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Abstract—Extending the standard Java virtual machine (JVM) 
for cluster-awareness is a transparent approach to scaling out 
multithreaded Java applications. While this clustering solution 
is gaining momentum in recent years, efficient runtime support 
for fine-grained object sharing over the distributed JVM re-
mains a challenge. The system efficiency is strongly connected 
to the global object sharing profile that determines the overall 
communication cost. Once the sharing or correlation between 
threads is known, access locality can be optimized by collocat-
ing highly correlated threads via dynamic thread migrations. 
Although correlation tracking techniques have been studied in 
some page-based software DSM systems, they would entail 
prohibitively high overheads and low accuracy when ported to 
fine-grained object-based systems. In this paper, we propose a 
lightweight sampling-based profiling technique for tracking 
inter-thread sharing. To preserve locality across migrations, 
we also propose a stack sampling mechanism for profiling the 
set of objects which are tightly coupled with a migrant thread. 
Sampling rates in both techniques can vary adaptively to strike 
a balance between preciseness and overhead. Such adaptive 
techniques are particularly useful for applications whose shar-
ing patterns could change dynamically. The profiling results 
can be exploited for effective thread-to-core placement and 
dynamic load balancing in a distributed object sharing envi-
ronment. We present the design and preliminary performance 
result of our distributed JVM with the profiling implemented. 
Experimental results show that the profiling is able to obtain 
over 95% accurate global sharing profiles at a cost of only a 
few percents of execution time increase for fine- to medium-
grained applications. 

Keywords-profiling; sampling; correlation tracking; access 
locality; thread affinity; thread stack; thread migration; dynamic 
load balancing; object sharing; distributed Java virtual machine; 
distributed shared memory systems 

I.  INTRODUCTION 

Software distributed shared memory (DSM) systems 
have turned over a new leaf by breeding various forms of 
distributed runtimes having a similar programming model. 
The key ideas developed by decade-long research efforts in 
DSM have been realized into production-quality systems that 
are available in recent years. Examples include GigaSpaces 
[1], Oracle Coherence [2] and Open Terracotta [3]; all these 
clustering solutions are reaching out to remote memory for 
global cache benefits. Researchers’ interest in the partitioned 

global address space (PGAS) model, a variant of DSM, is 
underlined by the multibillion HPCS program [4] led by 
DARPA. The novel languages like X10 [5] and Chapel [6] 
basically follow the DSM model but ship with far more new 
constructs for data locality management. Developers can use 
the constructs to define how shared data are distributed with 
locality hints among processors. The deliberate constructs 
grant users more control and yet somewhat impair the pro-
grammability goal of the shared memory model. 

With significant speed improvement these years [7, 8], 
Java has made definite inroads into high-performance com-
puting. Given that 4.5 billion devices and 6.5 million devel-
opers worldwide are pivoting on Java [9], a handy parallel 
paradigm is gluing to idiomatic Java programming and off-
loading the cluster-wise parallelization task of a threaded 
Java program transparently onto an underlying distributed 
Java virtual machine (DJVM) [10, 11, 12]. The DJVM soft-
ware layer handles all aspects of low-level clustering for the 
application through automatic thread-level parallelization 
and heap-level virtualization of shared memory across the 
cluster. Ultimate goal of our DJVM design is to provide a 
single-system image (SSI) while attaining scalability compa-
rable to the message-passing model. This performance target 
is however difficult to achieve. The memory consistency 
protocol must be well-designed to eliminate all needless re-
mote communications. Advanced features such as a system 
profiler should also be in place to get most shared data local-
ity or thread affinity well-managed as if PGAS constructs 
were added in the application program. 

Optimizing locality cluster-wide based on a partial shar-
ing profile would be too inaccurate that thrashing of threads 
and objects among nodes would be resulted. We need to ob-
tain a complete and precise profile of sharing or correlation 
among threads for global optimization. The profile is how-
ever difficult to obtain without high overheads. Passive cor-
relation tracking (used in [13, 14]) that relies on remote page 
faults to activate access logging can only capture partial 
sharing behavior because access to a validated page by other 
local threads is missed logging. Active correlation tracking 
[15] was proposed to track the sharing information. The term 
“active” means the system deliberately fakes invalid page 
states via memory protection and brings about the so-called 
“correlation faults” regularly to awake the DSM protocol for 
access logging. However, when such page-based techniques 
are applied to fine-grained object-oriented sharing systems, 
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tracking overheads will soar to an intolerable level, for the 
number of instrumented object state checks is much more 
than page faults. So we need new techniques to track the 
sharing profiles in a lightweight manner. The key to reducing 
the overheads is to use sampling to limit the correlation 
faults on a subset of objects in the heap. However, sampling 
would worsen accuracy in the correlations tracked and we 
need to balance between accuracy and profiling cost. Simple 
sampling strategy at a fixed gap is not a decent solution since 
the gap varies from one application to another. Without an 
adaptive framework that automatically tunes for a balance, 
users will find it hard to handcraft an appropriate sampling 
gap for their applications. 

Besides the correlation between thread pairs, the affinity 
(quantified by access frequency or recency) between a thread 
and its accessed objects also forms an important system pa-
rameter for a runtime with reconfigurable thread placement. 
Studies in this area usually just consider the direct overhead 
of a thread migration spent on the thread context (stack 
frames) but ignore the even larger indirect overhead spent on 
remote object faults (analogous to page faults) that follows 
the migration. Such round-trips can be effectively hidden if 
the related objects are prefetched along with the migration. 
While previous work [16, 17] on working-set-based remote 
memory pre-paging has been done for process migration, 
determining an effective working set of objects to prefetch 
for thread migration is much more challenging on similar 
grounds of huge access tracking overheads. 

