
of those outstanding streams of strided references in
W . Specifically, an outstanding stride-d stream is a
reference stream Sd = rp, rp+1, rp+2, ..., rp+d, where
rp+d = rp + 1 and (p + d) > l − d. In such an
outstanding stream, the prefetch pivot is rp+d + 1.
Once AMPoM identifies a prefetch pivot, it will con-
sider the pivot and possibly the pages immediately
following it (i.e., rp+d + 1, rp+d + 2, ...) as “depen-
dent”. For example, suppose l = 10 and the addresses
of the pages accessed are {13, 27, 7, 8, 14, 8, 3, 15, 4, 5}
(5 is currently accessed), the outstanding streams are
{14, 15} (a stride-3 stream), {3, 4} (a stride-2 stream),
and {4, 5} (a stride 1 stream), while their correspond-
ing pivots are 16, 5 and 6, respectively. Note that the
stream {7, 8} will not be counted for prefetching be-
cause it is not “outstanding” anymore. For each pivot,
AMPoM considers N/m pages immediately following
it dependent, where m is the total number of outstand-
ing streams. If there is no outstanding stream found
in W , AMPoM would consider the N pages following
the last referenced page (i.e., rl+1, rl+2, ..., rl+N ) de-
pendent, imitating the read ahead policy of the Linux
virtual memory manager. If a page is considered as a
dependent page in multiple outstanding streams, the
“saved quota” will be used to prefetch more subse-
quent pages.

3.5 Summary

To summarize, AMPoM adjusts its aggressiveness
of prefetching according to the spatial locality score,
the paging rate, and the current utilization of CPU and
network resources. For processes that exhibit little or
no spatial locality (i.e., S ≈ 0), AMPoM would reduce
the aggressiveness of prefetching to avoid excessive
data transfer which might not be useful. To some ex-
tent, AMPoM also preserves good temporal locality
as it prefetches the currently accessed code, data, and
stack pages during the migration time (as described in
Section 2.1). We adopt this simple heuristic because an
accurate analysis of temporal locality requires expen-
sive page protection mechanism for recording page
reuse. Despite its simplicity, the experimental results
in Section 5 show that AMPoM can effectively avoid
page fault requests under different memory access
patterns.



4 Implementation

We have implemented the AMPoM algorithm and
the related supports in openMosix 2.4.26-1. We lever-
age openMosix’s routines to handle the tedious tasks
to capture and restore process states such as CPU reg-
isters, the process control block, etc. in the migration
process. To shorten the freeze time, we removed the
step to sending all dirty pages, and replaced it with
a custom function which transfers only the MPT and
the currently-accessed code, data, and stack pages.
To support remote paging and prefetching, we incor-
porated the AMPoM algorithm and a set of network
communication functions into the page fault handler
in Linux. In our implementation, we maintain a look-
back window of length 20. This size, although is ad-
mittedly arbitrary, is intended to be small so that the
analysis overhead could be limited. In addition, we
limit to search for stride-1 to stride-4 sequential mem-
ory accesses in the lookback window (i.e., dmax = 4).
This value should be able to capture most sequen-
tial memory access because most programs perform
at most two-level indirect memory references (i.e.,
stride-3 at most). Besides, we also added several rou-
tines into openMosix’s oM infoD, which monitors the
current round-trip time and available network band-
width (t0 and td in Equation 3). The round-trip time is
found by measuring how long it would take to receive
an acknowledgement from a remote node after a load
update is sent out from the oM infoD. The available
network bandwidth is determined by a comparison
of the current and past values of the “RX/TX bytes”
fields outputted by the /sbin/ifconfig command.
This comparison is done every time when the look-
back window is “looped” once, while the time elapsed
during this period can be calculated from T1 and Tl

stored in the T timer array. We use the original sup-
port of oM infoD to monitor the current CPU utiliza-
tion of the system.

5 Experimental results

We present in this section the results of the bench-
mark experiments.

