
Title Adaptive sampling-based profiling techniques for optimizing the
distributed JVM runtime

Author(s) Lam, KT; Luo, Y; Wang, CL

Citation
The 24th IEEE International Symposium on Parallel & Distributed
Processing (IPDPS 2010), Atlanta, GA., 19-23 April 2010. In
Proceedings of the 24th IPDPS, 2010, p. 1-11

Issued Date 2010

URL http://hdl.handle.net/10722/125697

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37950866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adaptive Sampling-Based Profiling Techniques for Optimizing the Distributed
JVM Runtime

King Tin Lam, Yang Luo, Cho-Li Wang
Department of Computer Science

The University of Hong Kong
Hong Kong

{ktlam, clwang, yluo}@cs.hku.hk

Abstract—Extending the standard Java virtual machine (JVM)
for cluster-awareness is a transparent approach to scaling out
multithreaded Java applications. While this clustering solution
is gaining momentum in recent years, efficient runtime support
for fine-grained object sharing over the distributed JVM re-
mains a challenge. The system efficiency is strongly connected
to the global object sharing profile that determines the overall
communication cost. Once the sharing or correlation between
threads is known, access locality can be optimized by collocat-
ing highly correlated threads via dynamic thread migrations.
Although correlation tracking techniques have been studied in
some page-based software DSM systems, they would entail
prohibitively high overheads and low accuracy when ported to
fine-grained object-based systems. In this paper, we propose a
lightweight sampling-based profiling technique for tracking
inter-thread sharing. To preserve locality across migrations,
we also propose a stack sampling mechanism for profiling the
set of objects which are tightly coupled with a migrant thread.
Sampling rates in both techniques can vary adaptively to strike
a balance between preciseness and overhead. Such adaptive
techniques are particularly useful for applications whose shar-
ing patterns could change dynamically. The profiling results
can be exploited for effective thread-to-core placement and
dynamic load balancing in a distributed object sharing envi-
ronment. We present the design and preliminary performance
result of our distributed JVM with the profiling implemented.
Experimental results show that the profiling is able to obtain
over 95% accurate global sharing profiles at a cost of only a
few percents of execution time increase for fine- to medium-
grained applications.

Keywords-profiling; sampling; correlation tracking; access
locality; thread affinity; thread stack; thread migration; dynamic
load balancing; object sharing; distributed Java virtual machine;
distributed shared memory systems

I. INTRODUCTION

Software distributed shared memory (DSM) systems
have turned over a new leaf by breeding various forms of
distributed runtimes having a similar programming model.
The key ideas developed by decade-long research efforts in
DSM have been realized into production-quality systems that
are available in recent years. Examples include GigaSpaces
[1], Oracle Coherence [2] and Open Terracotta [3]; all these
clustering solutions are reaching out to remote memory for
global cache benefits. Researchers’ interest in the partitioned

global address space (PGAS) model, a variant of DSM, is
underlined by the multibillion HPCS program [4] led by
DARPA. The novel languages like X10 [5] and Chapel [6]
basically follow the DSM model but ship with far more new
constructs for data locality management. Developers can use
the constructs to define how shared data are distributed with
locality hints among processors. The deliberate constructs
grant users more control and yet somewhat impair the pro-
grammability goal of the shared memory model.

With significant speed improvement these years [7, 8],
Java has made definite inroads into high-performance com-
puting. Given that 4.5 billion devices and 6.5 million devel-
opers worldwide are pivoting on Java [9], a handy parallel
paradigm is gluing to idiomatic Java programming and off-
loading the cluster-wise parallelization task of a threaded
Java program transparently onto an underlying distributed
Java virtual machine (DJVM) [10, 11, 12]. The DJVM soft-
ware layer handles all aspects of low-level clustering for the
application through automatic thread-level parallelization
and heap-level virtualization of shared memory across the
cluster. Ultimate goal of our DJVM design is to provide a
single-system image (SSI) while attaining scalability compa-
rable to the message-passing model. This performance target
is however difficult to achieve. The memory consistency
protocol must be well-designed to eliminate all needless re-
mote communications. Advanced features such as a system
profiler should also be in place to get most shared data local-
ity or thread affinity well-managed as if PGAS constructs
were added in the application program.

Optimizing locality cluster-wide based on a partial shar-
ing profile would be too inaccurate that thrashing of threads
and objects among nodes would be resulted. We need to ob-
tain a complete and precise profile of sharing or correlation
among threads for global optimization. The profile is how-
ever difficult to obtain without high overheads. Passive cor-
relation tracking (used in [13, 14]) that relies on remote page
faults to activate access logging can only capture partial
sharing behavior because access to a validated page by other
local threads is missed logging. Active correlation tracking
[15] was proposed to track the sharing information. The term
“active” means the system deliberately fakes invalid page
states via memory protection and brings about the so-called
“correlation faults” regularly to awake the DSM protocol for
access logging. However, when such page-based techniques
are applied to fine-grained object-oriented sharing systems,

978-1-4244-6443-2/10/$26.00 ©2010 IEEE

tracking overheads will soar to an intolerable level, for the
number of instrumented object state checks is much more
than page faults. So we need new techniques to track the
sharing profiles in a lightweight manner. The key to reducing
the overheads is to use sampling to limit the correlation
faults on a subset of objects in the heap. However, sampling
would worsen accuracy in the correlations tracked and we
need to balance between accuracy and profiling cost. Simple
sampling strategy at a fixed gap is not a decent solution since
the gap varies from one application to another. Without an
adaptive framework that automatically tunes for a balance,
users will find it hard to handcraft an appropriate sampling
gap for their applications.

Besides the correlation between thread pairs, the affinity
(quantified by access frequency or recency) between a thread
and its accessed objects also forms an important system pa-
rameter for a runtime with reconfigurable thread placement.
Studies in this area usually just consider the direct overhead
of a thread migration spent on the thread context (stack
frames) but ignore the even larger indirect overhead spent on
remote object faults (analogous to page faults) that follows
the migration. Such round-trips can be effectively hidden if
the related objects are prefetched along with the migration.
While previous work [16, 17] on working-set-based remote
memory pre-paging has been done for process migration,
determining an effective working set of objects to prefetch
for thread migration is much more challenging on similar
grounds of huge access tracking overheads.

In this work, we propose a couple of adaptive sampling
techniques for tracking thread-thread and thread-object affin-
ity in a lightweight manner. Sampling rates can vary at run-
time in both techniques to balance between preciseness and
overhead. The contributions of this paper are two-fold. First,
we provide a fine-grained active correlation tracking mecha-
nism based on a novel object sampling for improving thread
affinity in object-based sharing systems (Section II). Second,
we develop a profiling technique based on online stack sam-
pling to monitor the set of objects that are sticky to a thread
(Section III). The sticky set determines the real cost of thread
migration covering the predictable remote object faults after
the thread migrates. This gives a more accurate cost model
for the load balancer to devise profitable thread migrations.
Policies or algorithms of making best use of the profiling
output for performance gain are indeed a separate hard prob-
lem and open to the system engineers (our future work is
outlined in Section V).