In this work, we propose a couple of adaptive sampling 
techniques for tracking thread-thread and thread-object affin-
ity in a lightweight manner. Sampling rates can vary at run-
time in both techniques to balance between preciseness and 
overhead. The contributions of this paper are two-fold. First, 
we provide a fine-grained active correlation tracking mecha-
nism based on a novel object sampling for improving thread 
affinity in object-based sharing systems (Section II). Second, 
we develop a profiling technique based on online stack sam-
pling to monitor the set of objects that are sticky to a thread 
(Section III). The sticky set determines the real cost of thread 
migration covering the predictable remote object faults after 
the thread migrates. This gives a more accurate cost model 
for the load balancer to devise profitable thread migrations. 
Policies or algorithms of making best use of the profiling 
output for performance gain are indeed a separate hard prob-
lem and open to the system engineers (our future work is 
outlined in Section V). 

We implement the proposed methodologies in the global 
object space (GOS) subsystem of the JESSICA2 DJVM [11]. 
The GOS has been significantly revamped for better imple-
mentation of home-based release consistency (HLRC) [18] 
and barrier synchronization support. We evaluate JESSICA2 
in terms of profiling overheads and accuracy (Section IV) on 
a cluster platform. Experimental results show an average 
accuracy of 95% obtained at overhead bounded by 10%. 

II. THREAD CORRELATION TRACKING 

Despite the many advantages such as global cache effect 
and simpler programming, object sharing over a DSM sys-
tem does involve additional overheads such as remote lock-

ing, object faulting and update propagation, etc. These costs 
highly depend on the relative locations of threads and shared 
objects. For home-based protocols, if a thread is placed at the 
home node of a shared object, its access to the object would 
be the most efficient (without twin-diff and messaging over-
heads). Locality is a relative property. Relocating home of 
one object for locality of one thread may sacrifice locality of 
other threads accessing it. Load balancing is another concern. 
Overloading a node by moving to it too many threads causes 
adverse slowdown, shadowing the locality benefit. Therefore, 
thread placement must consider global strategies that strive 
to keep locality optimal for the majority of threads most of 
the time. Our study would further classify the relative local-
ity or affinity into three types: (1) thread-thread or inter-
thread affinity; (2) thread-object affinity and (3) inter-object 
affinity. Inter-thread affinity can be attained by thread migra-
tion to collocate a pair of threads sharing large amount of 
data on the same node. Thread-object affinity measures the 
access locality by a thread to an object and can be improved 
either by thread migration or object home migration. Inter-
object affinity reflects the correlation between objects under 
a graph of connectivity and can be dealt with object prefetch-
ing and home migration. This paper focuses on (1) and (2) 
while (3) is studied in another paper [19] in which we intro-
duced access path analysis as a profiling technique for the 
proper scope of object prefetch. 

Effective thread placement is vital to not only distributed 
systems but also multicore processors in view of their shared 
cache architecture. Placing threads accessing different data 
streams to cores in close proximity may cause cache conten-
tion and thrashing. On the contrary, placing highly correlated 
threads to be within intra-core will make their object sharing 
done speedily over shared L2 cache. With an efficient way to 
obtain inter-thread correlation, the runtime system can be 
guided properly for dynamic thread placement. 

Employing localized thread placement strategies may not 
improve the system performance and even cause threads to 
thrash between nodes due to incomplete sharing profiles. 
Thus, we need to collect global sharing statistics and deduce 
a so-called thread correlation map (TCM), a 2D histogram 
of shared data volume between each pair of threads. Active 
correlation tracking [15] has been studied in page-based 
DSM systems for such a purpose, but is not quite useful to 
fine-grained applications because it can only reveal the in-
duced sharing pattern rather than the application’s inherent 
pattern after the effect of false-sharing. In Fig. 1, we illus-

       
(a) Inherent pattern                     (b) Induced pattern 

Figure 1.  False sharing effect on correlation tracking preciseness: clues 
about precise inter-thread correlations are lost 



trate this point with two correlation maps showing the inher-
ent and induced sharing patterns of the same program, Bar-
nes-Hut (32 threads, 4K bodies, distance 7.0) in which each 
thread is responsible for simulating movement of a continu-
ous chunk of bodies in two galaxies. Threads for computing 
the interaction between bodies within the same galaxy will 
exhibit much higher data locality than those bodies across 
galaxies. Indeed, data partitioning algorithms like costzone 
[20] yield even higher locality between adjacent threads. 
While the program’s inherent pattern is shown in (a) ob-
tained by simulation (log inserted at every object access), the 
induced pattern shown in (b) contains very little hint of local-
ity between threads of the same galaxy due to serious false 
sharing. Respecting the original application nature calls for a 
fine-grained version of active correlation tracking. 

We present our fine-grained active correlation tracking 
techniques based on adaptive object sampling in the follow-
ing subsections. 

A. Fine-Grained Active Correlation Tracking 

Fig. 2 shows the system architecture of the JESSICA2 
DJVM with profiling subsystems introduced. As mentioned, 
our consistency protocol is home-based. Object home copies 
(drawn in solid lines) reside in the nodes which are the first 
to create them. To minimize remote access, shared objects 
retrieved from home nodes are replicated as cache copies (in 
dashed lines) in the local heap of the current thread. Cache 
copies are invalidated at lock time if there are updates made 
by remote threads happened before the lock. By software 
checks injected per read/write, access to an invalidated cache 
of an object will fault in the latest copy from its home. 

To estimate a system-wide sharing profile, the first step 
is to track every thread’s reads and writes on objects, form-
ing an object access list (OAL) for each thread. Care must be 
taken in this step because logging every object access will 
penalize the common case. By means of the at-most-once 
property of HLRC protocol, no matter how many times a 

thread accesses an shared object, access log for the object 
can be done only once per interval across synchronizations. 

