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Abstract—Traditional machine learning algorithms assume
that data are exact or precise. However, this assumption
may not hold in some situations because of data uncertainty
arising from measurement errors, data staleness, and repeated
measurements, etc. With uncertainty, the value of each data
item is represented by a probability distribution function (pdf).
In this paper, we propose a novel naive Bayes classification
algorithm for uncertain data with a pdf. Our key solution is to
extend the class conditional probability estimation in the Bayes
model to handle pdf’s. Extensive experiments on UCI datasets
show that the accuracy of naive Bayes model can be improved
by taking into account the uncertainty information.
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I. INTRODUCTION

Traditional machine learning algorithms often assume that

the data values are exact or precise. In many emerging appli-

cations, however, the data is inherently uncertain. Sampling

errors and instrument errors are both sources of uncertainty,

and data are typically represented by probability distribu-

tions rather than by deterministic values. There are many

learning algorithms used in the classification of deterministic

data points, but few algorithms have been proposed for

classification of distribution-based uncertain data objects.

Data uncertainty arises naturally in many applications

due to various reasons. For example, data obtained from

measurements by physical devices are often imprecise due

to measurement errors. Another source of error is quantiza-

tion errors introduced by the digitization process. In some

applications, such as sensor networks, data values are con-

tinuously changing and recorded information is always stale.

Uncertainty may also come from repeated measurements.

In this paper we study the problem of classifying objects

with multi-dimensional uncertainty. In particular, an object

is not a simple point in space, but is represented by an

uncertainty region over which a pdf is defined. Formally,

we consider a set of n objects in a d-dimensional space.

The location of each object is represented by a pdf p that

specifies the probability density of each possible location.

We assume that the pdf of each tuple is independent of the

others.

This research is supported by National Natural Science Foundation of
China under Grant No. 60703110 and Hong Kong Research Grants Council
GRF Grants HKU 713406 and HKU 513806.

Naive Bayes is a widely used classification method based

on Bayes theory. Based on class conditional density estima-

tion and class prior probability, the posterior class probabil-

ity of a test data point can be derived and the test data will

be assigned to the class with the maximum posterior class

probability.

The key problem in naive Bayes method is the class condi-

tional density estimation. Traditionally the class conditional

density is estimated based on data points. For uncertain

classification problems, however, we should learn the class

conditional density from uncertain data objects represented

by probability distributions. In order to extend the naive

Bayes method to handle uncertain data, we propose three

methods in this paper:

Averaging (AVG): We first obtain the average point of

every uncertain data object. Then, these points are passed to

naive Bayes.

Sample-based method (SBC): The kernel function,

which is the key function used in naive Bayes, is redesigned

to consider values sampled from the uncertain data as input.

In this method, the probability distributions can be arbitrary.

Formula-based method (FBC): This is a special appli-

cation of the sample-based method, where a closed-formula

for the kernel function is derived. We have derived the

formula for Gaussian distribution. (Lacking space, we omit

the results for uniform distribution.)

As shown by the extensive experimental results on several

widely-used benchmark datasets, all our newly-designed

classifiers yield more accurate results than the naive Bayes

method that does not consider uncertainty. While AVG is

the simplest method among our proposals, it is not as good

as SBC and FBC. FBC is more accurate than SBC, and can

be performed in an efficient manner.

In the rest of this paper, we first give some related

works in Section II. Then we introduce preliminaries in

Section III and define the problem formally in Section IV.

Our algorithmic framework is presented in Section V. The

formula-based and sample-based approaches are described

in Sections VI and VII respectively. Experimental studies

on accuracy and performance are presented in Section VIII.

The paper is discussed and concluded in Sections IX and X.

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.90

944



II. RELATED WORKS

In this section, we will introduce some related works

about uncertain data mining, uncertain data classification,

naive Bayes model and kernel density estimation.

A. Uncertain data mining

There has been a growing interest in uncertain data

mining [1], including clustering [2]–[5], classification [6]–

[8], outlier detection [9], frequent pattern mining [10], [11],

streams mining [12] and skyline analysis [13] on uncertain

data, etc.