We implement the proposed methodologies in the global
object space (GOS) subsystem of the JESSICA2 DJVM [11].
The GOS has been significantly revamped for better imple-
mentation of home-based release consistency (HLRC) [18]
and barrier synchronization support. We evaluate JESSICA2
in terms of profiling overheads and accuracy (Section IV) on
a cluster platform. Experimental results show an average
accuracy of 95% obtained at overhead bounded by 10%.

II. THREAD CORRELATION TRACKING

Despite the many advantages such as global cache effect
and simpler programming, object sharing over a DSM sys-
tem does involve additional overheads such as remote lock-

ing, object faulting and update propagation, etc. These costs
highly depend on the relative locations of threads and shared
objects. For home-based protocols, if a thread is placed at the
home node of a shared object, its access to the object would
be the most efficient (without twin-diff and messaging over-
heads). Locality is a relative property. Relocating home of
one object for locality of one thread may sacrifice locality of
other threads accessing it. Load balancing is another concern.
Overloading a node by moving to it too many threads causes
adverse slowdown, shadowing the locality benefit. Therefore,
thread placement must consider global strategies that strive
to keep locality optimal for the majority of threads most of
the time. Our study would further classify the relative local-
ity or affinity into three types: (1) thread-thread or inter-
thread affinity; (2) thread-object affinity and (3) inter-object
affinity. Inter-thread affinity can be attained by thread migra-
tion to collocate a pair of threads sharing large amount of
data on the same node. Thread-object affinity measures the
access locality by a thread to an object and can be improved
either by thread migration or object home migration. Inter-
object affinity reflects the correlation between objects under
a graph of connectivity and can be dealt with object prefetch-
ing and home migration. This paper focuses on (1) and (2)
while (3) is studied in another paper [19] in which we intro-
duced access path analysis as a profiling technique for the
proper scope of object prefetch.

Effective thread placement is vital to not only distributed
systems but also multicore processors in view of their shared
cache architecture. Placing threads accessing different data
streams to cores in close proximity may cause cache conten-
tion and thrashing. On the contrary, placing highly correlated
threads to be within intra-core will make their object sharing
done speedily over shared L2 cache. With an efficient way to
obtain inter-thread correlation, the runtime system can be
guided properly for dynamic thread placement.

Employing localized thread placement strategies may not
improve the system performance and even cause threads to
thrash between nodes due to incomplete sharing profiles.
Thus, we need to collect global sharing statistics and deduce
a so-called thread correlation map (TCM), a 2D histogram
of shared data volume between each pair of threads. Active
correlation tracking [15] has been studied in page-based
DSM systems for such a purpose, but is not quite useful to
fine-grained applications because it can only reveal the in-
duced sharing pattern rather than the application’s inherent
pattern after the effect of false-sharing. In Fig. 1, we illus-

(a) Inherent pattern (b) Induced pattern

Figure 1. False sharing effect on correlation tracking preciseness: clues
about precise inter-thread correlations are lost

trate this point with two correlation maps showing the inher-
ent and induced sharing patterns of the same program, Bar-
nes-Hut (32 threads, 4K bodies, distance 7.0) in which each
thread is responsible for simulating movement of a continu-
ous chunk of bodies in two galaxies. Threads for computing
the interaction between bodies within the same galaxy will
exhibit much higher data locality than those bodies across
galaxies. Indeed, data partitioning algorithms like costzone
[20] yield even higher locality between adjacent threads.
While the program’s inherent pattern is shown in (a) ob-
tained by simulation (log inserted at every object access), the
induced pattern shown in (b) contains very little hint of local-
ity between threads of the same galaxy due to serious false
sharing. Respecting the original application nature calls for a
fine-grained version of active correlation tracking.

We present our fine-grained active correlation tracking
techniques based on adaptive object sampling in the follow-
ing subsections.

A. Fine-Grained Active Correlation Tracking

Fig. 2 shows the system architecture of the JESSICA2
DJVM with profiling subsystems introduced. As mentioned,
our consistency protocol is home-based. Object home copies
(drawn in solid lines) reside in the nodes which are the first
to create them. To minimize remote access, shared objects
retrieved from home nodes are replicated as cache copies (in
dashed lines) in the local heap of the current thread. Cache
copies are invalidated at lock time if there are updates made
by remote threads happened before the lock. By software
checks injected per read/write, access to an invalidated cache
of an object will fault in the latest copy from its home.

To estimate a system-wide sharing profile, the first step
is to track every thread’s reads and writes on objects, form-
ing an object access list (OAL) for each thread. Care must be
taken in this step because logging every object access will
penalize the common case. By means of the at-most-once
property of HLRC protocol, no matter how many times a

thread accesses an shared object, access log for the object
can be done only once per interval across synchronizations.

In JESSICA2, object state check is inlined to every ac-
cess bytecode operation through the JIT compiler. The state
is stored as 2 bits somewhere in the object header. Upon
opening a new interval, shared objects (only those accessed
in the last interval by the thread) will be reset to false-invalid
state to enable tracking on them regardless of their real status
(which is now stored in a separate field). When accessing a
shared object, access fault will be handled by the GOS ser-
vice routine to log the access into a per-interval record, can-
cel its false-invalid state, and maintain object consistency
according to its real state. On closing an interval, OALs (i.e.
accessed object id and size) will be collected and packed
along with the interval context (delimited by start and end
bytecode PC) into a jumbo message to be sent to central co-
ordinator (the master JVM in Fig. 2) running the correlation
computing daemon. This message is piggybacked on lock or
barrier request if they are going to the same destination. If
enough intervals are gathered, the daemon will process the
OALs, reorganize the per-thread lists to per-object lists of
thread ids, and constructs the TCM by accruing bytes of ac-
cessed objects in common for each thread pair. Given M
objects shared by N threads, OAL reorganization and TCM
building take O(MN) and O(MN2) time respectively. It is
clear that computing TCMs for large M can grow into a scal-
ability bottleneck in the system, leading us to think of the
sampling approach to reducing M.