In JESSICA2, object state check is inlined to every ac-
cess bytecode operation through the JIT compiler. The state 
is stored as 2 bits somewhere in the object header. Upon 
opening a new interval, shared objects (only those accessed 
in the last interval by the thread) will be reset to false-invalid 
state to enable tracking on them regardless of their real status 
(which is now stored in a separate field). When accessing a 
shared object, access fault will be handled by the GOS ser-
vice routine to log the access into a per-interval record, can-
cel its false-invalid state, and maintain object consistency 
according to its real state. On closing an interval, OALs (i.e. 
accessed object id and size) will be collected and packed 
along with the interval context (delimited by start and end 
bytecode PC) into a jumbo message to be sent to central co-
ordinator (the master JVM in Fig. 2) running the correlation 
computing daemon. This message is piggybacked on lock or 
barrier request if they are going to the same destination. If 
enough intervals are gathered, the daemon will process the 
OALs, reorganize the per-thread lists to per-object lists of 
thread ids, and constructs the TCM by accruing bytes of ac-
cessed objects in common for each thread pair. Given M 
objects shared by N threads, OAL reorganization and TCM 
building take O(MN) and O(MN2) time respectively. It is 
clear that computing TCMs for large M can grow into a scal-
ability bottleneck in the system, leading us to think of the 
sampling approach to reducing M. 

B. Adaptive Object Sampling 

Sampling is a statistical process of selecting a subset of 
units, i.e. samples, from a population of interest so that by 
studying the sample we may fairly generalize our results 
back to the population which in our case is the entire JVM 
heap. Each object is given a tag marked as “sampled” or 
“unsampled” upon its creation. A good object sampling 
scheme should take samples uniformly over the heap. The 
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Figure 2.  System architecture of JESSICA2 DJVM with profiling 



simplest sampling scheme is probably to sample objects at 
the same rate and logs their object sizes which reflect com-
munication costs. However, this simple sampling may not 
yield precise enough result since different classes of objects 
may vary a lot in size, access and sharing behavior. Thus, we 
aim for different sampling rates for different classes. (Note: 
Different classes may inherit from the same superclass but 
could show different access or sharing behaviors, so we store 
the sampling-specific metadata like sampling gap as close to 
subclasses as possible. We differentiate at class level instead 
of method level for simplicity though allocation site is a 
more precise hint of object’s behavior in other studies [21].) 

1) Class-based Sampling Rate 
Choosing an appropriate sampling rate for a specific 

class needs a careful tradeoff between accuracy and overhead. 
Without dynamically changing the sampling rate and probing 
the perceived accuracy, we may never know whether we 
could still decrease the rate to reduce the overhead further. 
To allow this to happen, we expand the traditional one-bit 
sampling tag into a sequence number (half-word for memory 
efficiency), which is unique among objects within the same 
class. Sampling rate is then given by a variable parameter 
known as the sampling gap. An object will be taken as a 
sample only if its sequence number is divisible by the current 
sampling gap which is defined at class level. 

Each class has a nominal sampling gap typically in pow-
ers of 2 and we will find a prime number nearest to the 
nominal to be the real sampling gap. For example, 31, 67 
and 127 would be chosen as the real sampling gaps for 
nominal sampling gaps of 32, 64 and 128 respectively. Using 
prime numbers is necessary in our scheme to avoid non-
uniform sampling due to potential cyclic allocation behaviors 
in some applications. Fig. 3 (a) shows an example. Each box 
represents an object instance carrying an allocated sequence 
number. A specific object might be sampled or unsampled 
under the current sampling gap according to this number. 

We adopt the notation nX to denote the sampling rate 
w.r.t the page size. For example, 8X means “sampling eight 
objects per memory page”. For a class of size s, sampling at 
rate nX has to set the sampling gap to be SP / (s×n), where SP 
is the page size (usually 4KB). Sampling rate can vary dy-
namically from at least 1X to 2X, 4X … until full sampling 
is reached. The remaining problem is how to determine if the 
current sampling rate is precise enough or in other words 
how to measure the accuracy of sampling. 

2) Sampling Accuracy  
For a system of N threads, a correlation map is an N×N 

matrix. Let A = [aij]N×N and B = [bij]N×N  be two correlation 
maps. We measure accuracy in terms of the difference, i.e. 
error, between the two matrices. Formulae (1) and (2) below 
measure the distance between A and B by Euclidean norm 
and absolute value respectively. 
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(2) 

If B is the result from full sampling, while A is not, we 
call this absolute accuracy. If both A and B are not from full 
sampling and A samples less frequently than B, we call this 
relative accuracy. While each sampling rate must be evalu-
ated with absolute accuracy, decisions on dynamic sampling 
rate changes can only be made from limited knowledge of 
relative accuracy. Therefore, we would study the relation 
between these two accuracy metrics and evaluate if relative 
accuracy can yield correct decisions. The basic approach to 
reaching an optimal sampling rate is to begin with a rough 
sampling rate, increase it stepwise (by shortening the sam-
pling gap) and compare the distance between the successive 
correlation matrices. If their distance is small enough (con-
verge to be within some predefined threshold), we stop at the 
underlying sampling gap. The central coordinator that col-
lects OALs from all threads will decide whether the current 
sampling rate needs a change. Upon receiving a change no-
tice for a specific class, every thread will iterate through all 
objects of that class it caches locally, check with their se-
quence numbers, and sample or desample each of them ac-
cordingly to align with the new rate. Resampling does waste 
some CPU cycles but is useful to prevent those objects sam-
pled at previous rates from accumulating to make tracking 
overhead ever-increasing. In our benchmarks, it usually takes 
no more than 0.1% of total CPU time. 

3) Sampling of Arrays 
The case of array sampling needs special treatment to ad-

dress non-uniform sampling and correlation bias. First, ar-
rays can vary a lot in their lengths. If we sample arrays like 
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(a) Object sampling                                                                     (b) Array sampling 

Figure 3.  Sampling at different gaps 



the way for ordinary objects, a miss of sampling a large array 
will leave a large portion of the heap unsampled. Second, if 
we log the array size to be the sample’s size, correlation re-
sults obtained via sampling will be largely biased towards 
large arrays, resulting in skewed correlation. For example, 
T1 and T2 share a small array A while T2 and T3 share a 
large array B accessing different element ranges, the correla-
tion between T2 and T3 will always be overestimated. On the 
other hand, one could argue that such a bias is appropriate 
for large arrays since they incur higher communication costs 
in a common home-based protocol implementation which 
handle object faults by bringing the whole object from home. 
However, since array sizes can be larger than a page, allow-
ing the bias would make the correlation result vulnerable to 
false sharing. 