An important branch of mining uncertain data is to build

classification models on uncertain data. While [6], [7] study

the classification of uncertain data using the support vector

model, [8] performs classification using decision trees. This

paper unprecedentedly explores yet another classification

model, naive Bayes classifiers, and extends them to handle

uncertain data.

B. Naive Bayes classifiers

In probability theory, Bayes theorem relates the condi-

tional and marginal probabilities of two random events.

It is often used to compute posterior probabilities given

observations. Let x = (x1, x2, . . . , xd) be a d-dimensional

instance which has no class label, and our goal is to build a

classifier to predict its unknown class label based on Bayes

theorem. Let C = {C1, C2, . . . , CK} be the set of the class

labels. P (Ck) is the prior probability of Ck (k = 1, 2, ...,K)
that are inferred before new evidence; P (x|Ck) be the

conditional probability of seeing the evidence x if the

hypothesis Ck is true. A technique for constructing such

classifiers to employ Bayes’ theorem to obtain:

P (Ck|x) =
P (x|Ck)P (Ck)

∑

k′ P (x|Ck′)P (Ck′)
(1)

A naive Bayes classifier assumes that the value of a

particular feature of a class is unrelated to the value of any

other feature, so that1:

P (x|Ck) =

d
∏

j=1

P (xj |Ck) (2)

C. Class conditional density estimation

Probability density estimation constitutes an unsuper-

vised method that attempts to model the underlying density

function from which a given set of unlabeled data have

been generated. In this paper, we take the non-parametric

approach to solve classification problems.

1In this paper, we use the superscript “j” on multi-dimensional quantities
to represent their values in the j-th dimension.

III. PRELIMINARIES

A. Kernel density estimation

Kernel density estimation is a non-parametric way of

estimating the probability density function of a random

variable. As an illustration, given a sample of a population,

kernel density estimation makes it possible to extrapolate

the sample to the entire population.

If x1, x2, . . . , xN ∼ f are independent and identically-

distributed samples of a scalar random variable, then the

kernel density approximation of its probability density func-

tion is:

f̂h(x) =
1

Nh

N
∑

n=1

K

(

x − xn

h

)

(3)

where K is some kernel and h is a smoothing parameter

called the bandwidth. A typical choice of K is the standard

Gaussian function with zero mean and unit variance, i.e.,

K(x) =
1√
2π

e−
1

2
x2

(4)

B. Naive Bayes classification based on kernel density esti-

mation

Let xnk
= (x1

nk
, x2

nk
, . . . , xd

nk
), nk = 1, 2, . . . , Nk repre-

sent training data points of class Ck, and Nk is the number

of instances in class Ck. To classify x = (x1, x2, . . . , xd)
using naive Bayes model with (2), we need to estimate the

class condition density P (xj |Ck). We use f̂
h

j

k

(xj) as the

estimation. From (3) and (2), we get:

P (x|Ck) =

d
∏

j=1

{

1

Nkh
j
k

Nk
∑

nk=1

K

(

xj − xj
nk

h
j
k

)}

(5)

With this, we can compute P (Ck|x) using (1) and predict

the label of x as y = arg max
Ck∈C

P (Ck|x).

IV. PROBLEM DEFINITION

Suppose that D = {D1,D2, . . . ,DK} is a labeled training

dataset with K classes, and each Dk = {X1,X2, . . . ,XNk
}

(k = 1, 2, . . . ,K) represents the k-th class, which contains

Nk uncertain data objects. N =
∑K

k=1
Nk is the total

number of training data objects. Xnk
(nk = 1, 2, . . . , Nk)

represents the nk-th data object in the data set Dk with

class label Ck. Let C be the set of the class labels,

C = {C1, C2, . . . , CK}.

Each Xnk
contains d numerical (real valued) dimensions,

Xnk
= (X1

nk
,X2

nk
, . . . ,Xd

nk
). The value of each dimension

Xj
nk

is uncertain. Being a scalar random variable, it is

described not by a single value, but a probability distribution.

The probability density function for Xj
nk

is pj
nk

. Since we

have adopted the naive Bayes model, we assume that each

Xj
nk

(j = 1, 2, . . . , d) is independent of another.