B. Adaptive Object Sampling

Sampling is a statistical process of selecting a subset of
units, i.e. samples, from a population of interest so that by
studying the sample we may fairly generalize our results
back to the population which in our case is the entire JVM
heap. Each object is given a tag marked as “sampled” or
“unsampled” upon its creation. A good object sampling
scheme should take samples uniformly over the heap. The

Host ManagerHost Manager

OS
Hardware

OS
Hardware

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

OS
Hardware

OS
Hardware

OS
Hardware

OS
Hardware

Interconnection Network

Correlation
Collector

Correlation
Collector

OS
Hardware

OS
Hardware

Access
Profiler

Access
Profiler

Stack

Worker JVM 1

Host ManagerHost Manager

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

Migration
Engine

Migration
Engine

Correlation
Collector

Correlation
Collector

Access
Profiler

Access
Profiler

Stack

Worker JVM 2

Host ManagerHost Manager

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

Migration
Engine

Migration
Engine

Correlation
Collector

Correlation
Collector

Access
Profiler

Access
Profiler

Stack

Worker JVM 3

Host ManagerHost Manager

Global Load
Balancer

Global Load
Balancer

Correlation
Analyzer

Correlation
Analyzer

Correlation
Map

(Simplified View)
Master JVM

mig in/out mig in/out mig in/out

Portable Java Frames

Migration
Engine

Migration
Engine

Migration
Requests

Figure 2. System architecture of JESSICA2 DJVM with profiling

simplest sampling scheme is probably to sample objects at
the same rate and logs their object sizes which reflect com-
munication costs. However, this simple sampling may not
yield precise enough result since different classes of objects
may vary a lot in size, access and sharing behavior. Thus, we
aim for different sampling rates for different classes. (Note:
Different classes may inherit from the same superclass but
could show different access or sharing behaviors, so we store
the sampling-specific metadata like sampling gap as close to
subclasses as possible. We differentiate at class level instead
of method level for simplicity though allocation site is a
more precise hint of object’s behavior in other studies [21].)

1) Class-based Sampling Rate
Choosing an appropriate sampling rate for a specific

class needs a careful tradeoff between accuracy and overhead.
Without dynamically changing the sampling rate and probing
the perceived accuracy, we may never know whether we
could still decrease the rate to reduce the overhead further.
To allow this to happen, we expand the traditional one-bit
sampling tag into a sequence number (half-word for memory
efficiency), which is unique among objects within the same
class. Sampling rate is then given by a variable parameter
known as the sampling gap. An object will be taken as a
sample only if its sequence number is divisible by the current
sampling gap which is defined at class level.

Each class has a nominal sampling gap typically in pow-
ers of 2 and we will find a prime number nearest to the
nominal to be the real sampling gap. For example, 31, 67
and 127 would be chosen as the real sampling gaps for
nominal sampling gaps of 32, 64 and 128 respectively. Using
prime numbers is necessary in our scheme to avoid non-
uniform sampling due to potential cyclic allocation behaviors
in some applications. Fig. 3 (a) shows an example. Each box
represents an object instance carrying an allocated sequence
number. A specific object might be sampled or unsampled
under the current sampling gap according to this number.

We adopt the notation nX to denote the sampling rate
w.r.t the page size. For example, 8X means “sampling eight
objects per memory page”. For a class of size s, sampling at
rate nX has to set the sampling gap to be SP / (s×n), where SP
is the page size (usually 4KB). Sampling rate can vary dy-
namically from at least 1X to 2X, 4X … until full sampling
is reached. The remaining problem is how to determine if the
current sampling rate is precise enough or in other words
how to measure the accuracy of sampling.

2) Sampling Accuracy
For a system of N threads, a correlation map is an N×N

matrix. Let A = [aij]N×N and B = [bij]N×N be two correlation
maps. We measure accuracy in terms of the difference, i.e.
error, between the two matrices. Formulae (1) and (2) below
measure the distance between A and B by Euclidean norm
and absolute value respectively.

2
11

2
11

)(

)(

ij
N
j

N
i

ijij
N
j

N
i

EUC
b

ba
E

==

==

��

−��
=

 (1)

ij
N
j

N
i

ijij
N
j

N
i

ABS
b

ba
E

11

11

==

==

��

−��
=

(2)

If B is the result from full sampling, while A is not, we
call this absolute accuracy. If both A and B are not from full
sampling and A samples less frequently than B, we call this
relative accuracy. While each sampling rate must be evalu-
ated with absolute accuracy, decisions on dynamic sampling
rate changes can only be made from limited knowledge of
relative accuracy. Therefore, we would study the relation
between these two accuracy metrics and evaluate if relative
accuracy can yield correct decisions. The basic approach to
reaching an optimal sampling rate is to begin with a rough
sampling rate, increase it stepwise (by shortening the sam-
pling gap) and compare the distance between the successive
correlation matrices. If their distance is small enough (con-
verge to be within some predefined threshold), we stop at the
underlying sampling gap. The central coordinator that col-
lects OALs from all threads will decide whether the current
sampling rate needs a change. Upon receiving a change no-
tice for a specific class, every thread will iterate through all
objects of that class it caches locally, check with their se-
quence numbers, and sample or desample each of them ac-
cordingly to align with the new rate. Resampling does waste
some CPU cycles but is useful to prevent those objects sam-
pled at previous rates from accumulating to make tracking
overhead ever-increasing. In our benchmarks, it usually takes
no more than 0.1% of total CPU time.

3) Sampling of Arrays
The case of array sampling needs special treatment to ad-

dress non-uniform sampling and correlation bias. First, ar-
rays can vary a lot in their lengths. If we sample arrays like

1 5 10gap=3

1 5 10gap=5

1 5gap=710

len=4, start seq=1 len=5, start seq=5 len=3, start seq=10

sample size = 1×4bytes sample size = 2×4bytes sample size = 1×4bytes

sample_size = 1×4bytes sample_size = 1×4bytes

sample size = 1×4bytes

2 3 4 5 6 7 8 9 10 11 12gap=3

1 2 3 4 5 6 7 8 9 10 11 12gap=5

1 2 3 4 5 6 7 8 9 10 11 12gap=7

1

= sampled
 object

= sampled
 element

= unsampled
 object

= unsampled
 element

= sampled
 array

= unsampled
 array

(a) Object sampling (b) Array sampling

Figure 3. Sampling at different gaps

the way for ordinary objects, a miss of sampling a large array
will leave a large portion of the heap unsampled. Second, if
we log the array size to be the sample’s size, correlation re-
sults obtained via sampling will be largely biased towards
large arrays, resulting in skewed correlation. For example,
T1 and T2 share a small array A while T2 and T3 share a
large array B accessing different element ranges, the correla-
tion between T2 and T3 will always be overestimated. On the
other hand, one could argue that such a bias is appropriate
for large arrays since they incur higher communication costs
in a common home-based protocol implementation which
handle object faults by bringing the whole object from home.
However, since array sizes can be larger than a page, allow-
ing the bias would make the correlation result vulnerable to
false sharing.

We use an amortization scheme to ameliorate these ef-
fects by regarding each array as a group of objects no matter
the array element type. So every element has its own se-
quence number. As these numbers are continuous, for each
array instance, we only need to save the first element’s se-
quence number and derive the others by adding the array
index. Fig. 3 (b) shows an example of sampling arrays of the
same class with various lengths. An array is sampled only if
at least one of its elements is logically sampled. We say
“logically” since per-element sampling is needless and we
can easily get the number of sampled elements from dividing
the array size by current sampling gap. To handle the bias,
when a sampled array is accessed, we consider all its sam-
pled elements accessed and log an amortized sample’s size =
sampled elements × element type size for the array when
computing the correlation map. The overall scheme would
make sampling both statistically uniform and unbiased what-
ever sampling gap changes.