We use an amortization scheme to ameliorate these ef-
fects by regarding each array as a group of objects no matter 
the array element type. So every element has its own se-
quence number. As these numbers are continuous, for each 
array instance, we only need to save the first element’s se-
quence number and derive the others by adding the array 
index. Fig. 3 (b) shows an example of sampling arrays of the 
same class with various lengths. An array is sampled only if 
at least one of its elements is logically sampled. We say 
“logically” since per-element sampling is needless and we 
can easily get the number of sampled elements from dividing 
the array size by current sampling gap. To handle the bias, 
when a sampled array is accessed, we consider all its sam-
pled elements accessed and log an amortized sample’s size = 
sampled elements × element type size for the array when 
computing the correlation map. The overall scheme would 
make sampling both statistically uniform and unbiased what-
ever sampling gap changes. 

III. THREAD MIGRATION COST MODELING 

As mentioned, the affinity between a thread and its ac-
cessed objects is another crucial factor that determines the 
system performance. Thread migration is a mechanism to 
improve the data access locality by moving computation to 
the data. While a thread context is usually cheaper to migrate 
than the data (object graphs and arrays), the actual migration 
cost could be much larger than just sending out the thread’s 
stack because of the implicit cost of remote object faults 
happened thereafter. For a better model of the thread migra-

tion cost, we define the sticky set (SS) of a migrant thread 
candidate as a set of objects that will predictably cause re-
mote object faults after the thread migrates. The term 
“sticky” implies a strong correlation between the thread and 
the set. So if the thread moves out without the sticky set pre-
fetched along with, it will see successive object misses caus-
ing remote roundtrips. Sticky set is a subset of the working 
set of a thread (which could be too large to send) but is more 
difficult to determine because capturing access recency alone 
may not be enough. In Fig. 4, thread T1 fetches object A and 
B during an interval, each only once. But A is accessed fre-
quently while B is accessed only once. If T1 migrates to a 
new node, being T1’, during the same interval, it will need to 
fetch A again but not B. In this case, we can see a thread’s 
local access frequency to objects within an interval does mat-
ter although correlation tracking can skip it. 

We can observe that objects in a thread’s sticky set have 
the following properties: (1) they have been accessed before 
thread migration within the same interval; (2) they will still 
be accessed after thread migration also within the same in-
terval. Only these objects will contribute to the total cost of 
thread migration for they are fetched twice within a single 
interval. Normally these objects are constantly accessed 
throughout the whole interval, so they can be discovered by 
monitoring object access patterns. It should be noticed that 
our definition is specific to relaxed memory models like 
LRC [22] (Lazy Release Consistency) and ScC [23] (Scope 
Consistency), which have the concept of intervals and the at-
most-once property. 

A. Profiling Migrant Thread’s Sticky Set 

We estimate the sticky set by a two-way profiling strat-
egy. First, we make repeated calls of adaptive object sam-
pling within an interval to capture access frequency statistics 
on sampled objects so as to obtain an approximate size of the 
sticky set and the class-level composition of the objects in 
the set, i.e. how many bytes are accumulated in the access 
log for each class of sampled objects accessed by the thread 
of interest. We denote this metadata by the term sticky-set 
footprint. Basically, one can design a load balancing policy 
that weighs the gain from a thread migration against the mes-
saging cost proportional to such a footprint. 

However, this process doesn’t log precise access fre-
quency and covers only sampled objects, missing those un-
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sampled objects that are actually being accessed frequently. 
So an online stack sampling-based mechanism is employed 
to back up the accuracy. Stack sampling refers to taking 
snapshots of the stack frames of a thread periodically. In this 
case, a sample means a stack image. Through such sampling, 
we can discover some object references which steadily per-
sist across the taken samples. These invariant object refer-
ences clue us in on the entry points of the underlying sticky 
set from which we can start prefetching over the object 
graphs until the bytes prefetched reaches some threshold 
over the sticky-set footprint estimated by object sampling. 
This concept is depicted in Fig. 5. This bilateral strategy ex-
ploits a mix of heap-sampled access frequency and stack-
sampled access recency to derive the thread-object correla-
tion. So although results are tapped from sampling which is 
limited or speculative, they reconcile or complement one 
another to give improved accuracy. 

The entire SS-profiling process is of three steps: 
1) Sticky Set Footprinting:  

This step estimates the size of each class of frequently 
accessed objects to be included in the set by sampling and 
tracking objects in the heap repeatedly. Compared with cor-
relation tracking that is done at most once for each sample 
per HLRC interval, repeated tracking over heap objects may 
impose higher overhead and require tradeoff between accu-
racy and cost again. Thus, we put a lower bound on object 
sampling gap and a timer for on and off tracking phases. 

2) Mining for Stack-invariants:  
This step uses stack sampling to discover some object 

references that consistently show up on the stack. Since JVM 
is a stack machine that every bytecode can only access its 
operands via the current stack frame, we can exploit the fol-
lowing properties to discover hints about a thread’s sticky set: 

a) If a thread wants to access objects of its sticky set, it 
must start from a reference on its Java stack. 

b) Temporary or transient frames are unlikely to con-
tain key references to a thread’s sticky set. In a real-life Java 
program, many top frames may exist temporarily for a very 
short time, while the bottom ones could last much longer. 
References in transient frames will soon be lost after the 
frames are popped. 

c) Stack invariant references, remaining on stack for a 
long time constantly, are valuable hints about the sticky set. 