Let X be an unlabeled uncertain data object used for

testing. It has d dimension: X = (X1,X2, . . . ,Xd), where

each attribute is modelled by a pdf pj (j = 1, 2, . . . , d).
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The classification problem is to train a model that maps X

to a posterior probability distribution P (Ck|X). Then, we

predict the label of X as Y = arg max
Ck∈C

P (Ck|X).

In the Bayes decision framework, Bayes’ rule decomposes

the computation of a posterior probability into the computa-

tion of a likelihood and a prior probability. The likelihood is

measured by the class conditional density P (X|Ck), which

is estimated using the data subset of the corresponding class.

Traditionally, this is estimated with (5), which is based on

the deterministic data points in Dk. To handle uncertain data,

however, we need to extend the kernel density estimation (3)

to cope with the pdf’s.

V. PROPOSED METHODS

In this section, we propose two approaches for handling

uncertain data in naive Bayes classification problem. One is

averaging and the other is distribution-based.

A. Averaging

A straight-forward method to deal with the uncertain

information is to replace each pdf with its expected value,

thus effectively converting the uncertain data objects to

deterministic point-valued data. This reduces the problem

back to the traditional classification problem and hence the

traditional naive Bayes model and kernel density estimation

can be reused.

B. Distribution-based

The key step here is the estimation of class conditional

density on uncertain data. Following the approach described

in Section III-B, we estimate P (Xj |Ck) using f̂
h

j

k

(Xj).

However, we are now dealing with Xj , which is an uncertain

value modelled by the pdf pj . But the kernel function K is

defined for scalar-valued parameters only. So, we need to

extend (3) to create a kernel-density estimation for Xj .

Since Xj is a probability distribution, it is natural to

replace K in (3) using its expected value. In other words,

we replace (3) with:

f̂
h

j

k

(Xj) =
1

Nkh
j
k

Nk
∑

nk=1

E

[

K

(

Xj − Xj
nk

h
j
k

)]

=
1

Nkh
j
k

Nk
∑

nk=1

∫∫

K

(

xj − xj
nk

h
j
k

)

pj(xj)pj
nk

(xj
nk

) dxjdxj
nk

Using this to estimate P (Xj |Ck) in (2) gives:

P (X|Ck) =

d
∏

j=1

{

1

Nkh
j
k

Nk
∑

nk=1

∫∫

K

(

xj − xj
nk

h
j
k

)

pj(xj) pj
nk

(xj
nk

) dxj dxj
nk

}

(6)

The double integral in (6) can be computed through various

ways. We give two possible methods in Sections VI and VII.

VI. FORMULA-BASED METHOD

In the formula based approach, we first derive the formula

for the kernel estimation for uncertain data objects. With this

formula, we can then compute the kernel density and run

the naive Bayes method to perform the classification. This

method only works for some combinations of kernel func-

tions and probability distributions, as closed-form formulas

may not always be obtainable in the general case. We use a

Gaussian kernel function and consider Gaussian distribution.

Suppose X and Xnk
are uncertain data objects with

multivariate Gaussian distributions, i.e., X ∼ N(µ,Σ) and

Xnk
∼ N(µnk

,Σnk
). Here, µ = (µ1, µ2, . . . , µd) and

µnk
= (µ1

nk
, µ2

nk
, . . . , µd

nk
) are the means of X and Xnk

while Σ and Σnk
are their covariance matrixes, respectively.

Because of the independence assumption, Σ and Σnk
are

diagonal matrixes. Let σj and σj
nk

be the standard deviations

of the j-th dimension for X and Xnk
respectively. Then,

Xj ∼ N(µj , σj · σj) and Xj
nk

∼ N(µj
nk

, σj
nk

· σj
nk

). To

classify X using naive Bayes model, we compute the all

the class condition density P (X|Ck) based on (6).

Since Xj
nk

follows Gaussian distribution, we have:

pj
nk

(xj
nk

) =
1

σ
j
nk

√
2π

exp

(

−1

2

(

xj
nk

− µj
nk

σ
j
nk

)2
)

(7)

and similarly for Xj (by omitting all subscripts in (7)).