III. THREAD MIGRATION COST MODELING

As mentioned, the affinity between a thread and its ac-
cessed objects is another crucial factor that determines the
system performance. Thread migration is a mechanism to
improve the data access locality by moving computation to
the data. While a thread context is usually cheaper to migrate
than the data (object graphs and arrays), the actual migration
cost could be much larger than just sending out the thread’s
stack because of the implicit cost of remote object faults
happened thereafter. For a better model of the thread migra-

tion cost, we define the sticky set (SS) of a migrant thread
candidate as a set of objects that will predictably cause re-
mote object faults after the thread migrates. The term
“sticky” implies a strong correlation between the thread and
the set. So if the thread moves out without the sticky set pre-
fetched along with, it will see successive object misses caus-
ing remote roundtrips. Sticky set is a subset of the working
set of a thread (which could be too large to send) but is more
difficult to determine because capturing access recency alone
may not be enough. In Fig. 4, thread T1 fetches object A and
B during an interval, each only once. But A is accessed fre-
quently while B is accessed only once. If T1 migrates to a
new node, being T1’, during the same interval, it will need to
fetch A again but not B. In this case, we can see a thread’s
local access frequency to objects within an interval does mat-
ter although correlation tracking can skip it.

We can observe that objects in a thread’s sticky set have
the following properties: (1) they have been accessed before
thread migration within the same interval; (2) they will still
be accessed after thread migration also within the same in-
terval. Only these objects will contribute to the total cost of
thread migration for they are fetched twice within a single
interval. Normally these objects are constantly accessed
throughout the whole interval, so they can be discovered by
monitoring object access patterns. It should be noticed that
our definition is specific to relaxed memory models like
LRC [22] (Lazy Release Consistency) and ScC [23] (Scope
Consistency), which have the concept of intervals and the at-
most-once property.

A. Profiling Migrant Thread’s Sticky Set

We estimate the sticky set by a two-way profiling strat-
egy. First, we make repeated calls of adaptive object sam-
pling within an interval to capture access frequency statistics
on sampled objects so as to obtain an approximate size of the
sticky set and the class-level composition of the objects in
the set, i.e. how many bytes are accumulated in the access
log for each class of sampled objects accessed by the thread
of interest. We denote this metadata by the term sticky-set
footprint. Basically, one can design a load balancing policy
that weighs the gain from a thread migration against the mes-
saging cost proportional to such a footprint.

However, this process doesn’t log precise access fre-
quency and covers only sampled objects, missing those un-

T1

Home

Read(A)

Fetch A

Data(A)

Read(B)

Read(A)

Acquire(L)

Release(L)

Fetch B

Data(B)

T1'

Fetch A Data(A)

Thread Migration

……

Sticky setInvariant
references

Stack

Size estimated via
object sampling

Sampled objects

Objects referenced
invariantly by stack

Key:

Unsampled objectsArray with middle
element sampled

Figure 4. Thread migration’s induced cost Figure 5. Stack invariant references

sampled objects that are actually being accessed frequently.
So an online stack sampling-based mechanism is employed
to back up the accuracy. Stack sampling refers to taking
snapshots of the stack frames of a thread periodically. In this
case, a sample means a stack image. Through such sampling,
we can discover some object references which steadily per-
sist across the taken samples. These invariant object refer-
ences clue us in on the entry points of the underlying sticky
set from which we can start prefetching over the object
graphs until the bytes prefetched reaches some threshold
over the sticky-set footprint estimated by object sampling.
This concept is depicted in Fig. 5. This bilateral strategy ex-
ploits a mix of heap-sampled access frequency and stack-
sampled access recency to derive the thread-object correla-
tion. So although results are tapped from sampling which is
limited or speculative, they reconcile or complement one
another to give improved accuracy.

The entire SS-profiling process is of three steps:
1) Sticky Set Footprinting:

This step estimates the size of each class of frequently
accessed objects to be included in the set by sampling and
tracking objects in the heap repeatedly. Compared with cor-
relation tracking that is done at most once for each sample
per HLRC interval, repeated tracking over heap objects may
impose higher overhead and require tradeoff between accu-
racy and cost again. Thus, we put a lower bound on object
sampling gap and a timer for on and off tracking phases.

2) Mining for Stack-invariants:
This step uses stack sampling to discover some object

references that consistently show up on the stack. Since JVM
is a stack machine that every bytecode can only access its
operands via the current stack frame, we can exploit the fol-
lowing properties to discover hints about a thread’s sticky set:

a) If a thread wants to access objects of its sticky set, it
must start from a reference on its Java stack.

b) Temporary or transient frames are unlikely to con-
tain key references to a thread’s sticky set. In a real-life Java
program, many top frames may exist temporarily for a very
short time, while the bottom ones could last much longer.
References in transient frames will soon be lost after the
frames are popped.

c) Stack invariant references, remaining on stack for a
long time constantly, are valuable hints about the sticky set.

The first reason is that varying references are always ob-
tained by following invariant references, directly or indi-
rectly. Second, such invariant references are often denoting
the entry points of some collective data structures like a
linked list’s head, a tree’s root, or a hash table’s entry array
that are frequently traversed.

To see how invariant references of a stack are related to
its sticky set, Fig. 6 shows two stack snapshots taken at dis-
tinct instants. In each state, the top frames are temporary
while the bottom frames are not. The top frames could con-
tain some references to some objects in sticky set but are
often popped and replaced very soon. The bottom frames,
however, contain both invariant references (args[2],
locals[1]) constantly pointing to the sticky set and non-
invariant references (locals[5]) used by some temporary
references during the traversal of some data structures. In a
word, stack invariants are the likely entry points of a sticky
set but some sticky objects, like B and C, could be prefetched
only by following the other front-side sticky objects.

3) Sticky Set Resolution:
SS resolution traces the stack-invariants for selecting ob-

jects (regardless of sampled or unsampled) to be the SS can-
didates to prefetch until the amount of reachable sampled
objects hits the estimated SS footprint. Resolution is invoked
lazily only when a thread migration event is out. The resolu-
tion algorithm has a few special points over the usual con-
nectivity-based object prefetching. First, we may obtain a
number of stack-invariant references from stack sampling,
acting as multiple starting points for prefetching. If we can-
not find enough objects by following a stack-invariant refer-
ence, we can switch to the others to continue the tracing. A
heuristic here is to always start from topmost stack-invariants
because they tend to be more recent than the bottom ones.
Second, the sampled objects can serve as some landmark
objects (red ones in Fig. 5) to avoid prefetching in wrong
directions. Since sampled objects are scattered over the un-
derlying SS object graph, during the selection process, we
can check, if an adequate number of landmark objects has
been met. If not, current prefetching might be in a wrong
direction, so we should stop and switch to other paths. For
example, if we sample one per 30 objects for a specific class,
we will stop current prefetching if we have not seen any
landmark for t×30 objects of that class where t is a tolerance

locals[5]

locals[1]

args[2]

locals[2]

......