The first reason is that varying references are always ob-
tained by following invariant references, directly or indi-
rectly. Second, such invariant references are often denoting 
the entry points of some collective data structures like a 
linked list’s head, a tree’s root, or a hash table’s entry array 
that are frequently traversed.  

To see how invariant references of a stack are related to 
its sticky set, Fig. 6 shows two stack snapshots taken at dis-
tinct instants. In each state, the top frames are temporary 
while the bottom frames are not. The top frames could con-
tain some references to some objects in sticky set but are 
often popped and replaced very soon. The bottom frames, 
however, contain both invariant references (args[2], 
locals[1]) constantly pointing to the sticky set and non-
invariant references (locals[5]) used by some temporary 
references during the traversal of some data structures. In a 
word, stack invariants are the likely entry points of a sticky 
set but some sticky objects, like B and C, could be prefetched 
only by following the other front-side sticky objects. 

3) Sticky Set Resolution:  
SS resolution traces the stack-invariants for selecting ob-

jects (regardless of sampled or unsampled) to be the SS can-
didates to prefetch until the amount of reachable sampled 
objects hits the estimated SS footprint. Resolution is invoked 
lazily only when a thread migration event is out. The resolu-
tion algorithm has a few special points over the usual con-
nectivity-based object prefetching. First, we may obtain a 
number of stack-invariant references from stack sampling, 
acting as multiple starting points for prefetching. If we can-
not find enough objects by following a stack-invariant refer-
ence, we can switch to the others to continue the tracing. A 
heuristic here is to always start from topmost stack-invariants 
because they tend to be more recent than the bottom ones. 
Second, the sampled objects can serve as some landmark 
objects (red ones in Fig. 5) to avoid prefetching in wrong 
directions. Since sampled objects are scattered over the un-
derlying SS object graph, during the selection process, we 
can check, if an adequate number of landmark objects has 
been met. If not, current prefetching might be in a wrong 
direction, so we should stop and switch to other paths. For 
example, if we sample one per 30 objects for a specific class, 
we will stop current prefetching if we have not seen any 
landmark for t×30 objects of that class where t is a tolerance 
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Figure 6.  Example of stack-invariants Figure 7.  Lazy stack sample comparison 



parameter (>1) to address imperfect sampling uniformity. 
Third, the resolution is done on per-class basis as we know 
the sticky set’s composition. So we can prefetch each type of 
sticky objects until the per-class estimated footprint is hit. 

B. Adaptive Stack Sampling 

The pseudocode in Fig. 8 shows our stack sampling algo-
rithm. The frame content extraction process is summarized 
here. For a given stack, we start from its top and trace down, 
finding out all Java frames, as well as each frame’s %EBP and 
%EIP (x86). Then for each Java frame, we find out its corre-
sponding Java method by querying Java’s reflection system 
(line 21) and get its layout (or slots), and then use our stack 
layout knowledge to extract each slot’s content (line 24). For 
each slot’s content, we use the JVM garbage collection inter-
face to check if it is a valid object pointer. After all slots 
have been checked, we obtain a current sample of that frame. 
To find out stack invariants, we need to find an old sample of 
the same frame (line 8) and compare with the new one. Such 
extraction and comparison can have serious performance 
impacts on the runtime. So we design the following aggres-
sive optimizations. 

1) Timer-based stack sampling:  
Execution is split into overhead-free and sampling-

enabled phases by using a timer (sampling gap here refers to 
the time gap between activating stack sampling). 

2) Two-phase stack scanning:  
To avoid expensive overhead of scanning temporary 

frames, we add a flag visit to each frame and set it once the 
frame has been sampled. Our JIT compiler is hacked to en-
sure a frame’s visit flag will always be cleared in every Java 
method’s prologue. In the top-down phase, we start from the 
top frame of our current stack, trace down until we hit the 
first visited frame. For the first visited frame, we sample it 
and compare with its previous sample, which must have been 
created when its visited flag was set. Since we safely know 
that all frames below are untouched between these two sam-
ples, we do not need to trace down further. In the bottom up 
phase, we go backward until the top unvisited frame, extract 
the first sample for each frame, and set its visited flag.  

3) Lazy extraction:  
Upon the first-time visit of a frame, we just capture it as a 

raw sample in its native format (line 16) and delay extracting 
its content until it is visited next time (line 10). If it is not 
visited for the second time, it will be discarded on the next 
stack sampling. This avoids extraction cost for almost all 
temporary frames on the top, because stack sampling gap is 
normally at least several milliseconds. 

4) Sample comparison by probing:  
When comparing two captured samples, we always use 

the old one to probe into the new one (line 12), by comparing 
each slot remained in the old sample with its corresponding 
slot in the new one. This helps reduce comparison cost for 
frequently visited frames because the old sample is usually 
much smaller as non-reference and non-invariant slots have 
been discarded in previous samples. 

We demonstrate our adaptive stack sampling in Fig. 7. 
Initially (state 1), all three frames are unvisited, and we just 
store them in raw form. In the next sample (state 2), frame C 

is gone, with frame D on the top. Frame B was compared 
with its last sample to find out invariants, but frame A is still 
in its raw state. In the next sample (state 3) frame B and D 
are gone, while frame E and F are now on the top. Now we 
visit frame A for the second time, so we process the saved 
raw sample and compare it with the new sample. In the next 
sample (state 4), frame E and F are gone, and we continue 
compare A, further removing non-invariants from the sample. 
In the last sample (state 5), frame G survives, so we process 
the old sample and compare it with the new one, leaving 
frame A untouched. 

IV. PERFORMANCE EVALUATION 

We implement the proposed profiling techniques into the 
JESSICA2 distributed JVM and evaluate the system per-
formance after different effects of profiling are enabled. Our 
experiments are conducted on the HKU Gideon 300 Cluster 
[24]. Hardware specification of a node is as follows: Intel 
Pentium 4 2GHz processor, 512MB DDR RAM, 40GB IDE 
hard disk and Fast Ethernet network adapter. As a proof of 
concept, we evaluate the enhanced system on eight nodes. 
Our benchmark programs are ported from SPLASH-2 [25] to 
Java and described as follows. Table I summarizes the prob-
lem sizes used and the sharing properties of the applications. 