5.1 Evaluation methodology

We chose the HPC Challenge (HPCC) [13] bench-
mark suite to evaluate the performance of AMPoM,
which is composed of seven benchmark kernels: HPL,
DGEMM, STREAM, RandomAccess, PTRANS, FFT,
and b eff (MPI latency/bandwidth test). We skipped
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Figure 4. HPCC kernels and localities

the HPL, PTRANS and b eff kernels because net-
work communication performance in parallel pro-
grams is not the focus of AMPoM, and that the re-
maining four kernels are enough to represent different
memory access patterns. Figure 4 presents a concep-
tual relationship between the four kernels used and
their localities of memory reference. As shown in the
figure, they represent different degrees of spatial and
temporal localities that bound the behavior and per-
formance of most applications. One might refer to [13]
for the detailed operation of these four kernels.

In the experiments, each kernel was executed with
different problem sizes. Table 1 lists the problem sizes
specified in the configuration file of HPCC and the
corresponding memory sizes. The intention of these
configurations is to cover the program sizes about
evenly in the range of 100MB to 500MB. In each ex-
periment, we initiated migration right after a kernel
has finished allocated the required memory. We con-
ducted HPCC benchmark on AMPoM, and compare
the results with that of the unmodified openMosix and
a variant of FFA in which the same three pages (code,
stack, and data) would still be transferred during mi-
gration, but all missing pages would be fetched (with-
out prefetch) from the original node rather than from
the file server. We denote this last approach as “No-
Prefetch”. The experiments were conducted in the
HKU Gideon 300 Cluster [3]. The cluster consists of
300 Intel Pentium 4 2GHz PCs (each has 512MB RAM)
interconnected by a Fast Ethernet network. The OS
is Fedora Core 1 with the Linux kernel patched with
openMosix 2.4.26-1. gcc 3.3.2 and openMosix user
tools 0.3.6-2 were used in compiling the programs and
initiating the process migrations. It should be noted
that because the latest stable release of openMosix re-
lies on Linux kernel 2.4, we used a rather old OS dis-
tribution and the bundled gcc compiler.



DGEMM problem size 7600 10850 13350 15450 17350
memory size (MB) 115 230 345 460 575

STREAM problem size 7750 11000 13450 15520 17400
memory size (MB) 115 230 345 460 575

RandomAccess & problem size 8000 11000 16000 23000
FFT memory size (MB) 65 129 260 513

Table 1. Problem and memory sizes of HPCC
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Figure 5. Migration latencies of AMPoM, openMosix, and NoPrefetch

5.2 Migration freeze time

Figure 5 reports the freeze time of the three migra-
tion schemes. As shown in the figure, openMosix’s
freeze time is considerably longer than the other two
approaches since it has to suspend process execution
and migrate all dirty pages at one time. It is also clear
that openMosix’s freeze time grows linearly with the
program size. NoPrefetch, which migrates only three
pages no matter how large the program is, shows
shortest freeze times in all experiments. AMPoM’s
freeze times also grows linearly with the program size
because AMPoM has to migrate the master page ta-
ble (MPT) whose size is proportional to the number of
dirty pages of the process (note: the size of an MPT is
6 bytes per page). Despite this, AMPoM is still much
faster than openMosix in migration. For instance, the

time to migrate a 575MB DGEMM kernel in AMPoM,
openMosix, and NoPrefetch are 0.6s, 53.9s, and 0.07s,
respectively.

5.3 Application Performance

Figure 6 reports the total execution time of HPCC
with different migration mechanisms. As shown
in the figure, AMPoM and openMosix achieve sim-
ilar results, while the performance of NoPrefetch
clearly lags behind. The poor performance of No-
Prefetch indicates the high cost of inter-node page
faults. Specifically, NoPrefetch when compared to
openMosix (which does not have inter-node page
faults) takes an additional 35%, 51%, 20%, 41% of time
to execute the largest DGEMM, STREAM, RandomAc-
cess, and FFT, respectively.
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Figure 6. Application performance on AMPoM, openMosix, and NoPrefetch

By contrast, AMPoM’s prefetching scheme is
proved effective enough to hide most latency incurred
in inter-node page faults, making its performance
very close to that of openMosix which can be consid-
ered as the optimal case. The only exception is Ran-
domAccess in which the prefetching scheme, which
relies on spatial locality of memory access, fails to en-
hance the performance. In this case, AMPoM takes
an additional 4% of time to finish the largest Rando-
mAccess test. However, AMPoM still performs con-
siderably better than NoPrefetch because it might still
try to prefetch certain number of pages once there are
some sequential accesses appear in the lookback win-
dow by chance. Although this is not the intention of
the design, it resembles the characteristics of a fixed-
size read-ahead policy (e.g., in Linux’s buffer cache),
which serves as a “baseline” of prefetching aggres-
siveness even when the access pattern is not clear.