......

......
locals[5]

locals[1]

args[2]

locals[4]

......

B

E

stack state 1 stack state 2

= stable
 frame

= temporary
 frame

= outside sticky set

= stack-invariant

= inside sticky set

= non-invariant

......

......

D

G

C

F

A

stack state 1 stack state 2

= extracted frame = unvisited frame

= stack invariant =non-invariant

C

A

B

D

A

B

A

= comparison

E

F

A

G

= raw frame

A

G

H

stack state 3 stack state 4 stack state 5

Figure 6. Example of stack-invariants Figure 7. Lazy stack sample comparison

parameter (>1) to address imperfect sampling uniformity.
Third, the resolution is done on per-class basis as we know
the sticky set’s composition. So we can prefetch each type of
sticky objects until the per-class estimated footprint is hit.

B. Adaptive Stack Sampling

The pseudocode in Fig. 8 shows our stack sampling algo-
rithm. The frame content extraction process is summarized
here. For a given stack, we start from its top and trace down,
finding out all Java frames, as well as each frame’s %EBP and
%EIP (x86). Then for each Java frame, we find out its corre-
sponding Java method by querying Java’s reflection system
(line 21) and get its layout (or slots), and then use our stack
layout knowledge to extract each slot’s content (line 24). For
each slot’s content, we use the JVM garbage collection inter-
face to check if it is a valid object pointer. After all slots
have been checked, we obtain a current sample of that frame.
To find out stack invariants, we need to find an old sample of
the same frame (line 8) and compare with the new one. Such
extraction and comparison can have serious performance
impacts on the runtime. So we design the following aggres-
sive optimizations.

1) Timer-based stack sampling:
Execution is split into overhead-free and sampling-

enabled phases by using a timer (sampling gap here refers to
the time gap between activating stack sampling).

2) Two-phase stack scanning:
To avoid expensive overhead of scanning temporary

frames, we add a flag visit to each frame and set it once the
frame has been sampled. Our JIT compiler is hacked to en-
sure a frame’s visit flag will always be cleared in every Java
method’s prologue. In the top-down phase, we start from the
top frame of our current stack, trace down until we hit the
first visited frame. For the first visited frame, we sample it
and compare with its previous sample, which must have been
created when its visited flag was set. Since we safely know
that all frames below are untouched between these two sam-
ples, we do not need to trace down further. In the bottom up
phase, we go backward until the top unvisited frame, extract
the first sample for each frame, and set its visited flag.

3) Lazy extraction:
Upon the first-time visit of a frame, we just capture it as a

raw sample in its native format (line 16) and delay extracting
its content until it is visited next time (line 10). If it is not
visited for the second time, it will be discarded on the next
stack sampling. This avoids extraction cost for almost all
temporary frames on the top, because stack sampling gap is
normally at least several milliseconds.

4) Sample comparison by probing:
When comparing two captured samples, we always use

the old one to probe into the new one (line 12), by comparing
each slot remained in the old sample with its corresponding
slot in the new one. This helps reduce comparison cost for
frequently visited frames because the old sample is usually
much smaller as non-reference and non-invariant slots have
been discarded in previous samples.

We demonstrate our adaptive stack sampling in Fig. 7.
Initially (state 1), all three frames are unvisited, and we just
store them in raw form. In the next sample (state 2), frame C

is gone, with frame D on the top. Frame B was compared
with its last sample to find out invariants, but frame A is still
in its raw state. In the next sample (state 3) frame B and D
are gone, while frame E and F are now on the top. Now we
visit frame A for the second time, so we process the saved
raw sample and compare it with the new sample. In the next
sample (state 4), frame E and F are gone, and we continue
compare A, further removing non-invariants from the sample.
In the last sample (state 5), frame G survives, so we process
the old sample and compare it with the new one, leaving
frame A untouched.

IV. PERFORMANCE EVALUATION

We implement the proposed profiling techniques into the
JESSICA2 distributed JVM and evaluate the system per-
formance after different effects of profiling are enabled. Our
experiments are conducted on the HKU Gideon 300 Cluster
[24]. Hardware specification of a node is as follows: Intel
Pentium 4 2GHz processor, 512MB DDR RAM, 40GB IDE
hard disk and Fast Ethernet network adapter. As a proof of
concept, we evaluate the enhanced system on eight nodes.
Our benchmark programs are ported from SPLASH-2 [25] to
Java and described as follows. Table I summarizes the prob-
lem sizes used and the sharing properties of the applications.

TABLE I. APPLICATION BENCHMARK CHARACTERISTICS

Problem Size Sharing Bench-
mark Data set Rounds Granularity Object size

SOR 2K × 2K 10 Coarse
each row at least

several KB
Barnes-

Hut
4K bodies 5 Fine

each body less than
100 bytes

Water-
Spatial

512 molecules 5 Medium
each molecule about

512 bytes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

SAMPLE-STACK(thread)
 // top-down phase
 frame � TOP-FRAME(thread)
 while (not VISITED(frame)) do
 frame � NEXT-FRAME(frame, thread)
 end while
 // process the first visited frame
 sampleold � GET-OLD-SAMPLE(thread, frame)
 if (IS-RAW-SAMPLE(sampleold)) then
 CONVERT-RAW-SAMPLE(sampleold) // extract frame content
 end if
 COMPARE-BY-PROBING(sampleold, frame)
 // bottom-up phase
 while (frame � null) do
 SET-VISITED(frame)
 sampleraw � SAMPLE-FRAME-RAW(frame)
 ADD-SAMPLE(thread, frame, sampleraw)
 frame � PREV-FRAME(frame, thread)
 end while

COMPARE-BY-PROBING(sampleold, frame)
 method � GET-METHOD-BY-PC(NATIVE-PC(frame))
 for each slot in GET-SLOTS(sampleold) do
 refold � GET-SLOT-FROM-SAMPLE(sampleold)
 refnew � GET-STACK-SLOT(frame, slot)
 if (refold � refnew) then
 REMOVE-SLOT-FROM-SAMPLE(sampleold, slot)
 end if
 end for

Figure 8. Adaptive stack sampling algorithm

1) SOR: an iterative linear algebra kernel executing the
red-black successive over-relaxation (SOR) method on a
matrix. SOR exhibits a near-neighbor regular sharing
pattern with large object granularity (each row is at least a
few KB) and modestly intensive computation.

2) Barnes-Hut: an N-Body simulation using hierarchical
methods. Barnes-Hut shows an irregular sharing pattern
with some locality (which cannot be discovered in page-
based systems), fine-grained object sharing and moderate
compute-intensiveness.

3) Water-Spatial: a molecule dynamics application,
simulating interactions between groups of water molecules.
Runtime properties include near-neighbor 3D-box sharing
patterns with medium granularity, intensive computations
and evolving load distribution.