Based on formulas (4), (6), (7), we get, after simplifica-

tions:

P (X|Ck) =

d
∏

j=1























Nk
∑

nk=1

exp

(

− 1

2

(

µj
−µj

nk

ν
j

k,nk

)2
)

Nkν
j
k,nk

√
2π























(8)

where ν
j
k,nk

=
√

h
j
k · hj

k + σj · σj + σ
j
nk · σj

nk . This gives

the class condition density estimate. We need to repeat this

calculation for every class Ck. Based on formula (8), it is

clear that the time complexity is
∑K

k=1
O(Nkd) = O(Nd).

Recall that N is the total number of the training data objects,

and d is the dimension of the data objects.

VII. SAMPLE-BASED METHOD

In sample based approach, every training and testing

uncertain data object is represented by sample points based

on their own distributions. When using kernel density es-

timation for a data object, every sample point contributes

to the density estimation. The integral of density can be

transformed into the summation of the data points’ contri-

bution with their probability as weights. Equation (6) is thus
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Table I
SELECTED DATASETS

Dataset Tuples Features Classes

glass 214 10 6
ionosphere 351 32 2

wine 178 13 3
segment 2310 14 7

waveform 400 40 3
Optdigits 569 64 10
Diabetes 768 8 2

Hear-Statlog 270 13 2
Blood Transfusion 748 4 2

Vowel 990 10 11

replaced by:

P (X|Ck) =

d
∏

j=1

1

Nkh
j
k

Nk
∑

nk=1

s
∑

c=1

s
∑

d=1

K

(

xj
c − x

j
nk,d

h
j
k

)

P (xj
c)P (xj

nk,d) (9)

Here xj
c represents the c-th sample point of uncertain test

data object X along the j-th dimension. x
j
nk,d represents

the d-th sample point of uncertain training data object Xnk

along the j-th dimension. P (xj
c) and P (xj

nk,d) are probabili-

ties according to X and Xnk
’s distribution respectively. And

s is the number of samples used for each of Xj and X
j
kn

along the j-th dimension. For the computation of (9), we

will sample s random points on object X and every Xnk
’s

each dimension, and get the corresponding probability of

each sample point. After computing the P (X|Ck) for X

with each class Ck, we can compute the posterior probability

P (Ck|X) based on (1) and X can be assigned to the class

with the maximum P (Ck|X). Since we need to evaluate (9)

for each class Ck, the time complexity of this method is
∑K

k=1
O(Nkds2) = O(Nds2).

VIII. EXPERIMENTS

To study the performance of our algorithms, we have

performed experiments on some UCI datasets [14] listed in

Table I. These datasets are chosen because they contain all

numerical attributes obtained from measurements. For the

purpose of our experiments, classification models are learned

on the numerical attributes and their “class label” attributes.

All experiments are conducted on a computer with an Intel

Core 2 Duo E6750 2.66GHz processor and 4GB of RAM.

Because the original data tuples contain point values with-

out uncertainty, we have inserted the uncertainty information

for the datasets, following [8]. For the AVG method, the

original point value data are used as the expected value, and

the experiments are performed on the original datasets. For

the formula and sample based methods, we use Gaussian

distribution as the uncertainty model. Suppose x
j
min and

xj
max are the minimum and maximum values for feature

Aj , then the range of values for Aj is (xj
max − x

j
min). The

Table II
ACCURACY

Dataset AVG SBC FBC w

glass 0.513 0.544 0.553 3
ionosphere 0.915 0.915 0.920 5

wine 0.966 0.984 0.978 1
segment 0.808 0.865 0.872 4

waveform 0.777 0.789 0.787 3
Optdigits 0.808 0.905 0.919 7
Diabetes 0.750 0.767 0.771 4

Hear-Statlog 0.833 0.844 0.852 17
Blood Transfusion 0.754 0.767 0.773 10

Vowel 0.573 0.599 0.595 1

model parameters are determined as follows: 1) for each

uncertain object, use the original point value of the data

as the mean value µj of the uncertain object; 2) set the

standard deviation σj = 0.25 · (xj
max − x

j
min) · w%. Here

w is a percentage parameter that allows us to control the

uncertainty level of the objects. The greater the value of w,

the higher the uncertain level (see also Section IX). After

setting the distribution parameters, we can learn the naive

Bayes model based on the related formulas in Sections VI

and VII. For the sampling-based approach, s data points are

sampled along each dimension for each object according to

the distribution with the previously determined parameters.