5.4 Effectiveness of prefetching

Figure 7 shows the number of page fault requests
in AMPoM and NoPrefetch. As shown in the fig-
ure, AMPoM’s prefetching scheme manages to pre-
vent 98%, 99%, 85%, 97% of page fault requests in
the largest run of DGEMM, STREAM, RandomAc-

cess, and FFT, respectively. The reduction of num-
ber of page fault requests leads to AMPoM’s much
better run-time performance compared to NoPrefetch
as shown in Figure 6. It should be noted that a pro-
cess in AMPoM still has to wait for the pages to come
since the network speed is considerably lower than
the speed of memory consumption in HPCC (which is
designed to stress test memory performance). How-
ever, AMPoM’s prefetching scheme saves the round
trip latency of inter-node page faults by pipelining ef-
fect.

The above experiment shows that AMPoM’s
prefetching scheme can effectively avoid page fault
requests. However, one design goal of the prefetch-
ing scheme is not to perform excessive prefetching.
Ideally, the scheme should adjust to the memory ac-
cess pattern such that prefetching is done only when
it is beneficial. In this way, no system resource is
wasted in unnecessary prefetching, and a migrant can
be kept lightweight when it has to migrate to another
node. We investigated into the ability of AMPoM
to adapt to different access patterns, and the results
are shown in Figure 8. As shown in the figure, AM-
PoM aggressively prefetches pages when a sequen-
tial pattern is clearly developed (as in STREAM), and
tends to be conservative when the benefit of prefetch-



 100

 1000

 10000

 100000

 1e+06

 100  150  200  250  300  350  400  450  500  550  600

N
um

be
r 

of
 p

ag
e 

fa
ul

t r
eq

ue
st

s

Program size (MBytes)

(a) DGEMM

AMPoM
NoPrefetch

 100

 1000

 10000

 100000

 1e+06

 100  150  200  250  300  350  400  450  500  550  600

N
um

be
r 

of
 p

ag
e 

fa
ul

t r
eq

ue
st

s

Program size (MBytes)

(b) STREAM

AMPoM
NoPrefetch

 1000

 10000

 100000

 1e+06

 50  100  150  200  250  300  350  400  450  500  550

N
um

be
r 

of
 p

ag
e 

fa
ul

t r
eq

ue
st

s

Program size (MBytes)

(c) RandomAccess

AMPoM
NoPrefetch

 100

 1000

 10000

 100000

 1e+06

 50  100  150  200  250  300  350  400  450  500  550

N
um

be
r 

of
 p

ag
e 

fa
ul

t r
eq

ue
st

s

Program size (MBytes)

(d) FFT

AMPoM
NoPrefetch

Figure 7. Number of page faults

ing is unclear (as in RandomAccess). These results
closely resemble the access locality of the HPCC de-
sign as shown in Figure 4. There is an interesting
point in this experiment: although AMPoM prefetches
considerably less pages (per page fault) in DGEMM
and FFT than in STREAM, they still execute almost as
fast as openMosix (Figure 6). This is actually because
DGEMM and FFT have more computation (per data
item) and hence lower paging rate than STREAM [13].
This finding shows that AMPoM is able to adjust the
aggressiveness of prefetching according to the paging
rate. Considering the paging rate a measure of the
demand of memory bandwidth of applications, AM-
PoM tends to increase its aggressiveness of prefetch-
ing when applications are more memory-intensive,
and vice versa.