TABLE I.  APPLICATION BENCHMARK CHARACTERISTICS 

Problem Size Sharing Bench-
mark Data set Rounds Granularity Object size 

SOR 2K × 2K 10 Coarse 
each row at least 

several KB 
Barnes-

Hut 
4K bodies 5 Fine 

each body less than 
100 bytes 

Water-
Spatial 

512 molecules 5 Medium 
each molecule about 

512 bytes 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 

SAMPLE-STACK(thread) 
   // top-down phase 
   frame � TOP-FRAME(thread) 
   while (not VISITED(frame)) do 
      frame � NEXT-FRAME(frame, thread) 
   end while 
   // process the first visited frame 
   sampleold � GET-OLD-SAMPLE(thread, frame) 
   if (IS-RAW-SAMPLE(sampleold)) then 
      CONVERT-RAW-SAMPLE(sampleold)  // extract frame content 
   end if 
   COMPARE-BY-PROBING(sampleold, frame) 
   // bottom-up phase 
   while (frame � null) do 
      SET-VISITED(frame) 
      sampleraw � SAMPLE-FRAME-RAW(frame) 
      ADD-SAMPLE(thread, frame, sampleraw) 
      frame � PREV-FRAME(frame, thread) 
   end while 

COMPARE-BY-PROBING(sampleold, frame) 
   method � GET-METHOD-BY-PC(NATIVE-PC(frame)) 
   for each slot in GET-SLOTS(sampleold) do 
      refold � GET-SLOT-FROM-SAMPLE(sampleold) 
      refnew � GET-STACK-SLOT(frame, slot) 
      if (refold � refnew) then 
         REMOVE-SLOT-FROM-SAMPLE(sampleold, slot) 
      end if 
   end for 

Figure 8.  Adaptive stack sampling algorithm 



1) SOR: an iterative linear algebra kernel executing the 
red-black successive over-relaxation (SOR) method on a 
matrix. SOR exhibits a near-neighbor regular sharing 
pattern with large object granularity (each row is at least a 
few KB) and modestly intensive computation. 

2) Barnes-Hut: an N-Body simulation using hierarchical 
methods. Barnes-Hut shows an irregular sharing pattern 
with some locality (which cannot be discovered in page-
based systems), fine-grained object sharing and moderate 
compute-intensiveness. 

3) Water-Spatial: a molecule dynamics application, 
simulating interactions between groups of water molecules. 
Runtime properties include near-neighbor 3D-box sharing 
patterns with medium granularity, intensive computations 
and evolving load distribution. 

We will present experimental results in terms of over-
heads and accuracy measures of the two proposed access 
profiling techniques. Note: All the reported overheads are the 
result with profiling enabled throughout the entire execution. 
This is unnecessary for many applications whose sharing 
behaviors are rather static. Overheads can be much smaller 
by shutting the profiler after a short profiling phase is over. 

A. Correlation Tracking via Adaptive Object Sampling 

1) Overhead 
There are three types of overheads of correlation tracking: 

(O1) CPU cost for generating OALs; (O2) network overhead 
of gathering OALs to a central node; (O3) CPU cost for con-
structing the TCM from OALs. Benchmarking methodolo-
gies for each overhead are as follows. To isolate O1 from 
other effects, we use a single thread for each application and 
disable transfer of OALs over the network. To measure O2, 
first, we measure the volume of OAL traffic and compare it 
with the volume of object data we have transferred. Second, 
we compare the total execution time with and without corre-
lation tracking. We use eight nodes, running a single thread 
each, to avoid uncertainty from per-node multithreading and 
congestion. Obtaining O3 is trivial as this step is performed 
on a central server. Each type of overhead is measured at 
various sampling frequencies, from 1X, 4X, 16X to full 
sampling. It should be noted that some configurations like 
16X might not apply to medium-to-coarse grained applica-
tions. All these experiments are performed with stack sam-
pling and thread migration disabled while optimizations of 
object prefetching and home migration are enabled. 

TABLE II.  OVERHEAD OF OAL COLLECTION 

Execution Time (ms) 
Sampling = On (Collect OALs) Benchmark No Correl.  

Tracking 1X 4X 16X Full 

SOR 24250 N/A N/A N/A 24360 
(0.45%) 

Barnes-Hut 53250 52636 
(-1.15%) 

52742 
(-0.96%) 

53354 
(0.20%) 

53844 
(1.12%) 

Water-Spatial 29461 29507 
(0.15%) 

29545 
(0.28%) N/A 29717 

(0.87%) 

 

Table II and III show all the overhead benchmarking re-
sults. First, the extra CPU time spent on collecting OALs at 
various sampling rates for each application can be found in 
Table II. It is clear that this overhead is minimal. For the 
most fine-grained application Barnes-Hut, this overhead is 
merely around 1% of the total execution time at full sam-
pling. This verifies that our method of setting fake invalid 
object states across HLRC intervals is much more light-
weight compared to page-based DSM systems relying on 
page faults. The abnormal cases that execution times with 
sampling enabled get even shorter are reproducible and due 
to the fact that our implementation has somehow modified 
the internal memory management system of Kaffe [26], the 
base JVM of JESSICA2, getting the common case speeded 
up slightly. 

The additional time spent on transferring OALs can be 
observed on columns 3 to 6 of Table III. With OAL transfer 
enabled, correlation tracking is of much more noticeable 
latency but is still tolerable if full sampling is not used. The 
increase in protocol message volume is shown on columns 8 
to 11. Compared with the total GOS traffic (column 7), mes-
sage volume rise due to OAL traffic is about 2-4% for sam-
pling rate under 16X but soars to 8-22% at full sampling. In 
particular for SOR, it consists of large arrays that are being 
tracked although every thread accesses a different portion for 
most of the time. That is why SOR uses up 20% more band-
width for transferring OALs than the other two applications 
with finer object granularity. Since OALs are communicated 
only at closing of HLRC intervals, such bandwidth consump-
tion is rather bursty. With per-node multithreading as well, 
this cost does not proportionally reflect on the total execution 
time increase. 