For the bandwidth parameter h, we apply the widely used

bandwidth estimation rule called the Silverman approxima-

tion rule [15], which suggests setting h
j
k = 1.06.σj

nk
.N

−
1

5

k .

Here h
j
k is the kernel bandwidth for the k-th class of dataset

Dk along the j-th dimension, σj
nk

is the standard deviation

of uncertain object Xnk
in the j-th dimension, and Nk is

the number of data objects of Dk. Thus, as the naive Bayes

model observes more training data, its density estimation

becomes increasingly local.

A. Accuracy

We have run the experiments on the selected datasets

using naive Bayes model (AVG), sample-based method

(SBC) and formula-based method (FBC). For each dataset,

we use 10-fold cross validation to measure the accuracy. We

have repeated the experiments using various values of w%.

For each dataset, Table II reports the best accuracy achieved

over different w settings. The number of sample points used

for SBC is s = 100.

From the table, we can see that our distribution-based

methods (SBC and FBC) can consistently achieve higher

accuracy than averaging (naive Bayes). This confirms our

hypothesis that by considering the information of the whole

pdf’s rather than just the mean values, more accurate clas-

sifiers can be learnt. FBC generally gives higher accuracies

than SBC, because SBC is essentially a numerical way of

evaluating the double integral in (6). As such, calculation

errors are incurred due to the finite number of sample points

used.
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Note that we have reported in Table II only the best

accuracy values over a wide range of values of w we have

tried. The reason is that we intend to present here the

potential improvement on accuracy that can be achieved by

considering the complete pdf information of the uncertain

data. How to find out the suitable values of w is a subject of

further research, and will be discussed further in Section IX.

In Figure 1, we plot the accuracy of FBC and naive

Bayes against w for three of the datasets. We can see that

the accuracy first rises and then drops as w increases. We

hypothesize that the UCI datasets are not noise-free. They

already contain measurement errors. The way we generate

the uncertainty information is an attempt to model such

errors. We conjecture that when the uncertainty information

so generated can model the measurement errors accurately,

then FBC can give a very high accuracy, significantly higher

than a naive Bayes classifier. The observations that the

accuracy attains a peak at particular values of w provides

evidence for our conjecture: At these values of w, the

injected uncertainty information most closely models the real

measurement errors in the original UCI datasets. Therefore,

the highly accurate classifiers are obtained. When w deviates

from these values, the generated uncertainty information no

longer models the measurement errors accurately. So, the

resulting accuracies of FBC drop. Therefore, it is important

to have a good model of the measurement errors. It should

be noted that the best values of w given in Table II appear to

agree with those given in [8],2 even though [8] uses decision

trees—a very different classification model from the naive

Bayes model used in this paper. This agreement on the best

values of w cannot be a mere coincidence. Rather, it suggests

that the best value of w for a given distribution model is

an intrinsic property of those datasets, independent of the

learning algorithms employed. This is an evidence for our

hypothesis above, that the datasets contains errors. When

such errors are modelled properly, better classifiers can be

learnt.

B. Performance

The execution times consumed by the algorithms on the

various datasets are shown in Table III. All the time values

are given in number of seconds. From the tables, it can be

observed that SBC is 10000 times slower than naive Bayes.

This is expected: To evaluate P (X|Ck), SBC uses (9), which

contains two summations over s sample points each, while

naive Bayes uses a single value in the place of this double

summation. This means that SBC needs to perform s2 times

more calculations than naive Bayes. Since we used s = 100
in our experiments, SBC is 1002 = 10000 times slower.