We will present experimental results in terms of over-
heads and accuracy measures of the two proposed access
profiling techniques. Note: All the reported overheads are the
result with profiling enabled throughout the entire execution.
This is unnecessary for many applications whose sharing
behaviors are rather static. Overheads can be much smaller
by shutting the profiler after a short profiling phase is over.

A. Correlation Tracking via Adaptive Object Sampling

1) Overhead
There are three types of overheads of correlation tracking:

(O1) CPU cost for generating OALs; (O2) network overhead
of gathering OALs to a central node; (O3) CPU cost for con-
structing the TCM from OALs. Benchmarking methodolo-
gies for each overhead are as follows. To isolate O1 from
other effects, we use a single thread for each application and
disable transfer of OALs over the network. To measure O2,
first, we measure the volume of OAL traffic and compare it
with the volume of object data we have transferred. Second,
we compare the total execution time with and without corre-
lation tracking. We use eight nodes, running a single thread
each, to avoid uncertainty from per-node multithreading and
congestion. Obtaining O3 is trivial as this step is performed
on a central server. Each type of overhead is measured at
various sampling frequencies, from 1X, 4X, 16X to full
sampling. It should be noted that some configurations like
16X might not apply to medium-to-coarse grained applica-
tions. All these experiments are performed with stack sam-
pling and thread migration disabled while optimizations of
object prefetching and home migration are enabled.

TABLE II. OVERHEAD OF OAL COLLECTION

Execution Time (ms)
Sampling = On (Collect OALs) Benchmark No Correl.

Tracking 1X 4X 16X Full

SOR 24250 N/A N/A N/A 24360
(0.45%)

Barnes-Hut 53250 52636
(-1.15%)

52742
(-0.96%)

53354
(0.20%)

53844
(1.12%)

Water-Spatial 29461 29507
(0.15%)

29545
(0.28%) N/A 29717

(0.87%)

Table II and III show all the overhead benchmarking re-
sults. First, the extra CPU time spent on collecting OALs at
various sampling rates for each application can be found in
Table II. It is clear that this overhead is minimal. For the
most fine-grained application Barnes-Hut, this overhead is
merely around 1% of the total execution time at full sam-
pling. This verifies that our method of setting fake invalid
object states across HLRC intervals is much more light-
weight compared to page-based DSM systems relying on
page faults. The abnormal cases that execution times with
sampling enabled get even shorter are reproducible and due
to the fact that our implementation has somehow modified
the internal memory management system of Kaffe [26], the
base JVM of JESSICA2, getting the common case speeded
up slightly.

The additional time spent on transferring OALs can be
observed on columns 3 to 6 of Table III. With OAL transfer
enabled, correlation tracking is of much more noticeable
latency but is still tolerable if full sampling is not used. The
increase in protocol message volume is shown on columns 8
to 11. Compared with the total GOS traffic (column 7), mes-
sage volume rise due to OAL traffic is about 2-4% for sam-
pling rate under 16X but soars to 8-22% at full sampling. In
particular for SOR, it consists of large arrays that are being
tracked although every thread accesses a different portion for
most of the time. That is why SOR uses up 20% more band-
width for transferring OALs than the other two applications
with finer object granularity. Since OALs are communicated
only at closing of HLRC intervals, such bandwidth consump-
tion is rather bursty. With per-node multithreading as well,
this cost does not proportionally reflect on the total execution
time increase.

The CPU overhead for computing the TCM from the col-
lected OALs is shown on the rightmost columns in Table III.
Clearly, this overhead is among the most severe. Currently
we use a dedicated machine to perform this computation, so
that total execution time is not affected. For the same dataset
size, if the DJVM scales out with more nodes, each iteration
will finish sooner making the TCM construction time appar-
ent. Adaptive sampling is useful in this case to lower such
overhead by tuning down the sampling rate on demand.

2) Accuracy
For each application, we start from 1024X (i.e. full sam-

pling for page size = 4KB; word size = 4bytes, the smallest
possible object size) and halve the maximum rate of each
sampled class across every iteration until reaching 1X. We
use 16 threads for each application. The result of correlation
tracking accuracy is shown in Fig. 9. There are four curves
on each figure corresponding to the absolute accuracy and
relative accuracy based on Euclidean distance (EUC) and
absolute distance (ABS). It is clear that accuracy measured
by absolute distance is more stable and consistently outper-
forms Euclidean distance for all benchmarks. This confirms
that absolute distance suggests the maximum deviation be-
tween inter-thread communication estimations. So we will
use absolute distance exclusively in the remaining experi-
ments. Regarding absolute vs. relative accuracy, Fig. 9 also
shows that there is no significant difference between them.
We can mostly use relative accuracy as an indicator for ad-

justing sampling rate. Overall speaking, our result is very
positive – almost all sampling rates show at least 95% accu-
racy – showing our adaptive sampling does not lose the pre-
ciseness and would be helpful to making load balancing de-
cision hereafter.

B. Sticky Set Profiling via Stack Sampling

1) Overhead
The profiling cost of a thread’s SS footprint consists of

two components: (C1) the CPU cost of performing stack
sampling for locating the entry references from where to
search for sticky-set candidates; (C2) the CPU cost of repeti-
tive sampling over heap objects for SS footprinting. As these
two components are independent of each other, their evalua-
tion is separately done by the below methodology. For (C1),
we run the applications with a single thread with object sam-
pling and correlation tracking disabled. The stack sampling
gap is varied from 4ms to 16ms to observe how the overhead
changes accordingly. For (C2), again only a single thread is
used with stack sampling and correlation tracking disabled.

Table IV (columns 4 to 7) shows the stack sampling
overhead. We can see this overhead is negligible for SOR
and Water-Spatial and slightly higher for Barnes-Hut for it
has recursive method calls during octree traversal. Lazy
frame extraction and comparison performs better than the
immediate counterpart in almost all cases except one (Bar-
nes-Hut; 16ms), showing the effectiveness of such a light-
weight technique. We will use 16ms sampling gap with lazy
extraction throughout the remaining context.

Table IV (columns 8-11) shows the runtime cost of
sticky-set footprinting. Full sampling on heap objects in this
case is apparently too costly. Slowing down the sampling

rate to 4X is seen effective for trimming down the overhead
for fine-grained applications (Barnes-Hut and Water-Spatial)
but has no effect on SOR. The reason is SOR just contains
arrays sized in range of KB that are bigger than the page size,
so effectively every of them will be sampled. By the other
approach, lowering profiling frequency with a timer is also
found effective for reducing overhead. Sampling at 4X with
the 100ms time gap makes the cost minimal.

Table IV (last column) shows the CPU overhead of
sticky set resolution. We obtain such measure in an ad hoc
manner by eagerly carrying out this operation at the end of
each HLRC interval and the time difference as shown is in-
deed reflecting the extra time spent on picking up sticky-set
objects during each HLRC interval. Since invoking sticky set
resolution is only needed at thread migration time, this cost
vanishes across most HLRC intervals and is regarded as part
of the overall cost of a thread migration.