The CPU overhead for computing the TCM from the col-
lected OALs is shown on the rightmost columns in Table III. 
Clearly, this overhead is among the most severe. Currently 
we use a dedicated machine to perform this computation, so 
that total execution time is not affected. For the same dataset 
size, if the DJVM scales out with more nodes, each iteration 
will finish sooner making the TCM construction time appar-
ent. Adaptive sampling is useful in this case to lower such 
overhead by tuning down the sampling rate on demand. 

2) Accuracy 
For each application, we start from 1024X (i.e. full sam-

pling for page size = 4KB; word size = 4bytes, the smallest 
possible object size) and halve the maximum rate of each 
sampled class across every iteration until reaching 1X. We 
use 16 threads for each application. The result of correlation 
tracking accuracy is shown in Fig. 9. There are four curves 
on each figure corresponding to the absolute accuracy and 
relative accuracy based on Euclidean distance (EUC) and 
absolute distance (ABS). It is clear that accuracy measured 
by absolute distance is more stable and consistently outper-
forms Euclidean distance for all benchmarks. This confirms 
that absolute distance suggests the maximum deviation be-
tween inter-thread communication estimations. So we will 
use absolute distance exclusively in the remaining experi-
ments. Regarding absolute vs. relative accuracy, Fig. 9 also 
shows that there is no significant difference between them. 
We can mostly use relative accuracy as an indicator for ad-



justing sampling rate. Overall speaking, our result is very 
positive – almost all sampling rates show at least 95% accu-
racy – showing our adaptive sampling does not lose the pre-
ciseness and would be helpful to making load balancing de-
cision hereafter. 

B. Sticky Set Profiling via Stack Sampling  

1) Overhead 
The profiling cost of a thread’s SS footprint consists of 

two components: (C1) the CPU cost of performing stack 
sampling for locating the entry references from where to 
search for sticky-set candidates; (C2) the CPU cost of repeti-
tive sampling over heap objects for SS footprinting. As these 
two components are independent of each other, their evalua-
tion is separately done by the below methodology. For (C1), 
we run the applications with a single thread with object sam-
pling and correlation tracking disabled. The stack sampling 
gap is varied from 4ms to 16ms to observe how the overhead 
changes accordingly. For (C2), again only a single thread is 
used with stack sampling and correlation tracking disabled. 

Table IV (columns 4 to 7) shows the stack sampling 
overhead. We can see this overhead is negligible for SOR 
and Water-Spatial and slightly higher for Barnes-Hut for it 
has recursive method calls during octree traversal. Lazy 
frame extraction and comparison performs better than the 
immediate counterpart in almost all cases except one (Bar-
nes-Hut; 16ms), showing the effectiveness of such a light-
weight technique. We will use 16ms sampling gap with lazy 
extraction throughout the remaining context. 

Table IV (columns 8-11) shows the runtime cost of 
sticky-set footprinting. Full sampling on heap objects in this 
case is apparently too costly. Slowing down the sampling 

rate to 4X is seen effective for trimming down the overhead 
for fine-grained applications (Barnes-Hut and Water-Spatial) 
but has no effect on SOR. The reason is SOR just contains 
arrays sized in range of KB that are bigger than the page size, 
so effectively every of them will be sampled. By the other 
approach, lowering profiling frequency with a timer is also 
found effective for reducing overhead. Sampling at 4X with 
the 100ms time gap makes the cost minimal. 

Table IV (last column) shows the CPU overhead of 
sticky set resolution. We obtain such measure in an ad hoc 
manner by eagerly carrying out this operation at the end of 
each HLRC interval and the time difference as shown is in-
deed reflecting the extra time spent on picking up sticky-set 
objects during each HLRC interval. Since invoking sticky set 
resolution is only needed at thread migration time, this cost 
vanishes across most HLRC intervals and is regarded as part 
of the overall cost of a thread migration. 

2) Accuracy 
In this experiment, we would assess the impact of sam-

pling frequency on the estimated sticky-set footprint’s accu-
racy. We use 8 threads for each application, profile the foot-
print via object sampling at 4X, and compute the average 
difference between accuracies taken at 4X and full sampling. 
It should be noted that even at full sampling, the footprint is 
still an estimation, or relative accuracy, only since the abso-
lute accuracy can only be obtained by driving a thread to 
migrate and inspect the changes in the DSM protocol traffic. 
This is difficult and unstable as threads might be made to 
migrate at any time. 

Table V. shows the sticky-set footprinting results com-
piled as a class-level composition suggesting how many 
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Figure 9.  Accuracy of correlation tracking with adaptive object sampling 

TABLE III.  CORRELATION TRACKING OVERHEADS 

Execution Time (ms) 
With Correl. Tracking 
(Collect + Send OALs) 

OAL Message 
Volume (KB) 

TCM Computing 
Time (ms) Benchmark No  

Correl. 
Tracking 1X 4X 16X Full 

GOS  
Message 
Volume  

(KB) 1X 4X 16X Full 1X 4X 16X Full 

SOR 3954 N/A N/A N/A 
4035 

(2.04%) 
4491 N/A N/A N/A 

990 
(22.05%) 

N/A N/A N/A 
870 

(22.00%) 

Barnes-Hut 19557 
19426 

(-0.67%) 
19712 

(0.79%) 
19824 

(1.36%) 
20805 

(6.38%) 
60130 

140 
(0.23%) 

525 
(0.87%) 

2310 
(3.84%) 

8309 
(13.82%) 

1568 
(8.02%) 

1683 
(8.61%) 

2327 
(11.90%) 

4609 
(23.57%) 

Water-Spatial 7942 
8186 

(3.07%) 
8252 

(3.90%) 
N/A 

8340 
(5.01%) 

31240 
828 

(2.65%) 
879 

(2.81%) 
N/A 

2589 
(8.29%) 

323 
(4.07%) 

347 
(4.37%) 

N/A 
749 

(9.43%) 



bytes of shared objects in each class would be sticky to the 
thread being profiled. SOR achieves a perfect result for the 
same reason mentioned above that it indeed runs at full sam-
pling. Barnes-Hut and Water-Spatial achieved less perfect 
results but all classes are consistently over 92% accurate. 