5.5 Adaptation to Network Performance

In this experiment, we evaluate AMPoM’s abil-
ity in adapting to network performances. We use
Linux’s iptables and the tc (traffic control) mod-
ule [11] to simulate a broadband network with avail-
able bandwidth of 6Mb/s and latency of 2ms. The ex-
ecution time of DGEMM (115MB) and RandomAccess
(129MB), expressed as the percentage increase com-

pared to the execution time in openMosix, are shown
in Figure 9. The results of STREAM and FFT (whose
spatial localities are similar to DGEMM and Rando-
mAccess, respectively) and the other problem sizes
are similar, so they are omitted for brevity.

In the DGEMM experiment, AMPoM achieves a
modest increase in execution time (compared to that
of openMosix) when the bandwidth is decreased from
100Mb/s to 6Mb/s (101% vs. 108% of openMosix’s
execution time). This shows that when the spatial lo-
cality is clearly developed, AMPoM is able to main-
tain a low overhead (8%) in remote paging even when
the network performance drops significantly. By con-
trast, AMPoM’s performance is more sensitive to the
change in network speed when the access pattern is
more random (as shown in the RandomAccess tests).
This is because AMPoM prefetches much less aggres-
sively, hence more page faults, when the access pat-
tern tends to be random. In such cases, the network
latency in remote paging would dominate the execu-
tion time. However, even in this unfavourable en-
vironment, AMPoM still outperforms NoPrefetch by
about 4%.
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Figure 9. Adaptation to network perfor-
mances

5.6 Migration of processes with small
working sets

The above experiments are rather unfavourable to
AMPoM because all HPCC programs access their en-
tire address spaces, therefore both AMPoM and open-
Mosix need to transfer the same amount of data in
the process’s lifetime. Indeed, AMPoM is designed to
transfer data only when it is considered useful. Be-
cause of this, compared to openMosix which trans-
fers the entire address space, AMPoM provides bet-
ter support for those applications that have smaller
working sets. In this experiment, we evaluate the per-
formance of AMPoM under a more favourable case in
which a process does not need to access all its address
space after migration. We modified the source code
of DGEMM so that it allocates 575MB of memory, but
works on matrices of 115MB, 230MB, 345MB, 460MB,
and 575MB large. The recorded execution time on
openMosix and AMPoM are shown in Figure 10. As
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working sets

shown in the figure, DGEMM on AMPoM finishes
faster because AMPoM fetches only the working set
of the process, thus saving the communication time.
This also re-confirms that AMPoM does not do exces-
sive prefetching.

The results show that AMPoM performs especially
well when the working set of a migrant is smaller than
its address space. Indeed, many user applications ex-
hibit such behavior. For example, interactive appli-
cations which need to wait for user’s input are often
large in size (e.g., those with graphical user interfaces),
but might not require to perform all functions at one
time. Another example is data-intensive applications
whose migrations might be for data locality, i.e., they
would allocate new pages after migration rather than
using the existing ones. Besides, virtual machines that
run as processes in a system also have similar charac-
teristic.

5.7 Overheads of AMPoM

Figure 11 shows the time to determine the depen-
dent zone, expressed as percentage of total execution
time. As shown in the figure, AMPoM consumes less
than 0.6% of execution time in finding the dependent
zone in all test cases, while nearly all of them are less
than 0.25% except one. The results show that the over-
head of the AMPoM algorithm is small relative to the
computation time of applications.

6 Related work

One common challenge facing most process migra-
tion supports is to migrate the virtual address space
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which is most time consuming. A straightforward
method is to copy the entire address space from the
source to the destination nodes before the execution
resumes (e.g., [17][21], etc.). Although easy to imple-
ment, this approach is wasteful since not all memory
pages will be referenced again, while transferring all
pages at one time also increases the freeze time of the
migrating processes.