So, although SBC can build more accurate classifiers

than naive Bayes (as shown in Section VIII-A), the bad

2when comparing the datasets that are common in both experiments,
giving consideration to the granularity of w tested [8]

Table III
EXECUTION TIME

Dataset AVG SBC FBC speedup
(sec.) (sec.) (sec.) (SBC/FBC)

glass 0.312 0.0170×10
4

2.55 0.667×10
3

ionosphere 2.20 2.02×10
4

11.4 1.77×10
3

wine 0.266 0.196×10
4

3.11 0.631×10
3

segment 1.52 1.46×10
4

7.83 1.87×10
3

waveform 3.30 3.38×10
4

17.3 1.95×10
3

Optdigits 9.88 10.8×10
4

37.3 2.90×10
3

Diabetes 2.31 2.44×10
4

7.84 3.12×10
3

Hear-Statlog 0.484 0.479×10
4

3.63 1.32×10
3

Blood Trans. 1.06 1.18×10
4

3.81 3.10×10
3

Vowel 4.70 5.29×10
4

14.2 3.72×10
3

performance makes it impractical. Nevertheless, FBC comes

to the rescue. Examining the last column of Table III, we

find that FBC gives impressive speedup ratios of the order

103 over SBC.

Although highly efficient and scalable, FBC is still 3–15

times slower than naive Bayes. This is a trade-off between

execution time and accuracy of the resulting classifiers.

We remind readers that FBC and SBC, by considering the

complete information of pdf’s of the uncertain objects, can

build more accurate classifiers than naive Bayes classifier,

which uses only the mean of the pdf’s.

IX. DISCUSSIONS

In the experiments, we have used uncertain datasets that

are generated from real datasets from the UCI repository

[14]. This was necessary as the UCI datasets do not provide

uncertainty information. Each data tuple is represented by

point-values, and no information about the distribution of

the attribute values is provided. Nevertheless, we believe

that the data values are not perfect and are subject to errors

such as measurement errors, rounding errors, etc. Moreover,

central to this paper is the conjecture that the better the

uncertainty information can model the errors, the higher the

accuracy of the classifiers that we can build using our novel

algorithms, which can exploit the uncertainty information.

Therefore, for experiment purposes, we had to generate the

uncertainty information (in the form of pdf’s) by guessing

the error models. We have tried to model the errors using

Gaussian distribution, over a wide range of parameter w,

which controls the standard deviation of the pdf’s. As

reported in Section VIII-A, we have found that the accuracy

of the classifiers built by FBC does attain a maximum at

certain values of parameter w. This acts as an evidence for

our conjecture.

Because of this conjecture, we recommend that practition-

ers gather and keep uncertainty information when collecting

their datasets. By gathering and storing the pdf’s using exter-

nal means, it is often possible to model the errors much more

accurately than what we have done in the experiments. For

examples, for physical measurements, high-end measuring

equipments usually come with technical specifications that
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Figure 1. Accuracy vs. uncertainty level for various datasets

state the error model. (e.g., the user manual may state that

the readings are correct up to ±5%, meaning that we may

model the error by a uniform distribution that spans ±5%
of the reading.) Such specifications are usually provided by

the manufacturers of the measurement devices by carefully

designed experiments and calibrations.

As our experiments have shown, exploiting uncertainty

information, it is possible to use SBC/FBC to find classifiers

that are more accurate than naive Bayes classifiers.

X. CONCLUSIONS

We address the problem of extending traditional naive

Bayes model to the classification of uncertain data. The

key problem in naive Bayes model is class conditional

probability estimation, and kernel density estimation is a

common way for that. We have extended the kernel density

estimation method to handle uncertain data. This reduces the

problem to the evaluation of double-integrals. For particular

kernel functions and probability distributions, the double

integral can be analytically evaluated to give a closed-form

formula, allowing an efficient formula-based algorithm. In

general, however, the double integral cannot be simplified

in closed forms. In this case, a sample-based approach is

proposed. Extensive experiments on several UCI datasets

show that the uncertain naive Bayes model considering the

full pdf information of uncertain data can produce classifiers

with higher accuracy than the traditional model using the

mean as the representative value of uncertain data. Time

complexity analysis and performance analysis based on

experiments show that the formula-based approach has great

advantages over the sample-based approach.
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