TABLE IV.  ACCURACY OF STICKY-SET FOOTPRINT 

Benchmark 
Data Set 

Size Class 

Average SS 
Footprint at 

Full Sampling 
(bytes) 

Average 
Diff. at 4X 
Sampling 

(bytes) 

Accuracy 

SOR 1K×1K double[] 2018016 0 100.00% 
Body 229376 672 99.71% 

Body[] 47264 3108 93.42% 
Leaf 76804 104 99.86% 

Barnes-Hut 4K 

Vect3 130627 9457 92.76% 
Water-Spatial 512 double[] 43032 508 98.82% 

V. RELATED WORK 

Active correlation tracking was first proposed in D-CVM 
[15, 27] and extended in later work [28]. The system deliber-
ately disables preemptive thread scheduling and sets each 
page to be invalid for invoking access logging. Due to lack 
of thread preemption and more page faults, their perform-
ance slowdown is much more significant than ours. D-CVM 
can only make thread migration decisions based on induced 
correlation map that is less useful for fine-grained programs. 
Our method on the other hand can detect inherent sharing 
patterns of fine-grained programs, giving more precise corre-
lation input to global thread scheduling. Second, our sticky 
set profiling technique can model the thread-object affinity 
and suggest a right amount of prefetching to save most indi-
rect costs of remote object faults after migration. 

Our object sampling mechanism bears some similarity to 
those studied in single-machine JVM research but with very 
different goals and resource constraints. In [29], sampling 
was used to characterize object allocation behavior, predict-
ing object lifetimes. Their profiling result is mainly used to 
assist pretenuring for improving GC performance. In our 
case, sampling is used to track and estimate sharing profile; 
our profiling result is mainly used to direct thread migrations. 
In our system, space constraint is much tighter since we can-
not store or transfer too much sampling result. Thus, we have 
to start with a wide sampling gap (actually 4KB) and dy-

namically adjust it only when accuracy is not enough. In 
contrast, a much smaller sampling gap (256B) was chosen 
and fixed in [29]. 

Our stack sampling is similar to [30] which was used for 
dynamic profiling in IBM’s JVM bearing a very different 
goal from us. In [30], information from dynamic profiling is 
only used to build a Partial Calling Context Tree (PCCT), 
which is inquired by the JIT compiler for adaptive optimiza-
tions. Such profiling only needs function caller and callee’s 
addresses. On the other hand, in order to locate stack invari-
ant references, we must extract and inspect each thread’s 
frame content, which is more heavyweight and cannot be 
performed very frequently. It should be noticed that stack 
machine is only defined conceptually in the JVM specifica-
tion. Different implementations may vary wildly on imple-
mentation details. In our case, Kaffe JVM [26], Java stack is 
implemented plainly with each Java frame slot correspond-
ing to a unique native frame address, so that we can extract 
Java stack from native stack readily. For other JVMs like 
Hotspot [31] or Jikes/RVM [32], native stack layout could be 
very different from Java frame because of JIT inlining and 
many other optimizations. However, our techniques are still 
applicable. For these JVM implementations, stack sampling 
is doable even more easily by bytecode instrumentation or 
stack walking callbacks to the JVM Tool Interface (TI) [33]. 

VI. CONCLUSION AND FUTURE WORK 

This paper has introduced new methods to estimate inter-
thread and thread-object correlations in distributed object 
sharing systems. By means of sampling, we can profile accu-
rate correlations at low cost. These methods are useful for 
devising better load balancing policies to optimize thread 
placement and hence reduce communication costs of object 
sharing. Our future work is to formulate an advanced load 
balancing policy that utilizes the correlation maps and sticky 
sets gathered to complement the insufficient policy based on 
system load monitoring alone. Our active correlation track-
ing mechanism still needs to be enhanced for taking home 
effect into account for proper thread migration decisions in 
some tricky cases that objects shared by a pair of threads are 
homed at neither node of the threads. In terms of profiling 
efficiency, it is desirable to have distributed algorithms for 
deducing correlation maps in a more scalable way. 

TABLE V.  OVERHEAD OF STICKY-SET FOOTPRINT PROFILING 

+ Stack Sampling Overhead + Sticky-set Footprinting Overhead 

Immediate Extraction Lazy Extraction Nonstop Timer-based (100ms) 

Bench-
mark 

Data 
Set 
Size 

Baseline 
Execution 

Time 

4ms 16ms 4ms 16ms 4X Full 4X Full 

+ Sticky-set 
Resolution 
Overhead 

SOR 1K×1K 6201 
6216 

(0.24%) 
6207 

(0.10%) 
6211 

(0.17%) 
6206 

(0.08%) 
6714 

(8.28%) 
6707 

(8.17%) 
6519 

(5.13%) 
6480 

(4.50%) 
6639 

(1.85%) 
Barnes-

Hut 
4K 93857 

94947 
(1.16%) 

94657 
(0.85%) 

94697 
(0.89%) 

95209 
(1.44%) 

98968 
(5.45%) 

102190 
(8.88%) 

93649 
(-0.22%) 

102334 
(9.03%) 

97585 
(4.20%) 

Water-
Spatial 

512 59105 
59232 

(0.21%) 
59161 

(0.09%) 
59209 

(0.17%) 
59124 

(0.03%) 
59834 

(1.23%) 
61985 

(4.87%) 
59501 

(0.67%) 
60313 

(2.04%) 
60002 

(0.84%) 
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