To shorten the freeze time, several research pro-
posed to move only a portion of the address space
during migration. For example, the address space
of a process to be migrated in the V system [22] is
pre-copied to the remote node prior to its migration,
while the process is still executing in the source node.
This approach, however, induces unnecessary net-
work traffic if pages are modified after they are pre-
copied. Accent [18] and OSF/1 AD 1 on Mach [16] use
copy-on-reference, in which pages are moved to the
destination node only when referenced. The advan-
tage is that often a substantial proportion of pages are
not subsequently referenced at all and so never need
to be moved to the destination node. The disadvan-
tage is the overhead for the process to re-establish the
working set (through costly inter-node page faults) af-
ter it is migrated [21]. MOSIX [4] adopts a similar ap-
proach to migrate only the dirty pages from the origi-
nal to the destination node, while the clean pages are
fetched on demand. This approach, however, still suf-
fers from long freeze time when a significant portion
of the address space is dirty. Roush and Campbell [19]
proposed to ship precisely the currently needed pages
from each of the code, heap, and stack regions. While
in this approach the freeze time is minimized, the ex-
ecution efficiency is affected by the subsequent costly
page faults. In contrast to these existing approaches,
AMPoM intends to achieve a better trade-off between
freeze time and execution efficiency of migrants.

Instead of migrating individual processes, several
research has proposed migrating virtual machines.
The main advantage is cleaner migrations since the
migration supports can be implemented in the virtual
machine monitors in which the system’s and the pro-
cesses’ states are completely encapsulated. Prototype
systems have been implemented on VMware [20][12],
Xen [8], and Denali [24]. Indeed, this approach is more
effective than process migration for migrating com-
puting environments (e.g., desktop sessions) as the
processes and the OS kernel can be migrated consis-
tently. By contrast, process migration requires less
amount of data transfer, which is more efficient for
fine-grained, dynamic control of system loads in dis-
tributed systems. Besides, live migration of virtual
machines also faces the dilemma of freeze time and
execution efficiency; a better trade-off between these
two factors can possibly be achieved by adopting a
prefetching scheme similar to AMPoM. Specifically,
AMPoM can be extended to consider memory access
streams from multiple processes in a virtual machine
in order to perform more effective prefetching.

Prefetching based on spatial locality [9] has a long
history. It has been studied in various domains, rang-
ing from uniprocessor and multiprocessor systems, to
file systems, to databases. In general, these techniques
involve identifying the timing of prefetch (e.g., pattern
matching of sequential access), and how much data to
prefetch (i.e, the data coverage). AMPoM’s prefetch-
ing scheme is similar to them because it also relies
on sequential access pattern to initiate prefetching.
However, AMPoM determines the number of pages
to prefetch based on an analysis of the spatial locality
score (which is a variant of the score proposed in [23]),
the paging rate of the application, and the processor
and network utilizations, which is tailor-made for an
environment with moving processes. In essence, AM-
PoM’s strategy falls into the category of conservative
prefetching [6], but with a unique technique to deter-
mine the data coverage.

7 Concluding remarks and future work

We presented the design, implementation and per-
formance of AMPoM. The experimental results show
that AMPoM can achieve a reasonably good balance
between migration freeze time and execution effi-
ciency of migrants. It should be noted that our ex-
periments with a demanding benchmarks as HPCC
tend more to reveal the overhead than the strengths of
the proposed system. Indeed, when a migrant does
not need to access its entire address space, AMPoM
would outperform openMosix considerably due to the



reduced amount of data transfer. This property of
AMPoM can benefit many user applications such as
interactive or data-intensive applications, and virtual
machines running as processes.

The results of this research open up new possibili-
ties in the design of scheduling policies for distributed
systems. For example, new scheduling policies can
make use of AMPoM on openMosix to perform more
aggressive migrations since the performance penalty
of suboptimal decisions has been dramatically de-
creased. Furthermore, the concept of lightweight mi-
gration can be an integral part of a single-system-
image service in the process management level in dis-
tributed systems.

Possible future work includes the design of
scheduling policies that make use of AMPoM, and
a tailored AMPoM for migrating virtual machines
whose memory references are consisted of access
streams from multiple processes. Besides, the cur-
rent implementation of openMosix requires all sys-
tem calls being redirected to the home node of the
process, which significantly affects the performance of
I/O-intensive applications. One can possibly employ
some virtualization techniques (e.g., [15]) to remove
this “home dependency”, so that a migrant can per-
form system calls with little additional overhead.
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