2) Accuracy
In this experiment, we would assess the impact of sam-

pling frequency on the estimated sticky-set footprint’s accu-
racy. We use 8 threads for each application, profile the foot-
print via object sampling at 4X, and compute the average
difference between accuracies taken at 4X and full sampling.
It should be noted that even at full sampling, the footprint is
still an estimation, or relative accuracy, only since the abso-
lute accuracy can only be obtained by driving a thread to
migrate and inspect the changes in the DSM protocol traffic.
This is difficult and unstable as threads might be made to
migrate at any time.

Table V. shows the sticky-set footprinting results com-
piled as a class-level composition suggesting how many

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

 (a) SOR (b) Barnes-Hit (c) Water-Spatial

Figure 9. Accuracy of correlation tracking with adaptive object sampling

TABLE III. CORRELATION TRACKING OVERHEADS

Execution Time (ms)
With Correl. Tracking
(Collect + Send OALs)

OAL Message
Volume (KB)

TCM Computing
Time (ms) Benchmark No

Correl.
Tracking 1X 4X 16X Full

GOS
Message
Volume

(KB) 1X 4X 16X Full 1X 4X 16X Full

SOR 3954 N/A N/A N/A
4035

(2.04%)
4491 N/A N/A N/A

990
(22.05%)

N/A N/A N/A
870

(22.00%)

Barnes-Hut 19557
19426

(-0.67%)
19712

(0.79%)
19824

(1.36%)
20805

(6.38%)
60130

140
(0.23%)

525
(0.87%)

2310
(3.84%)

8309
(13.82%)

1568
(8.02%)

1683
(8.61%)

2327
(11.90%)

4609
(23.57%)

Water-Spatial 7942
8186

(3.07%)
8252

(3.90%)
N/A

8340
(5.01%)

31240
828

(2.65%)
879

(2.81%)
N/A

2589
(8.29%)

323
(4.07%)

347
(4.37%)

N/A
749

(9.43%)

bytes of shared objects in each class would be sticky to the
thread being profiled. SOR achieves a perfect result for the
same reason mentioned above that it indeed runs at full sam-
pling. Barnes-Hut and Water-Spatial achieved less perfect
results but all classes are consistently over 92% accurate.

TABLE IV. ACCURACY OF STICKY-SET FOOTPRINT

Benchmark
Data Set

Size Class

Average SS
Footprint at

Full Sampling
(bytes)

Average
Diff. at 4X
Sampling

(bytes)

Accuracy

SOR 1K×1K double[] 2018016 0 100.00%
Body 229376 672 99.71%

Body[] 47264 3108 93.42%
Leaf 76804 104 99.86%

Barnes-Hut 4K

Vect3 130627 9457 92.76%
Water-Spatial 512 double[] 43032 508 98.82%

V. RELATED WORK

Active correlation tracking was first proposed in D-CVM
[15, 27] and extended in later work [28]. The system deliber-
ately disables preemptive thread scheduling and sets each
page to be invalid for invoking access logging. Due to lack
of thread preemption and more page faults, their perform-
ance slowdown is much more significant than ours. D-CVM
can only make thread migration decisions based on induced
correlation map that is less useful for fine-grained programs.
Our method on the other hand can detect inherent sharing
patterns of fine-grained programs, giving more precise corre-
lation input to global thread scheduling. Second, our sticky
set profiling technique can model the thread-object affinity
and suggest a right amount of prefetching to save most indi-
rect costs of remote object faults after migration.

Our object sampling mechanism bears some similarity to
those studied in single-machine JVM research but with very
different goals and resource constraints. In [29], sampling
was used to characterize object allocation behavior, predict-
ing object lifetimes. Their profiling result is mainly used to
assist pretenuring for improving GC performance. In our
case, sampling is used to track and estimate sharing profile;
our profiling result is mainly used to direct thread migrations.
In our system, space constraint is much tighter since we can-
not store or transfer too much sampling result. Thus, we have
to start with a wide sampling gap (actually 4KB) and dy-

namically adjust it only when accuracy is not enough. In
contrast, a much smaller sampling gap (256B) was chosen
and fixed in [29].

Our stack sampling is similar to [30] which was used for
dynamic profiling in IBM’s JVM bearing a very different
goal from us. In [30], information from dynamic profiling is
only used to build a Partial Calling Context Tree (PCCT),
which is inquired by the JIT compiler for adaptive optimiza-
tions. Such profiling only needs function caller and callee’s
addresses. On the other hand, in order to locate stack invari-
ant references, we must extract and inspect each thread’s
frame content, which is more heavyweight and cannot be
performed very frequently. It should be noticed that stack
machine is only defined conceptually in the JVM specifica-
tion. Different implementations may vary wildly on imple-
mentation details. In our case, Kaffe JVM [26], Java stack is
implemented plainly with each Java frame slot correspond-
ing to a unique native frame address, so that we can extract
Java stack from native stack readily. For other JVMs like
Hotspot [31] or Jikes/RVM [32], native stack layout could be
very different from Java frame because of JIT inlining and
many other optimizations. However, our techniques are still
applicable. For these JVM implementations, stack sampling
is doable even more easily by bytecode instrumentation or
stack walking callbacks to the JVM Tool Interface (TI) [33].

VI. CONCLUSION AND FUTURE WORK

This paper has introduced new methods to estimate inter-
thread and thread-object correlations in distributed object
sharing systems. By means of sampling, we can profile accu-
rate correlations at low cost. These methods are useful for
devising better load balancing policies to optimize thread
placement and hence reduce communication costs of object
sharing. Our future work is to formulate an advanced load
balancing policy that utilizes the correlation maps and sticky
sets gathered to complement the insufficient policy based on
system load monitoring alone. Our active correlation track-
ing mechanism still needs to be enhanced for taking home
effect into account for proper thread migration decisions in
some tricky cases that objects shared by a pair of threads are
homed at neither node of the threads. In terms of profiling
efficiency, it is desirable to have distributed algorithms for
deducing correlation maps in a more scalable way.

TABLE V. OVERHEAD OF STICKY-SET FOOTPRINT PROFILING

+ Stack Sampling Overhead + Sticky-set Footprinting Overhead

Immediate Extraction Lazy Extraction Nonstop Timer-based (100ms)

Bench-
mark

Data
Set
Size

Baseline
Execution

Time

4ms 16ms 4ms 16ms 4X Full 4X Full

+ Sticky-set
Resolution
Overhead

SOR 1K×1K 6201
6216

(0.24%)
6207

(0.10%)
6211

(0.17%)
6206

(0.08%)
6714

(8.28%)
6707

(8.17%)
6519

(5.13%)
6480

(4.50%)
6639

(1.85%)
Barnes-

Hut
4K 93857

94947
(1.16%)

94657
(0.85%)

94697
(0.89%)

95209
(1.44%)

98968
(5.45%)

102190
(8.88%)

93649
(-0.22%)

102334
(9.03%)

97585
(4.20%)

Water-
Spatial

512 59105
59232

(0.21%)
59161

(0.09%)
59209

(0.17%)
59124

(0.03%)
59834

(1.23%)
61985

(4.87%)
59501

(0.67%)
60313

(2.04%)
60002

(0.84%)

ACKNOWLEDGMENT

This research was supported by Hong Kong RGC grant
HKU7176/06E and China 863 grant 2006AA01A111.

REFERENCES
[1] GigaSpaces eXtreme Application Platform (XAP) – a commercial

JavaSpaces implementation. http://www.gigaspaces.com.

[2] Oracle Coherence – an in-memory distributed data grid solution.
http://www.oracle.com/technology/ products/coherence/index.html.

[3] A. Zilka. Open Terracotta – JVM clustering, scalability and reliability
for Java. http://www.terracotta.org.

[4] The DARPA High Productivity Computing Systems (HPCS) Project.
http://www.highproductivity.org.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.
Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the
20th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05). p.519-538, San
Diego, CA, USA, Oct 16-20, 2005.

[6] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability
and the Chapel language. International Journal of High Performance
Computing Applications, 21(3):291–312, Aug 2007.

[7] J.P.Lewis and U. Neumann. Performance of Java versus C++.
Computer Graphics and Immersive Technology Lab University of
Southern California, Jan. 2003 (updated 2004). .
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.

[8] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking
Java against C and Fortran for scientific applications. In Proceedings
of the 2001 joint ACM-ISCOPE conference on Java Grande, p.97-
105, Palo Alto, California, United States, Jun 2001.

[9] Sun Microsystems. Learn about Java Technology. (accessed Sep 29,
2008). http://java.com/en/about/.

[10] Y. Aridor, M. Factor, and A. Teperman. cJVM: a single system image
of a JVM on a cluster. In Proceedings of International Conference on
Parallel Processing (ICPP’99), p.4-11, Sept 21-24, 1999.

[11] W. Zhu, C. L. Wang, and F. C. M. Lau. JESSICA2: A distributed
Java virtual machine with transparent thread migration support. In
Proceedings of the 4th IEEE International Conference on Cluster
Computing (CLUSTER’02), p.381-388, Chicago, USA, Sep. 2002.

[12] M. Factor, A. Schuster, and K. Shagin. JavaSplit: A runtime for
execution of monolithic Java programs on heterogeneous collections
of commodity workstations. In Proceedings of the 5th IEEE
International Conference on Cluster Computing (CLUSTER’03),
p.110-117, Hong Kong, China, Dec 2003.

[13] A. Itzkovitz, A. Schuster, and L. Shalev. Thread migration and its
applications in distributed shared memory systems. Journal of
Systems and Software, 42(1):71–87, Jul 1997.

[14] Y. Sudo, S. Suzuki, and S. Shibayama. Distributed thread scheduling
methods for reducing page thrashing. In Proceedings of the 6th IEEE
International Symposium on High Performance Distributed
Computing (HPDC’97), p.356, Portland, OR, USA, Aug 5-8, 1997.

[15] K. Thitikamol, and P. J. Keleher. Active correlation tracking. In
Proceedings of 19th IEEE International Conference on Distributed
Computing Systems (ICDCS’99), p.324-331, Austin, TX, 1999

[16] A. Barak and A. Litman. MOS: A multicomputer distributed
operating system. Software: Practice and Experience, 15(8):725-737,
Aug 1985.

[17] R. Ho, C.L. Wang, and F.C.M. Lau. Lightweight process migration
and memory prefetching on openMosix. In Proceedings of the 22nd
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’08), pp.1-12, Miami, FL, Apr 14-18, 2008.

[18] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-
based lazy release consistency protocols for shared virtual memory
systems. In Proceedings of the 2nd USENIX Symposium on Operating

Systems Design and Implementation (OSDI’96), p.75-88, Seattle,
Washington, United States, Oct 29-Nov 01, 1996.

[19] Y. Luo, K. T. Lam, C. L. Wang. Path-analytic distributed object
prefetching. In Proceedings of the 10th International Symposium on
Pervasive Systems, Algorithms and Networks (ISPAN’09), p.98-103,
Kaohsiung, Taiwan, Dec 14-16, 2009.

[20] J. Pal Singh, C. Holt, T. Totsuka, A. Gupta, and J. L. Hennessy. Load
balancing and data locality in adaptive hierarchical nbody methods:
Barnes-hut, fast multipole, and rasiosity. Journal of Parallel and
Distributed Computing, 27(2):118–141, Jun 1995.

[21] S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and J. E. B.
Moss. Pretenuring for Java. In Proceedings of the 16th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’01), p.342-352, Tampa Bay,
FL, USA, Oct 14-18, 2001.

[22] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proceedings of the 19th
International Symposium on Computer Architecture (ISCA’92), p.13-
21, Queensland, Australia, May 19-21, 1992.

[23] L. Iftode, J. P. Singh, and K. Li. Scope consistency: a bridge between
release consistency and entry consistency. In Proceedings of the 8th
ACM Symposium on Parallel Algorithms and Architectures
(SPAA’96), p.277-287, Padua, Italy, Jun 24-26, 1996.

[24] The HKU Gideon 300 Cluster. http://www.srg.cs.hku. hk/gideon/.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In Proceedings of the 22nd International Symposium
on Computer Architecture (ISCA’95), p.24-36, Jun 22-24, 1995.

[26] T. Wilkinson. Kaffe: a clean room implementation of the Java virtual
machine. http://www.kaffe.org.

[27] K. Thitikamol and P. Keleher. Thread migration and communication
minimization in DSM systems. In Proc. IEEE, Special Issue on
Distributed Shared Memory Systems, 87(3):487–497, Mar 1999.

[28] T-Y Liang, C-K Shieh, and J-Q Li. Selecting threads for workload
migration in software distributed shared memory systems. Parallel
Computing, 28(6):893-913, 2002.

[29] M. Jump, S. M. Blackburn, and K. S. McKinley. Dynamic object
sampling for pretenuring. In Proceedings of the 4th International
Symposium on Memory management (ISMM’04), Vancouver, BC,
Canada, Oct 24-25, 2004

[30] J. Whaley. A portable sampling-based profiler for Java virtual
machines. In Proceedings of the ACM 2000 Conference on Java
Grande, p.78-87, San Francisco, California, USA, Jun 03-04, 2000.

[31] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM server
compiler. In Proceedings of the Java Virtual Machine Research and
Technology Symposium – Vol. 1, p.1-12, Monterey, California, USA,
Apr 23-24, 2001.

[32] B. Alpern et al. The Jalapeño virtual machine. IBM Systems Journal,
39(1):211–238, Feb 2000.

[33] Sun Microsystems. The JVM tool interface (JVM TI), version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

